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A NOTE ON COMPLETE MOMENT CONVERGENCE
FOR ARRAYS OF ROWWISE EXTENDED
NEGATIVELY ORTHANT DEPENDENT RANDOM
VARIABLES

Hyun-CHUuLL Kiv*

ABSTRACT. In this paper we obtain the complete moment conver-
gence for an array of rowwise extended negative orthant depen-
dent random variables. By using the result we can prove the com-
plete moment convergence for some positively orthant dependent
sequence satisfying the extended negative orthant dependence.

1. Introduction

Ebrahimi and Ghosh(1981) and Joag-Dev and Proschan(1983) intro-
duced the concept of negative orthant dependent random variables:

A sequence {X;,1 < i < n} of random variables is said to be nega-
tively upper orthant dependent(NUOD) if for all real numbers 1, - - - , x,

n
(1.1) P(Xy > a1, Xn > ) < [[P(X > )
=1

and it is said to be negatively lower orthant dependent(NLOD) if for all
real numbers 1, - , Xy,

=

1

-
Il

A sequence {X;,1 < i < n} of random variables is said to be negatively
orthant dependent(NOD) if it is both NUOD and NLOD.
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Recently, Liu(2009) introduced the concept of extended negative de-
pendence in the multivariate case. A sequence {X;,1 < ¢ < n} of
random variables is said to be extended negatively upper orthant depen-
dent(ENUOD) if for all real numbers z1,- - , ,, there exists a constant
M > 0 such that

n
(1.3) P(Xy > a1, Xn > ) < M[[ P(Xi > )
i=1

and it is said to be extended negatively lower orthant dependent(ENLOD)

if for all real numbers x1,--- ,x,, there exists a constant M > 0 such
that

n
(1.4) P(Xy <y, Xy <) < M[[P(Xi < ).

i=1
A sequence {X;,1 < i < n} of random variables is said to be extended
negatively orthant dependent(ENOD) if it is both ENUOD and ENLOD.

It is clear that a sequence {X;,1 < ¢ < n} of random variables is
called NOD if (1.3) and (1.4) hold when M = 1, the sequence is called
positively orthant dependent(POD) if the inequalities (1.3) and (1.4)
hold both in the reverse direction when M = 1. Obviously, an NOD
sequence must be an ENOD sequence. On the other hand, for some
POD sequences, it is possible to find a corresponding positive constant
M such that (1.3) and (1.4) hold.

Therefore, the ENOD structure is substantially more comprehensive
than the NOD structure in which it can reflect not only a negative
dependence structure also positive one to some extent. For instance,
the ENOD sequence {X;,i > 1} in the following example can be taken
as NOD or POD since the are no restrictions on the dependence between
X 1 and Xg.

ExampLE 1.1 (Liu(2009)). If {X;,i = 1,2} and {X;,7 > 3} are in-
dependent of each other, where X; is possibly valued at z1; < z12 <
- < mn and {X;,i > 3} is a sequence of mutually independent random

variables. Then the sequence {X;,i > 1} is ENOD. In fact, for any z;
and x9 such that

P(Xl < .1‘1)P(X2 < 1'2) =0or P(Xl > le)P(XQ > $2) =0

both (1.3) and (1.4) hold trivially. Additionally, for any z; and z3 such
that

P(Xl < xl)P(XQ < $2) 75 0 and P(Xl > xl)P(XQ > :EQ) 7& O,
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take

M = 1/m1n{P(X1 = xl),P(Xl = .TlN)},
then both (1.3) and (1.4) still hold. Notice that there are no dependence
restrictions between random variables X; and Xs.

A sequence of random variables {U,,n > 1} is said to converge com-
pletely to a constant c if for any € > 0,

(1.5) ZP(\Un —c| >¢€) < o0.
n=1

This notion was given by Hsu and Robbins(1947). Let {Z,,,n > 1} be a
sequence of random variables and a,, b, > 0, > 0. If

(1.6) > anB{b, " Zn| — €} < oo for all € >0,

n=1

then (1.6) was called the complete moment convergence by Chow(1988).
For the complete moment convergence, Chow(1988) obtained for inde-
pendent random variables, Wang and Zhao(2006) investigated for neg-
atively associated random variables and Zhu(2007) studied for array of
rowwise p*-mixing random variables.

In this paper we study the complete moment convergence for partial
sums of rowwise ENOD random variables.

2. Some lemmas

In this section we introduce some lemmas which will be used to prove
the main result.

LEMMA 2.1 (Liu(2009)). Let {X;,i > 1} be a sequence of ENOD
random variables.

(1) If {g;(-),i > 1} is a sequence of monotone increasing(decreasing)
functions, then {g;(X;),i > 1} is still a sequence of END random vari-
ables.

(2) If X;’s are nonnegative random variables, then there exists a con-
stant M > 0 such that

n n
E([x) < M]J(EX).
i=1 i=1

From (1) and (2) in Lemma 2.1 we obtain the following result.
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LEMMA 2.2. Let {X;,i > 1} be a sequence of ENOD random vari-
ables. Then for any h > 0 there exists a constant M > 0 such that

(2.1) Elexp(h Y X;)] < M [ [ Elexp(hX;)].

i=1 i=1

Proof. Note that {exp(hX;),7 > 1} is ENOD sequence by Lemma 2.1
(1). Hence by Lemma 2.1 (2) we have

Elexp(h Y Xi)] = E[[Jexp(h X)) < M ] Blexp(hX,)].

i=1 =1

O]

LEMMA 2.3. Let {X,,,n > 1} be a sequence of ENOD random vari-
ables with mean zero and 0 < B,, = Y 1 | EX? < co. Then there exists
an M > 0 such that for all x > 0,y > 0,

n
LY

(22) P(ISul>2) <Y P(Xi| > y)+ 2M€XP(§ - glog(l + 5,
=1 n

where S, = Y1 | X;.

Proof. The proof is similar to that of Theorem 2 in Fuk and Nagev
(1971). Let YV; = X;I(X; < y) +yl(X; >y) and T, = > ", Y; and note
that Y; < X;. It is easy to show that FY; < 0 and EYf < EXiz. By
Lemma 2.1 (1) for h > 0 {e"7 1 <i < n} is a sequence of nonnegative

ENOD random variables. Thus, by Lemma 2.2 there exists a constant
M > 0 such that

(2.3) Eexp(hT,) = E [ [ exp(hY;) < M [ E exp(hY5).
=1 =1

Let Fi(z) = P(X; < z;). Then, we have for h > 0

(2.4) Eexp(hY;) = /y exp(h(z))dF;(z) + e P(X; > v)

—00

y
= 1+ hEY; + / (e"® —1 — ha)dFi(x)

—00

+(e™ —1— hy)P(X; > )
< 1+ /y (e"® — 1 — ha)dFi(z) + (e — 1 — hy)P(X; > y).

—00
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Since f(z) = (e"*—1—hx)/2? is increasing for all z, h > 0 and 1+u < e
for all real number u it follows from (2.4) that

hy _ 1 _ Yy
(25) Bep(ny) < 1+ ([ Ran(n) + 2P0 2 y)

v o
by —1—h
< 1—|—ey72yEXi2

hy —1—h
< eXP(eyigyEXg)

Therefore by (2.3) and (2.5) we obtain, for all z > 0 and all A > 0

e —1—hy
(2.6) exp(—hx)E exp(hT,) < M exp(—hzx + BnT)
Letting h = log(1 + 5)/y, we have
(2.7) exp(—hx)E exp(hT),,)
r xy, By ry
< Mexp[; by log(1 + B—n) - ?log(l + E)]
r x xy
< Mexp|— — —log(1 4+ =2)],
2 - Zlog(1+ )
which yields
(2.8) P(Sp, > x) < P(Sy#Ty)+ P(T, > )

n

> P(Xi > y) + exp(hz)E exp(hT,)
i=1

IN

IN

n

r x x
ZP(XZ' >y) + M exp[— — —log(1 + —y)]
= y oy By,

Similarly, we have

(29)  P(=5,22) <D P(-X; > y)+ Mesp[ ~ log(1+ £)]
i=1 "
since {—X,,,n > 1} is a sequence of ENOD by Lemma 2.1 (1).
From (2.8) and (2.9) we obtain

P(|Sa| > 2) < P(Sp > )+ P(~S, > )

IN

n

xr X T

Y P(IX| > y) + 2M expl© — T log(1 + 22 )].
=1 Yy Y B,
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3. Complete moment convergence

THEOREM 3.1. Let {X,;,1 < i < n,n > 1} be an array of ENOD
random variables with EX,; = 0 and EX?n’ <oo,forl<i<n,n>1
and {an,n > 1} be a sequence of positive real numbers with a,, 1. If

(3.1) ZZ B2 i

n=1 i=1 n

then we obtain

Za‘lE{\ ZXm| —€an}T < oo for all € > 0.
i=1

Proof.
S0 B Xl — ean}t
n=1 i=1
= Zanl/ (P{\ZXni|—ean} > u)du
n=1 0 i=1
00 an n
(3.2) = Za;l/ P{] ZXm| > ean + utdu

i=1

+Za‘1/ P{\ZXM > ean + uldu

=1

ZP{| me-| > eay}
+Za_1/ P{\ZXM > ultdu

= I+1II.

IN

We need to prove that I < oo and 11 < oo.
Forany 1 <i<n,n>1, let

Yo = _anI(Xni < _an) + anI(‘an| < an) + anI(an > a'n)y
(33) i = Xpi— Yo
= (Xni+an)(Xpi < —ap) + (Xni — an)I1(Xpi > ap).
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To prove I < oo, it is enough to show that

o0

1 n
(3.4) SOP(ID Zul > ) <,
n=1 noi=1

[e.9] n

(3.5) > P(ai| > (Yoi — EYy)| > €) < o0
=1

1 n
(3.6) — ZEYM — 0 asn— 0.

a
moi=1

Because the proof of (3.4) is a standard argument, we omit to prove (3.4).
Now we prove (3.5). By Lemma 2.1 (1) {Y,; — EY,;,1 <i<n,n > 1}
is an array of rowwise ENOD random variables with mean zero. Let

=" E(Yn — EYy)? < 0o. Take z = €ay, y = €a,/2. Then, by
Lemma 2.2, for all € > 0

(3.7) ZPQZ ni — EYyi)| > €)

n=1 =1
B/
2 n 2
<;;P i — EYoi| > ean/2) + 2e MZ m)
=1 + I.

By (3.1), (3.3) and the Chebyshev’s inequality

[e.e] n
> P([Yai — EYail > €an/2)

n=1 i=1

ey Y B = B

n=1 i=1

(3.8) I

IN

IN

IA
&
|
[z |
(=]
&S|
Qw §>§)
A
g

n=1 i=1 n

Note that |Y,;| < |Xy| and EY,2 < EX2, fori,1 <i<n.
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By (3.1) we obtain

(39) I, < 8626*4MZ Za*QE i — EYpi)?)?

n=1 =1

< 2_4MZ ZEY2

nlzln

< 274MZ ZEX2

n=1 i=1 i

_ EX2
2 4MZZ

n=1 i=1 n

IN

From (3.7)-(3.9) (3.5) follows.

To prove (3.6): Since EX,; =0for 1 <i<n,n>1, EY,; = —EZ,.
If X,; > Qp, 0< Zyi = Xni —an < X, and if X, < —Qp, Xni < Zpi =
Xni +an <0. So | Zni| < | XnilI(| Xni| > an). Consequently

1 < 1 <
—ID BYul = —|) BZu
noi=1 noi=1

n
<2
i=1
n
Eap| XnilI(| Xnil > an)
< > 2
i=1 n
n
EX2,
< Z 5+ — 0 asn— ooby (3.1).

i=1 n

Hence the proof of I < oo is complete.
Next we prove that 1] < oo.

iagli/oo P{|Xyni| > u}du

n=1 i=1 Y 9n

+Zar_blz/oop{fzf<\Xm| < )| > u}ldu
n=1 i=1 Y an i=1

= 1L +115.

17

IA
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Clearly, for u > a, we have

L = ZZa_l/ P{|Xp;i| > u}du

n=1 i=1

Zza_l/ P{| X0 I(| Xni| > an) > u}du

n=1 i=1

= ZZ B Xni|I( |Xn1| > an)

n=1 i=1
[e's)

ZZ m<ooby(31)

n=1 i=1 n

IN

IN

It remains to prove I3 < co. It follows from EX,; =0 and (3.1) that

1 } | < _ 1 A A
lr;r;zzx lu™ ;EXMI(XM\ < )] Trgz}lx lu™ ;EXMI(]XMI > u)|

zn: E| X[ (| Xni| > an)

an

IN

=1
"\ EX2,
> —5" = 0 by (3.1).

=1 n

IN

Therefore, while n is sufficiently large, for u > a,,

Z EXpil(| X < u)| <

u
2’
=1

which yields

(3.10) P{> " Xnil (| Xnil < u)| > u}
=1

" u
< P{DY (Xl (1Xnil < w) = EXpil (| Xoi| < w))| > 5
i=1
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Let By = Y0 E(Xpi — EXni)21(|Xp] < u), @ = %,y
and Lemma 2.3 we get

u. By (3.10)

1, < Za,g/ PYS. Xuil (1 Xl < 1) = EXil (| Xil < )] > g}du
n=1

an i=1

IN

o0 o N
_ u
> ay! D P{X il (| Xni| < u) = EXpiI (| Xi| < )] > v
n=1 an =1
2 i 1 > BH 2
+2€ M a. / (N7n2) du
n=1 " an Bn + %

= Ily1 + I1s.

By (3.1) and EX,,; =0 we also have

max u | EXpi (| Xni| <u)| = maxu HEXpl(|Xni| > )l
u>an u>an
< ay BIXni[I(| Xpil > an)]
n 2
BN,
-1 n
Hence,

115

IA

St [P (Xl < 0) > F)du

n=1 i=1

= Yt [P < @) > S

n=1i=1

o n o
n u
+;;anl/an P{| XnilI(an < | Xni| <u) > g}du

By the Chebyshev’s inequality and (3.1) we have

0o n 00
1211 S 6422@;1E‘Xn1‘21(’Xn1‘San)/ u_2du
an

n=1i=1

o n 12 | <
< 64ZZE|XM| I(‘A2)(m|_an) < 00

an

n=1 i=1
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By the similar method to proof of 11}

ZZal/ P{| XpilI(an < | Xni| <u)| > }du

n=1 i=1

11519

< ZZa_l/ PUXl [ Xni] > )| > & }du
n=1 i=1
B|Xu1( \Xm| > ap)
93
n=1 i=1
EX2,
SEDI) PE= N
n=1 i=1 A

Finally, we have to prove Ils9 < oo. By the fact that for z > 0,y > 0
(z+y)? < 2(z? +¢?)

B//
Il = 2e2MZa1/ ﬁ)Qdu

"

S [
< 12862M§:a;1 /aoo(f: EX%J(lif;m! < ay)
n=1 noi—1
+ZZ: EX2.I(ay, ; | Xni| < u))zdu
< 25662M§:a;1 /Oo(zn: EXrQnIUanH < an) g,

n=1 an =1

> *© EX21(a, < |Xnil <
+256€2M2a;1/ ( nil(a ;‘ |_u))2du

an

= Ily + 11299.
Let C = 256e2M.

11221 = CZa_l ZE |X7u| < an)) /Oo u_4du
Z . ZE I(| Xnil < an))

IN
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C X = B X P T(| X < an)
< *Z(Z a2 )?
n=1 i=1 n
COO nEXm2I Xméan
n=1 i=1 n
EXTL’L I n an <
ngcz / Xl < 1Ko <) g,
— EanI an > ap
. Czal/ Z EAEAETAI
an =1
< CZanl(ZE\Xm|I(|Xm-]>an))2/ w2du
n=1 i=1 an
E|Xni [ L(| Xni| > an) o
< oy (y PNl 2 )
n=1 1=1
EX2 I(| Xi| > an) o
< eyy - ?
n=1 i=1 n
— EXr2n'2
< O D (=5
n=1i=1 n
— EXrQn‘ 2
< QX"

n=1 i=1 n
O]

REMARK 3.2. In the proof of Theorem 3.1 from the fact that I < oo
we obtain the complete convergence.

COROLLARY 3.3. Let {X,;,1 < i < n,n > 1} be an array of POD
random variables with EX,,; = 0 and Eng' < oo and {an,n > 1} be a
sequence positive real numbers with a,, T co. If there exists a constant
M > 1 satisfying (1.4), (1.5) and condition (3.1) then

o0 n
Za;lEﬂ ZXm| —ean}t < oo.
n=1 i=1
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