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WEAK CONVERGENCE THEOREMS IN FEYNMAN’S
OPERATIONAL CALCULI : THE CASE OF TIME
DEPENDENT NONCOMMUTING OPERATORS

Byunc Moo AHN*

ABSTRACT. Feynman’s operational calculus for noncommuting op-
erators was studied by means of measures on the time inteval. And
various stability theorems for Feynman’s operational calculus were
investigated. In this paper we see the time-dependent stability
properties when the operator-valued functions take their values in
a separable Hilbert space.

1. Introduction

Feynman’s operational calculus originated with the 1951 paper [5]
and concerns with the formation of functions for noncommuting opera-
tors. Much work on this subject has been done by mathematicians and
physicsts. Refernces can be found in the books of Johnson and Lapidus
[11] and Nazaikinskii, Shatalov and Sternin [14]. The setting of the op-
erational calculus used in this paper is that developed by Jefferies and
Johnson in the papers [6]-[10]. The Jefferies-Johnson approach to the
operational calculus uses measures on the time interval [0, 7] to deter-
mine the order of operators in products.

We now introduce some notations and begin to our discussion more
precise. Let X be a separable Hilbert space over the complex numbers
and let £(X) denote the space of bounded linear operators on X. Fix
T >0. Fori =1,---,nlet A; : [0,7] — L(X) be maps that are
measurable in the sense that A;'(FE) is a Borel set in [0,T] for any
strong operator open set £ C £(X). To each A;(-) we associate a finite
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Borel measure A; on [0,7] and we require that, for each 4,

r = /[ 146l Al (ds) < o

)

For n positive numbers ry,--- ,7y,, let A(ry,---,7,) be the space of
complex-valued functions of n complex variables f(z1,---,z,), which
are analytic at the origin and are such that their power series expansion

[e.9]

f(Zl, T 7Zn> = Z leu"'umnz’{nl . Z?Tn

my, ,mp=0

converges absolutely at least on the closed polydisk |z1| < ri,---, |zy]
< ry. Such functions are analytic at least in the open polydisk |z1]| <
1, 20| < ra.

To the algebra A(ry,---,r,) we associate as in [6] a disentangling
algebra by replacing the z;’s with formal commuting objects (A4;(-), \;),
i = 1,---,n. Rather than using the notation (A;(-), A;)” below, we will
often abbreviate to A;(-). Consider the collection D((A1(-), A1), -,
(An(+), \n)) of all expressions of the form

FALCT - An(T) = D0 Cmpoe (A1 ()™ - (An ()™
my,- ,mp=0
where ¢y, ... m, € C for all my,---,my, =0,1,---, and
Lf(ALCTS - AnC DI = ALCTS 5 A (DA (7o An (D)
(1) =2 ot e =0 Cma e [T+ < 00,

The function on D((A1(+), M)+, (An(:), A\n)) defined by (1) makes
D((A1(:), M) -+, (An(+), An)) into a commutative Banach algebra [10].

We refer to D((A1(-), A1)+, (An(-), A\n)) as the disentangling al-
gebra associated with the n-tuple ((A1(-), A1), -, (An(-),An)). We
will often write D in place of D(A1(-), -+, An(:)) or D((A1(-), A1), -+,
(An(')7 )‘nD-

For m = 0,1,---, let .S,,, denote the set of all permutations of the
integers {1,--- ,m}, and given 7 € S,,, we let

Am(ﬁ) = {(81,--' ,Sm) S [O,T]m 0 < Sx(1) << Sx(m) < T}.
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Now for nonnegative integers mq,--- ,m, and m = my + --- + my, we
define

Ai(s), ifie{l,--- ,mi}
As(s), ifie{mi+1,--- ,my+ma}

Ci(s) =
An(S), Zfze{ml++mn—l+1a7m}

fori=1,--- ,m and for all 0 < s < T. Next, in order to accommodate
the use of discrete measures, we will need a refined version of the time-
ordered sets Ap,(m). Let 7,---,7, € [0,7] be such that 0 < 7 <
- < 1 < T. Given m € N and 7 € 5,,, and nonnegative integers

ri,-+- ,rp+1 such that vy + -+ + 7141 = m, we define
Ay e (1) = (81,000 5 8m) € [0, T]™ 10 < sppy <0 < Sp(py)

< T < Sp(r41) < < Sn(ri4ry) < T2 < Sp(ri+ra+1) < 1 <

Sa(ri4-+rn) < Th < Sa(ritrp+1) < 7" < Sp(m) < T}.
Now let Ay, -+, A\, be finite Borel measures on [0, 7] such that

A= +m

forl =1,--- ,n where yu; is a continuous measure and 7); is a finitely sup-
ported discrete measure for each [. Let {7y,--- ,7,} be the set obtained
by taking the union of the supports of the discrete measures 71, - , 7,
and write

h
m = Z yun 571-
=1

for each [ = 1,--- ,n . With this notation it may be that many of the
pii’s are equal to zero. Now we define the disentangling map 7y, ... x,
which will take us from the commutative framework of the disentamgling
algebra D (A1(-), -+, An(:)) to the noncommutative setting of £(X).

DEFINITION 1.1. Let P™b™Mn(zy «on z,) = 21" -+ 2 We define
the disentangling map on this monomial by
IZ—)\L... 7)\npm17“- M, (Al(')i e ,An(.)")
= Doy na (AL )™ - (An())™)
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- ¥ DS ( ma! - ! )

1g12'G91)qo0! -+ Gp!
G+ qra=m1 go1tqaa=ms  qnitqua=mn \T117912:921°922 4n1:-4n2

2 2

TESq 144921+ +an1 T1 T FTh41=q11+921++qn1

Jii++jin=qi2 j21+-+j2n=q22 Jnit+Inh=an2

< q12!q22! - - - gn2! >/
Jul gl dentdnd!l dnn! ) Ja

Cﬂ'(Qu+éI21+-"+qn1)(SW(Q11+Q21+-"+qn1)) T

Cﬂ(r1+---+rh+1) (Sﬂ(r1+---+rh+1))[pnhAn(Th)]jnh te [p2hA2(Th)]j2h

q11+a21+ - +an15r1s TR ()

[P1n AL (TR Cr (et (St - - Crrri) (Sn(ra+1))

[Pr1 An (Tl - [pa1 Ao (1112 P11 AL (1) Crryy (S - -

Cry (sr) (1™ X - x pdrt)(ds1, -+, dSqyygonttann)-
Finally for f € D((A1(-), A1), (An(-), \n)") given by

AT An(e)) Z Crnp ooy (A1 ()™ (A ()™

mi e mn=0

we set

73\1,~~~,)\nf(A1(')v’ e ’An(m

[e.e]

= Z Cmy,-- ,mn,];\L“‘ ,)\anhm o (Al(jvy o 7A7’L()v)

M, =0
We will often use the alternate notation indicated in the next two
equalities :
szylf.'.';)’;n"(/h('), o AR()) = Ty A P (AT A())

and

f/\l,“' An (Al(')v T aAn()) = 7—)\1,-“ 7Anf(A1('Tv t 7An(Y)

2. Stability properties

Let S be a metric space and let {\;}72, be a sequence of finite Borel
measures on S. We say that this sequence converges weakly to a finite
Borel measure A on .S and write A\, — A if for every bounded continuous
real-valued function f on S we have [¢ f(s) Ax(ds) — [4 f(s) A(ds) as
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k — oo . The following results are Lemma 3.1 of [12] and Theorem 2.4
of [13].

LEMMA 2.1. Letn = 2?21 pi0r, be a purely discrete probability mea-
sure on [0,T] with finite support. Assume that 0 < 73 < --- <1, < T.
Let

o = min{n — Ti—1,Ti+1 — Ti}

fori=1,--- h where we take 19 = 0 and 1,41 = T. In each interval
(1i — @i, 7 + 0),1 = 1,--- , h choose sequences {7} ,. For each i =
1,---,h choose a sequence {p;;}3>, such that n, = Z?:l Dikdr,, IS a
probability measure for each k. Then n, — 7 if and only if

pik — pi and Ty — T if p; #0,

pit — pi and {7}, bounded  if p; =0
fori=1,--- h.

LEMMA 2.2. Let X be a separable Hilbert space. Let pyg, ;v be Borel
probability measures on the metrisc space S for k € N. Let fy, f,k € N,
be continuous norm bounded X-valued functions on S. If uy — p and
if fr — f uniformly in X-norm on S, then

lim / Jedpg = / fdu
k—oo J B E
in norm for any Borel set E C S with u(0F) = 0.

First we consider the disentangling map for P ™M (Ay(-), .-,
An(-)).

THEOREM 2.3. Let A; : [0,T] — L(X), X a separable Hilbert space,
be continuous with respect to the norm topology on L£(X) for each | =
1,2,--- ,n. And let Ay,---, A\, be finite Borel measures on [0,T] such
that

A= g+
for I = 1,--- ,n where p; is a continuous probability measure and 1,
is a finitely supported discrete probability measure for each I. Let
{71, -, 7} be the set obtained by taking the union of the supports
of the discrete measures 1y, --- ,n, and write
h
= Zplién
i=1
for each | = 1,--- ,n . Choose sequences {fu}3> 1,1 = 1,--- ,n of con-

tinuous Borel probability measures on [0,T] such that uy — p;. Also



536 Byung Moo Ahn

choose sequences {m}72 1,1 =1,--- ,n of discrete probability measures
on [0,T] as in Lemma 2.1 such that ny, — n;; i.e. write

h
k
77lk = Z pli(sﬂ'k 9
=1

where, as in the Lemma 1, pfi — pi and T, — 7 as k — oo for all
1,1 assuming that for p;; # 0 for all i,l. Finally let A\, = ui, + i for
l=1,---,n. Then for any nonnegative integers mi,--- ,m, and for any
peX

lim Py (Ag(), o, An(4)é

e E X Ank
= PUT (AL, An()
Proof. We see that for any ¢ € X
P (Aa(), o An())e = PATTT (AL(), 5 An())9l|

1k7"'7>‘nk
< Y Y e Y ()
- | | | l... | |
q11+q12=m1 q21+q22=m2 qnitqn2=mn q11-912-921-922- dn1-dn2-:

2. 2.

TESq 44991+ +ap1 "1 T h41=q11+q21 4 +qn1

Jri+-+iin=q12 j21+--+jen=q22 JnittInh=qn2

( q12!q22! - - - qno! >|’/
gl ginlgarl o gan! s gnal e dna! A

Cﬂ(411+g21+---+qn1)(SW(Q11+Q21+---+qn1)) T

Cﬂ(r1+---+rh+1)(Sw(r1+---+rh+1))[szhAn(Thk)]j"h T [pghAZ(Thk)]th

q11+a21+ - +an1iT1 T4l (m)

[plthl(Thk)]jlhcﬁ(rlJr---Jrrh)(Sw(r1+---+rh)) e Cﬂ'(h+1)(37r(7“1+1))
[ An (Tas) P70 - - (51 Ao (1) 172! [P AL (7)Y G (S ) -+

qnl

Crr(l)(sw(l))qb(u(ﬁcl Koo X qZ)Mnlg )(ds1, - - >dSlI11+tI21+---+qn1)

yA

Cﬂ(411+q21+“'+qn1)(Sﬂ(q11+qz1+~-~+qn1)) T

Crnrrmtrn+1) (Sx(rs ot 1)) [Pan An ()PP - - [p2n Ag (13,) 2"

q11+921+Fan1iT1 TR (m)
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[plhAl (Th)]jlhcrr(r1+"-+rh) (Sﬂ'(rlJr---JrTh)) T Cﬂ‘(thl) (571’(7’1+1))
[pnlAn(Tl)]jnl T [p21A2 (Tl)]j2l [pllAl (Tl)]jucﬂ(rl)(sﬂ(h)) T
Cﬂ(l)(swu))qﬁ(u(fll X X M%”l)(dsh T 7d5q11+Q21+---+qn1)H'
Foreachl =1,--- ,n,i =1,--- ,h, pﬁ — pi; and T, — T as k — oo.
Hence since A; is continuous we have
Pl Au(Ta) — pudi(Ti)

as k — oo. Therefore, we have, for any ¢ € X

Cr(qui+az++an) (Sn(qu+ga1+-+au1)
Cﬂ(h-&-m-&-rh-i-l)(Sfr(r1+~~~+rh+1))[p]:LhAn(Thk)}jnh T [pghA2(Thk)]j2h
1 A1 (T )P Contrs o) (St - Contrr 1) (S0 41)
[ An (1) - - (51 Ao (r1)172! [P AL (1) P G (S ) -+
Cr1)(S7(1))¢ —
Crrqutaz+-+an) (Srlau+ant+-+an)) "
Cr(ratotrn+1) (et 1)) [P An (7)) - - [pog, A ()2
P11 AL (TR Cr ey 4orn) (S 4tn)) - Cortrr 1) (S 1))
[Pa1 A (7))t -+ [pa1 Ao (1) 172 [pr1 As (1) Cregr) (S(ry)) -+
Cr(1)(8x(1)) -
uniformly on [0, 7|9ttt LB 5o x pft) is a sequence of con-
tinuous probability measures on [0, 77111 gince each term in the

product is a continuous probability measure. And [0, |91 a1 ig sep-

arable. By Theorem 3.2 of [1] puf}' x -+ x plnt — pf™ x - x pf™ since

Wik — i for each i. Hence we have, using Lemma 2.2 |

lim
k=00 J A tany o taniry rng ()
Cﬂ(q11+qz1+~-+qn1)(Sﬂ(q11+q21+"'+qn1)) o

Conrytetrnt) Sn(ryotrn+ 1)) [Phn An (Tar )" - - D5, Aa (Thi) 72"
[PTn AL (Th) P Cr (o) (S () = Conrr 1) (S0 41))
[Pk A (1) P - - (P51 Ao (71) 7 [PF 1 AL (1) Crn) (Sry)) -

Cw(1)(87r(1))¢(ﬂﬁl X X Hgﬁgl)(dslv e 7d8(111+¢121+'“+qn1)
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-,

Crrquitan+-+am) (Sr(qutan+-+an))
C7r(m+---+rh+1)(Sﬂ(r1+---+rh+1))[pnhAn(Th)]jnh T [PQhA2(Th)]j2h
P10 A1 (TR Cr oy 4o (S tra))  * Contrr 1) (S 1))
[Pr1 A (1))t -+ [p21A2(T1)}j21 [pllAl(Tl)]jHCﬂ'(m)(371'(1“1)) e
Cry (r)@(pi™ X -+ X plrt)(ds1, - -+, dSqyy +qon+tgn1)-

Hence the conclusion follows. O

q11+4921+ - +an1i71 Th1 ()

The following results can be obtained easily.

LEMMA 2.4. Let A1, -+ , An, Mk, s Ank .k =1,2,--- be finite Borel
measures. Suppose forl =1,2,--- . n

T :Sup{rhrll?”' 7rlk7"‘} < 0

where 1 = [io 7y [[Ai(s)[| [Ail(ds) and rip = [ig 7y || Ai($)]] [ M| (ds). Then

for any f € A (F1,---,m), f((AL(-), A1)+ ,(An(-),AnD € D((A1("),
)\l):' e 7(An(’)a An)v) and f((Al( ) )\lk)V v(An()7)‘nk)v) € ]D)((Al()v
Mi)y oy (An(4), Apg)) for any k=1,2,--

THEOREM 2.5. Let the hypotheses of Theorem 2.3 be satisfied. Fur-
ther suppose that for eachl =1,2,--- ,nand k =1,2,---, 7,71, r|) are
given as in Lemma 2.4. Let Ty, .., denote the disentangling map

corresponding to the k" term of sequences of measures. Then for any
feA(r, - ,7,) and for any ¢ € X

Jim Ty du S (ALCTS - An( )6
= T FALCT  An(T)60
Proof. We have

”,T)\lk,m ,)\nkf((Al(')’ )‘lkjv’ ) (An()v Ank)\)gb
_73\1,--- ,)\nf(<A1(')7 )‘15V7 T (ATI()ﬂ An”d‘

o

< Z |cm1, ,mn| ||Pm17. Z:;(Al() ’ vAn())¢

mi,- ,mMnp=0

=PI (AL, An ()9l



Weak convergence theorems in Feynman’s Operational Calculi 539

Note that

o0

Z [em e | P3G o (A1 ()55 An ()9

mi,- ,mp=0

=Py (AL(), e An() 9]

o

< D lempeemal 1l PN (A1 G s An()]]

mi,- ,mp=0

HIPTI (AL, A ()]

e}

<foll Y |cm1,...,mn|[[/[ A @)™

mi, mp=0 :

[/[ ] 1A ()] [Ank| (ds)]™" + [/[O,T] 1AL ()] |Aal(ds)]™

)

[ /[ 14l D)

)

oo

=l D Jemremal [T ]

mi,-,mn=0

o

<20l D lempe ma | T T

mi, ,mp=0

Since Z’;’jl M =0 |Cimy oo mn [T Y <+ T < 00, by Theorem 1 and Lebesgue
Dominated Convergence Theorem, we obtain a result. O

THEOREM 2.6. Let the hypotheses of Theorem 1 be satisfied. Further
assume that M; = sup,cpo.q) || Ai(s)|| < oo for each I = 1,--- ,n. Then
for any f € A (2My,--- ,2M,) and for any ¢ € X

Jim Ty, ST A(T)o
= T a AT An( )6

Proof. We have

HITAUC,"' 7>\nk:f((A1(‘)7 )‘Ufjv? R (ATL()’ Ankm¢
_7:\1,“' ,)\nf((Al(')a )‘I)j T (An()a AnYWH
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e}

< YT Jeme PN (A (), An(4)e
mi, - ,mnp=0
Now

ST Lemp e ma P20 (A1 (), An()e
ml,'“,ngU
—PTT (AL (), An()dl

< D Lempemal 101 PR (A1 (), AnO)]

mi, ,mn=0

PP (A (), An ()]

e}

<lloll > Icm1,~~-,mn|[[/OT}IIAl(S)HIMkI(dS)

My, mn=0 ;

h
AL ()™ -
+ 3 pullail [/[

|[An ()] [1nk|(ds)
1]

)

h
+ > Phill An(m) ™ + [/ [1AL(s)[| [1](ds)

h
3Pkl Al ] / ENCIIETAIY

i=1 0,

h
+ > Pl An () |[]]
i=1

=[lell D lemyemal [(2M)™ - (2M) ™
mi,- ,mp=0
+(2My)™ - - (2M,,)™"]

<20¢l] S femy gl QM) (2M,)

mi, mp=0
Since 3770 . o lCma,m,|(2M1)™ - (2M),)™ < oo, by Theorem
2.3 and Lebesgue Dominated Convergence Theorem, we obtain a result.
O
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