
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 25, No. 1, February 2012

NOTES ON MODULAR ORDERED SETS

Seon Ho Shin*

Abstract. Generalizing modular lattices, a concept of modular
ordered sets was introduced by Chajda and Rachunek. In this pa-
per, we characterize modular ordered sets as those partially ordered
set P satisfying that for a, b, c ∈ P with b ≤ c, l(a, b) = l(a, c)
and u(a, b) = u(a, c) imply b = c. Using this, we obtain a suffi-
cient condition for them. We also discuss the modularity of the
Dedekind-MacNeille completions of ordered sets.

1. Introduction

The concept of modular lattices was introduced by Dedekind. It is
well known that the class of modular lattices contains that of distributive
lattices and that the lattice of normal subgroups (ideals, resp.) of a
group (ring, resp.) is modular. In order to generalize the concept of
modular lattices in the setting of partially ordered sets, there have been
several attempts for modular ordered sets, e.g. in [2], [5] among others.

In this note we study modular ordered sets introduced by Chajda
and Rachunek ([2]). We recall that a lattice is modular iff for any a, b, c
in the lattice with b ≤ c, a ∧ b = a ∧ c and a ∨ b = a ∨ c implies b = c.
We extend this characterization of modular lattices to modular ordered
sets. Using three point ordered set N1 with a chain of two points and
an element which is not comparable with both elements of the chain, we
also have a forbidden configuration for modular ordered sets. Indeed an
ordered set (P,≤) is modular if N1 6↪→ P (see Figure 1.1 for N1). But
the converse need not be true and hence the class of modular ordered
sets need not be hereditary. It is contrary to the fact that the class of
modular lattices is equational, which implies that the class is hereditary
and productive.
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The Dedekind-MacNeille completion (DM(P ),⊆) of a partially or-
dered set (P,≤) is the smallest complete lattice containing P . We show
that the Dedekind-MacNeille completions of six forbidden ordered sets
for moular ordered sets given in [2] are not modular.

We now introduce some notations for the remaining part of our note.
In the following, (P,≤) always denotes a partially ordered set. For
a ∈ P , we write ↑ a = {x ∈ P | a ≤ x} and dually ↓ a = {x ∈
P | x ≤ a}. For S ⊆ P , we define l(S) = {x ∈ P | x ≤ s for all
s ∈ S} =

⋂{↓ s | s ∈ S}, which is called the lower set of S and
u(S) = {x ∈ P | s ≤ x for all s ∈ S} =

⋂{↑ s | s ∈ S} the upper
set of S dually. If S = {s1, s2, · · · , sn} is a finite subset of P , then we
write l(S) = l(s1, s2, · · · , sn) and u(S) = u(s1, s2, · · · , sn) briefly. Thus
l(s1, s2, · · · , sn) =

⋂n
i=1 ↓ si and u(s1, s2, · · · , sn) =

⋂n
i=1 ↑ si. Further,

For a ∈ P and S ⊆ P , l({a}⋃
S) will be denoted by simply l(a, S) and

u(a, S) means u({a}⋃
S).

For the terminology not introduced in the paper, we refer to [1] and
[3] for the lattice theory and order structure. Throughout this paper,
we mean that an ordered set is a partially ordered set.

2. Modular ordered sets

We first recall that a lattice L is called modular if it satisfies : for
any a, b, c ∈ L with b ≤ c, c ∧ (a ∨ b) = (c ∧ a) ∨ b.

It is straighforward that every distributive lattice is modular. Fur-
ther, a lattice L is modular iff for any a, b, c ∈ L, (c ∧ b) ∨ (a ∧ b) =
[(c∧ b)∨a]∧ b. Thus the class of modular lattices is an equational class.

The following definition is due to Chajda and Rachunek([2]).

Definition 2.1. An ordered set (P,≤) is called modular if for any
a, b, c ∈ P with b ≤ c, l(u(b, a), c) = l(u(b, l(a, c))).

We note that for any a, b, c in a lattice L, l(a, c) =↓ (a ∧ c) and
u(a, b) =↑ (a∨b) and hence l(u(b, a), c) =↓ [c∧(a∨b)] and l(u(b, l(a, c))) =
↓ [(c∧a)∨b]. Thus every modular lattice is a modular ordered set. This
amounts to saying that the concept of modular ordered sets is a general-
ization of modular lattices. We give some examples of modular ordered
sets which need not be a lattice.

Example 2.2. In Figure 1.1, consider the ordered set N3 = {a, b, c, p}
such that p < a and p < b < c. It is not a modular ordered set since
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l(u(b, a), c) = {b, c, p} and l(u(b, l(a, c))) = {b, p}. Similarly N1, N3 and
N5 are not modular, whereas N0, N2, N2 and N2 are modular.
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Figure 1.1

It is well known that a lattice L is modular iff for any a, b, c in L with
b ≤ c, a ∧ b = a ∧ c and a ∨ b = a ∨ c implies b = c.

Extending the above, we have a characterization of modular ordered
sets as follows:

Theorem 2.3. For an ordered set (P,≤), the following are equivalent:
(1) P is a modular ordered set.
(2) For a, b, c ∈ P with b ≤ c, if l(a, b) = l(a, c) and u(a, b) = u(a, c),

then b = c.

Proof. Assume that P is a modular ordered set. For a, b, c ∈ P
with b ≤ c, suppose that l(a, b) = l(a, c) and u(a, b) = u(a, c). Then
l(u(b, a), c) = l(u(a, c), c) =↓ c and l(u(b, l(a, c))) = l(u(b, l(a, b))) =↓ b.
Since these two sets are the same in the modular ordered set P , we
have b = c. Conversely suppose that P is not modular. Then there
are a, b and c in P with b ≤ c, l(u(b, a), c) 6= l(u(b, l(a, c))). We
claim that a and c are incomparable. Indeed, if a ≤ c or c ≤ a
then l(u(b, a), c) = l(u(b, l(a, c))), which is a contradiction. Similarly
a and b are also incomparable. For such a, b and c, l(a, b) = l(a, c) and
u(a, b) = u(a, c) but b 6= c. This completes the proof.
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Using the above, one can also prove that every modular lattice is a
modular ordered set, because for a, b, c ∈ P with b ≤ c, if l(a, b) = l(a, c)
and u(a, b) = u(a, c), then a ∧ b = a ∧ c and a ∨ b = a ∨ c. Hence
b = b ∨ (a ∧ b) = b ∨ (a ∧ c) = (b ∨ a) ∧ c = (c ∨ a) ∧ c = c.

Let P and Q be ordered sets. A function ϕ : P −→ Q is called order-
preserving if x ≤ y in P implies ϕ(x) ≤ ϕ(y) in Q. And it is called an
order-embedding if x ≤ y in P is equivalent to ϕ(x) ≤ ϕ(y) in Q. Clearly
an order-embedding ϕ : P −→ Q is 1-1, for P and Q are ordered sets.
In case we write P ↪→ Q.

Moreover, if ϕ : P −→ Q is an order-embedding from P onto Q,
then ϕ is called an order-isomorphism. In case we say that P and Q are
order-isomorphic and write P ∼= Q.

Notation. For two ordered sets P and Q, we write P 6↪→ Q to indi-
cate that Q has no subsets which are order-isomomorphic to P .

We quote the following Theorem 2.4 obtained by Chajda and Rachunek
([2]). Before we state it, we recall the following definition introduced in
[2].

A subset Q of an ordered set P is said to be an LU subset of P if for all
a, b ∈ Q, (i) lQ(a, b) = ∅ if and only if lP (a, b) = ∅ and (ii) uQ(a, b) = ∅
if and only if uP (a, b) = ∅.

Further, the follwoing ordered sets N5 and N5 are defined as well in
[2].
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Figure 1.2

Theorem 2.4. ([2]) If an ordered set (P,≤) is not modular, then P
contains an LU subset which is order-isomorphic to one of the ordered
sets N1, N3, N3, N5, N5, N5 given in the above.

We now have a more simple forbidden configuration for a modular
ordered set as follows.
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Theorem 2.5. An ordered set (P,≤) is modular if N1 6↪→ P .

Proof. Suppose that P is not modular, then there are a, b, c ∈ P such
that b ≤ c, l(a, b) = l(a, c) and u(a, b) = u(a, c) but b 6= c. Then a and
b are incomparable. Indeed, assume that a ≤ b, then u(a, b) =↑ b and
u(a, c) =↑ c. Since u(a, b) = u(a, c), ↑ b =↑ c and hence b = c which is
a contradiction. Also if b ≤ a, then l(a, b) =↓ b and u(a, b) =↑ a. Since
u(a, b) = u(a, c), u(a, c) =↑ a and hence c ≤ a. Since l(a, b) = l(a, c),
↓ b =↓ c so that b = c. This is also a contradiction. Moreover suppose
that a ≤ c, then l(a, b) = l(a, c) =↓ a which implies a ≤ b, and hence a
contradiction by the above proof. If c ≤ a, then u(a, b) = u(a, c) =↑ a
which implies b ≤ a, so tht one has a contradiction. Hence a and c are
incomparable. Thus {a, b, c} is a subset of P which is order-isomorphic
to N1. This completes the proof.

Sometimes it is convenient to use the contrapositive statement of
Theorem 2.5, i.e., if an ordered set (P,≤) is not modular, then N1 ↪→ P .

The next remark says that the converse of Theorem 2.5 need not be
true.

Remark 2.6. Consider P = {a, b, c, x, y} and Q = {a, b, c} ⊂ P
in Figure 1.3. Then P satisfies the condition in Theorem 2.3 for all
cases and hence P is a modular ordered set but (Q,≤Q) is not modular,
where ≤Q is the induced partial order on Q. Thus a subset of a modular
ordered set need not be modular again.
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3. Dedekind-MacNeille completions of ordered sets

For an ordered set (P,≤), let DM(P ) = {S ⊆ P | l(u(S)) = S}.
Then (DM(P ),⊆) is the smallest lattice containing P and also a com-
plete lattice. It is called the Dedekind-MacNeille completion(simply,
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DM-completion) of P. In fact, DM(P ) is a completion via the order
embedding ϕ : P −→ DM(P ) given by ϕ(a) = ↓ a for all a ∈ P ([3]).

In this section, we discuss the modularity of the Dedekind-MacNeille
completions of ordered sets.

Theorem 3.1. ([3]) Let P be an ordered set and ϕ : P −→ DM(P )
be the order embedding of P into its Dedekind-MacNeille completion
DM(P ). Then

(1) ϕ(P ) is both join-dense and meet-dense in DM(P ).
(2) If Q is an ordered set and P is a subset of Q which is both join-

dense and meet-dense in Q, then there is an order embedding ψ of Q
into DM(P ). Moreover, ψ agrees with ϕ on P , i.e., ψ(a) = ϕ(a) for all
a ∈ P .

(3) Let L be a complete lattice and let P be a subset of L which is
both join-dense and meet-dense in L. Then L ∼= DM(P ) via an order
isomorphism which agrees with ϕ on P .

We recall that the DM-completion of a modular ordered set in the
sense of Kolibiar([5]) need not be a modular lattice([4]).

Example 3.2. (1) Consider the modular ordered set N0. Then
the DM-completion DM(N0) of N0 is a modular lattice, since N5 6↪→
DM(N0)(See Figure 1.4).
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(2) Consider the modular ordered set N2. Then the DM-completion
DM(N2) of N2 is a modular lattice(See Figure 1.5). Similarly, DM(N2)
and DM(N2) are modular lattices.
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Proposition 3.3. If an ordered set P is one of the ordered sets N1,
N3, N3 or N5 given in the previous section, then the DM-completion
(DM(P ),⊆) of P is order-isomorphic to N5. Hence the DM-completions
of N1, N3, N3 and N5 are not modular lattices.

Proof. We construct the DM-completion DM(P ) as follows.
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We note that DM(N3) is the dual lattice of DM(N3) which is also
order-isomorphic to N5. In all, we have the result.

Proposition 3.4. The DM-completion DM(N5) of N5 is not mod-
ular. Further, The DM-completion DM(N5) of N5 is also not modular.

Proof. We construct The DM-completion DM(N5) of N5 as follows.

´
´

´
´́

´
´

´
´́

Q
Q

Q
QQr

r

r

r

r
b

cy

xa

N5

r

r
r

r

r

r

r

r
¡

¡
¡

¡
¡
¡

@
@

@
@

@
@

³³³³b
b

b
b

´
´

´
´

{b, x}

{a, b, c, x, y}

∅

{a} =↓ a

{a, b, x, y} =↓ y

↓ x = {x}

↓ c = {b, c, x}

↓ b = {b}

N5 ↪→ DM(N5)

Figure 1.7

Since the subset {↓ y, {b, x}, ↓ b, ↓ a, ∅} of DM(N5) is a sublattics of
DM(N5) which is isomprhic with N5. Thus DM(N5) is not modular.
Furthermore, N5 is the dual of N5 and hence its DM-completion is dually
isomorphic with DM(N5) so that it is not modular.

Remark 3.5. We revisit the example of a modular ordered set P =
{a, b, c, x, y} in Remark 2.6. The DM-completion (DM(P ),⊆) of P con-
sists of 8 elements as we see in Figure 1.8. Also it does not contain N5

as a sublattice and hence the DM-completion of P is a modular lattice.
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The above discussion strongly implicates a conjecture that the DM-
completion of modular ordered sets would be modular but the problem
is still open.
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