FUZZY q-IDEALS OF BCI-ALGEBRAS WITH DEGREES IN THE INTERVAL (0,1]

SE KYUNG SUNG* AND SUN SHIN AHN**

ABSTRACT. The notion of an enlarged q-ideal and a fuzzy q-ideal in BCI-algebras with degree are introduced. Related properties of them are investigated.

1. Introduction

The concept of a fuzzy set is applied to generalize some of the basic concepts of general topology([1]). Rosenfeld([7]) constituted a similar application to the elementary theory of groupoids and groups. Xi([8]) applied to the concept of fuzzy set to BCK-algebras. Y. L. Liu et al.([6]) defined the notions of q-ideals and a-ideals in BCI-algebras and studied their properties.

In this paper, we introduce the notion of an enlarged q-ideal and a fuzzy q-ideal in BCI-algebras with degree. We study related properties of them.

2. Preliminaries

We review some definitions and properties that will be useful in our results.

By a BCI-algebra we mean an algebra (X; *, 0) of type (2,0) satisfying the following conditions:

- (a1) $(\forall x, y, z \in X)$ (((x * y) * (x * z)) * (z * y) = 0),
- (a2) $(\forall x, y \in X) ((x * (x * y)) * y = 0),$
- (a3) $(\forall x \in X) (x * x = 0),$
- (a4) $(\forall x, y \in X)$ $(x * y = 0, y * x = 0 \Rightarrow x = y).$

Received December 26, 2011; Revised April 24, 2012; Accepted April 25, 2012. 2010 Mathematics Subject Classification: Primary $03G25,06F35,\,08A72.$

Key words and phrases: enlarged q-ideal, fuzzy q-ideal with degree.

Correspondence should be addressed to Sun Shin Ahn, sunshine@dongguk.edu.

A BCI-algebra X is called a BCK-algebra if it satisfies the following identity:

(a5)
$$(\forall x \in X) (0 * x) = 0.$$

In any BCI-algebra X one can define a partial order " \leq " by putting $x \leq y$ if and only if x * y = 0.

A BCI-algebra X has the following properties:

- (b1) $(\forall x \in X) (x * 0 = x)$.
- (b2) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y).$
- (b3) $(\forall x, y \in X) (0 * (x * y) = (0 * x) * (0 * y)).$
- (b4) $(\forall x, y \in X) (x * (x * (x * y)) = x * y).$
- (b5) $(\forall x, y, z \in X)$ $(x \le y \Rightarrow x * z \le y * z, z * y \le z * x).$
- (b6) $(\forall x, y, z \in X) ((x * z) * (y * z) \le x * y).$
- (b7) $(\forall x, y, z \in X)$ (0 * (0 * ((x * z) * (y * z))) = (0 * y) * (0 * x)).
- (b8) $(\forall x, y \in X) (0 * (0 * (x * y)) = (0 * y) * (0 * x)).$

A non-empty subset S of a BCI-algebra X is called a subalgebra of X if $x*y \in S$ whenever $x,y \in S$. A non-empty subset A of a BCI-algebra X is called an ideal of X if it satisfies:

- (c1) $0 \in A$,
- (c2) $(\forall x \in A) \ (\forall y \in X) \ (y * x \in A \Rightarrow y \in A).$

Note that every ideal A of a BCI-algebra X satisfies:

$$(\forall x \in A) (\forall y \in X) (y \le x \Rightarrow y \in A).$$

A non-empty subset A of a BCI-algebra X is called a q-ideal([6]) of X if it satisfies (c1) and

(c3)
$$(\forall x, y, z \in X)(x * (y * z) \in A \text{ and } y \in A \Rightarrow x * z \in A).$$

Note that any q-ideal is an ideal, but the converse is not true in general.

We refer the reader to the book [2] for further information regarding BCI-algebras.

A fuzzy subset μ of a BCK/BCI-algebra X is called a $fuzzy\ ideal([4])$ of X if it satisfies:

- $(d1) \ (\forall x \in X)(\mu(0) \ge \mu(x)),$
- (d2) $(\forall x, y \in X)(\mu(x) \ge \min\{\mu(x * y), \mu(y)\}).$

PROPOSITION 2.1. If μ is a fuzzy ideal of a BCI-algebra X, then the following holds:

$$(\forall x, y \in X)(x \le y \Rightarrow \mu(x) \ge \mu(y)).$$

Proof. Straightforward.

3. Fuzzy q-ideals of BCI-algebras

DEFINITION 3.1. A fuzzy subset μ of a BCI-algebra X is called a fuzzy q-ideal of X if it satisfies (d1) and

(d3)
$$(\forall x, y, z \in X)(\mu(x * z) \ge \min\{\mu(x * (y * z)), \mu(y)\}.$$

EXAMPLE 3.2. Let $X = \{0, a, b, c\}$ be a BCI-algebra([6]) in which the *-operation is given by the following table:

Noth that $\{0, a\}$ is a q-ideal of X. Define a fuzzy subset $\mu : X \to [0, 1]$ by

$$\mu = \begin{pmatrix} 0 & a & b & c \\ 0.8 & 0.7 & 0.5 & 0.5 \end{pmatrix}$$

Then μ is a fuzzy q-ideal of X.

PROPOSITION 3.3. Every fuzzy q-ideal of a BCI-algebra X is a fuzzy ideal of X.

Proof. Let μ be a fuzzy q-ideal of X. Let $x, y \in X$. Putting z := 0 in Definition 3.1(d3) and using (b1), we have

$$\begin{split} \mu(x) &= \mu(x*0) \geq &\min\{\mu(x*(y*0)), \mu(y)\} \\ &= &\min\{\mu(x*y), \mu(y)\}. \end{split}$$

Hence (d2) holds. Thus μ is a fuzzy ideal of X

The converse of Proposition 3.3 is not true as seen the following example.

EXAMPLE 3.4. Let $X := \{0, a, b, c\}$ be a BCI-algebra([6]) in which the *-operation is given by the following table:

Note that $\{0\}$ is an ideal of X, but not a q-ideal of X since $c*(0*a) = c*c = 0 \in \{0\}$ and $0 \in \{0\}$ but $c*a = b \notin \{0\}$. Define a fuzzy subset $\mu: X \to [0,1]$ by

$$\mu = \begin{pmatrix} 0 & a & b & c \\ 0.8 & 0.7 & 0.5 & 0.5 \end{pmatrix}$$

Then μ is a fuzzy ideal of X, but not a fuzzy q-ideal of X since $\mu(c*a) = \mu(b) = 0.5 \ngeq 0.8 = \mu(0) = \min\{\mu(c*(0*a)), \mu(0)\}.$

COROLLARY 3.5. If μ is a fuzzy q-ideal of a BCI-algebra X, then the following holds:

$$(\forall x, y \in X)(x \le y \Rightarrow \mu(x) \ge \mu(y)).$$

Proof. It follows from Proposition 2.1 and Proposition 3.3. \Box

THEOREM 3.6. If μ is a fuzzy ideal of a BCI-algebra X, then the following are equivalent:

- (1) μ is a fuzzy q-ideal of X,
- (2) $(\forall x, y \in X)(\mu(x * y) \ge \mu(x * (0 * y)),$
- (3) $(\forall x, y, z \in X)(\mu((x * y) * z) \ge \mu(x * (y * z)).$

Proof. (1) \Rightarrow (2) Let $x, y \in X$. Putting y := 0 and z := y in Definition 3.1(d3) and use (d1), we have $\mu(x * y) \geq \min\{\mu(x * (0 * y)), \mu(0)\} = \mu(x * (0 * y))$. Thus (2) holds.

 $(2) \Rightarrow (3)$ Since for any $x, y, z \in X$

$$\begin{split} ((x*y)*(0*z))*(x*(y*z)) = & ((x*y)*(x*(y*z)))*(0*z) \\ \leq & ((y*z)*y)*(0*z) \\ = & (0*z)*(0*z) = 0, \end{split}$$

we have $(x*y)*(0*z) \le x*(y*z)$. Using (2) and Proposition 2.1, we get

$$\mu(x * (y * z)) \le \mu((x * y) * (0 * z))$$

 $\le \mu((x * y) * z).$

Hence (3) holds.

 $(3)\Rightarrow(1)$ Let $x,y,z\in X$. Using (d2), (b2), and (3), we have

$$\begin{split} \mu(x*z) \geq & \min\{\mu((x*z)*y), \mu(y)\} \\ = & \min\{\mu((x*y)*z), \mu(y)\} \\ \geq & \min\{\mu(x*(y*z)), \mu(y)\}. \end{split}$$

Thus μ is a fuzzy q-ideal of X.

PROPOSITION 3.7. Let μ be a fuzzy ideal of X. If $\mu(x) \leq \mu(x * y)$ for any $x, y \in X$, then μ is a fuzzy q-ideal of X.

Proof. For any $x, y, z \in X$, we have

$$\mu(x*z) \ge \mu(x)$$

 $\ge \min\{\mu(x*(y*z)), \mu(y*z)\}$
 $\ge \min\{\mu(x*(y*z)), \mu(y)\}.$

Hence μ is a fuzzy q-ideal of X.

4. Fuzzy q-ideals of BCI-algebras with degrees in the interval (0,1]

In what follows let X denote a BCI-algebra unless specified otherwise.

DEFINITION 4.1. ([5]) Let I be a non-empty subset of a BCK/BCI-algebra X which is not necessary an ideal of X. We say that a subset J of X is an *enlarged ideal* of X related to I if it satisfies:

- (1) I is a subset of J,
- $(2) \ 0 \in J,$
- (3) $(\forall x \in X)(\forall y \in I)(x * y \in I \Rightarrow x \in J)$.

DEFINITION 4.2. Let I be a non-empty subset of a BCI-algebra X which is not necessary a q-ideal of X. We say that a subset J of X is an $enlarged\ q$ -ideal of X related to I if it satisfies:

- (1) I is a subset of J,
- $(2) \ 0 \in J,$
- (3) $(\forall x, z \in X)(\forall y \in I)(x * (y * z) \in I \Rightarrow x * z \in J).$

Obviously, every q-ideal is an enlarged q-ideal of X related to itself. Note that there exists an enlarged q-ideal of X related to any non-empty subset I of a BCI-algebra X.

EXAMPLE 4.3. Let $X := \{0, 1, a, b, c\}$ be a BCI-algebra([5]) in which the *-operation is given by the following table:

Note that $\{0, a\}$ is not both an ideal of X and a q-ideal of X. Then $\{0, 1, a\}$ is an enlarged ideal of X related to $\{0, a\}$ and an enlarged q-ideal of X related to $\{0, a\}$.

Theorem 4.4. Let I be a non-empty subset of a BCI-algebra X. Every enlarged q-ideal of X related to I is an enlarged ideal of X related to I

Proof. Let J be an enlarged q-ideal of X related to I. Putting z := 0 in Definition 4.2(3) and use (b1), we have

$$(\forall x \in X)(\forall y \in I)(x * (y * 0) = x * y \in I \Rightarrow x * 0 = x \in J).$$

Hence J is an enlarged ideal of X related to I.

The converse of Theorem 4.4 does not true in general as seen in the following example.

EXAMPLE 4.5. Consider a BCI-algebra $X = \{0, a, b, c\}$ as in Example 3.4. Note that $\{0, a\}$ is not both an ideal and a q-ideal of X. Then $\{0, a, b\}$ is an enlarged ideal of X related to $\{0, a\}$ but not an enlarged q-ideal of X related to $\{0, a\}$ since $0 * (a * a) = 0 \in \{0, a\}$ and $0 * a = c \notin \{0, a, b\}$.

In what follows let λ and κ be members of (0,1], and let n and k denote a natural number and a real number, respectively, such that k < n unless otherwise specified.

DEFINITION 4.6. ([5]) A fuzzy subset μ of a BCK/BCI-algebra X is called a *fuzzy ideal* of X with degree (λ, κ) if it satisfies:

- (1) $(\forall x \in X)(\mu(0) \ge \lambda \mu(x)),$
- $(2) (\forall x, y \in X)(\mu(x) \ge \kappa \min\{\mu(x * y), \mu(y)\}).$

DEFINITION 4.7. A fuzzy subset μ of a BCI-algebra X is called a fuzzy q-ideal of X with degree (λ, κ) if it satisfies:

- (1) $(\forall x \in X)(\mu(0) \ge \lambda \mu(x)),$
- (2) $(\forall x, y, z \in X)(\mu(x*z) \ge \kappa \min\{\mu(x*(y*z)), \mu(y)\}).$

Note that if $\lambda \neq \kappa$, then a fuzzy q-ideal with degree (λ, κ) may not be a fuzzy q-ideal with degree (κ, λ) , and vice versa.

EXAMPLE 4.8. Let $X = \{0, a, b\}$ be a BCI-algebra([6]) in which the *-operation is given by the following table:

Define a fuzzy subset $\mu: X \to [0,1]$ by

$$\mu = \begin{pmatrix} 0 & a & b \\ 0.7 & 0.8 & 0.4 \end{pmatrix}$$

Then μ is a fuzzy q-ideal of X with degree $(\frac{5}{6},\frac{3}{6})$ but it is not a fuzzy q-ideal of X since

$$\mu(0) = 0.7 \ngeq 0.8 = \mu(a).$$

Obviously, every fuzzy q-ideal is a fuzzy q-ideal with degree (λ, κ) , but the converse may not be true. In fact, the fuzzy q-ideal μ with degree $(\frac{5}{6}, \frac{3}{6})$ in Example 4.8 is not a fuzzy q-ideal of X. Note that a fuzzy q-ideal with degree (λ, κ) is a fuzzy q-ideal if and only if $(\lambda, \kappa) = (1, 1)$.

PROPOSITION 4.9. If μ is a fuzzy q-ideal of a BCI-algebra X with degree (λ, κ) , then μ is a fuzzy ideal of X with degree (λ, κ) .

Proof. Put
$$z := 0$$
 in Definition 4.7(2).

The converse of Proposition 4.9 is not true in general as seen the following example.

EXAMPLE 4.10. Let $X = \{0, a, 1, 2, 3\}$ be a BCI-algebra([4]) in which the *-operation is given by the following table:

Define a fuzzy subset $\mu: X \to [0,1]$ by

$$\mu = \begin{pmatrix} 0 & a & 1 & 2 & 3\\ 0.8 & 0.6 & 0.5 & 0.5 & 0.5 \end{pmatrix}$$

It is routine to check that μ is a fuzzy ideal of X with degree $(\frac{4}{7}, \frac{4}{5})$.

But it is not a fuzzy q-ideal of degree $(\frac{4}{7}, \frac{4}{5})$, since

$$\mu(3*1) = 0.5 \ngeq \frac{4}{5} \times 0.8 = \frac{4}{5} \min\{\mu(3*(0*1)), \mu(0)\}.$$

PROPOSITION 4.11. If μ is a fuzzy q-ideal of a BCI-algebra X with degree (λ, κ) , then

(1)
$$(\forall x, y \in X)(x \le y \Rightarrow \mu(x) \ge \lambda \kappa \mu(y)).$$

- (2) $(\forall x, y \in X)(\mu(x * y) \ge \lambda \kappa \mu(x * (0 * y)).$
- $(3) (\forall x, y, z \in X)(\mu((x*y)*z)) \ge \lambda^2 \kappa^2 \mu(x*(y*z)).$

Proof. (1) Let $x, y \in X$ be such that $x \leq y$. Then x * y = 0. Putting z := 0 in Definition 4.7(2) and using (b1), we have

$$\begin{split} \mu(x) &= \mu(x*0) \geq & \kappa \min\{\mu(x*(y*0)), \mu(y)\} \\ &= & \kappa \min\{\mu(x*y), \mu(y)\} \\ &= & \kappa \min\{\mu(0), \mu(y)\} \\ &\geq & \kappa \min\{\lambda\mu(y), \mu(y)\} \\ &= & \lambda \kappa \mu(y). \end{split}$$

(2) Let $x, y \in X$. Putting x := x, y := 0 and z := y in Definition 4.7(2), we have

$$\mu(x * y) \ge \kappa \min\{\mu(x * (0 * y)), \mu(0)\}$$

$$\ge \kappa \min\{\mu(x * (0 * y)), \lambda \mu(x * (0 * y))\}$$

$$= \kappa \lambda \mu(x * (0 * y)).$$

(3) Since

$$\begin{split} ((x*y)*(0*z))*(x*(y*z)) = & ((x*y)*(x*(y*z))*(0*z) \\ \leq & ((y*z)*y)*(0*z) \\ = & (0*z)*(0*z) = 0 \ \forall x,y,z \in X, \end{split}$$

we get $(x*y)*(0*z) \le x*(y*z)$. It follows from (2) and Proposition 4.11(1) that

$$\mu((x*y)*z) \ge \kappa \lambda \mu((x*y)*(0*z))$$

$$\ge \kappa^2 \lambda^2 \mu(x*(y*z)).$$

COROLLARY 4.12. Let μ be a fuzzy q-ideal of a BCI-algebra X with degree (λ, κ) . If $\lambda = \kappa$, then the following hold:

- (1) $(\forall x, y \in X)(x \le y \Rightarrow \mu(x) \ge \lambda^2 \mu(y)).$
- (2) $(\forall x, y \in X)(\mu(x * y) \ge \lambda^2 \mu(x * (0 * y)).$
- (3) $(\forall x, y, z \in X)(\mu((x * y) * z) \ge \lambda^4 \mu(x * (y * z)).$

PROPOSITION 4.13. Let μ be a fuzzy ideal of X with degree with (λ, κ) . If $\mu(x) \leq \mu(x * y)$ for any $x, y \in X$, then μ is a fuzzy q-ideal of X with degree (λ, κ) .

Proof. For any $x, y, z \in X$, we have $\mu(x) \ge \kappa \min\{\mu(x * (y * z)), \mu(y * z)\}$. By assumption, we obtain

$$\mu(x*z) \ge \mu(x)$$

$$\ge \kappa \min\{\mu(x*(y*z)), \mu(y*z)\}$$

$$\ge \kappa \min\{\mu(x*(y*z)), \mu(y)\}.$$

Thus μ is a fuzzy q-ideal of X.

Denote by $\mathcal{I}(X)$ and $\mathcal{I}_q(X)$ the set of all ideals and q-ideals of a BCI-algebra X, respectively. Note that a fuzzy subset μ of a BCI-algebra X is a fuzzy q-ideal of X if and only if

$$(\forall t \in [0,1])(U(\mu;t) \in \mathcal{I}_q(X) \cup \{\emptyset\}).$$

But we know that for any fuzzy subset μ of a BCI-algebra X there exist $\lambda, \kappa \in (0,1)$ and $t \in [0,1]$ such that

- (1) μ is a fuzzy q-ideal of X with degree (λ, κ) ,
- (2) $U(\mu;t) \notin \mathcal{I}_q(X) \cup \{\emptyset\}.$

EXAMPLE 4.14. Consider a BCI-algebra $X = \{0, a, b, c\}$ as in Example 3.4. Define a fuzzy subset $\mu: X \to [0, 1]$ by

$$\mu = \begin{pmatrix} 0 & a & b & c \\ 0.7 & 0.6 & 0.5 & 0.5 \end{pmatrix}$$

Then μ is a fuzzy q-ideal of X with degree (0.6,0.7). If $t \in (0.6,0.7]$, then $U(\mu;t)=\{0\}$ is not a q-ideal of X since $c*(0*a)=0\in\{0\}$, $0\in\{0\}$ and $c*a=b\notin\{0\}$.

THEOREM 4.15. Let μ be a fuzzy subset of a BCI-algebra X. For any $t \in [0,1]$ with $t \leq \max\{\lambda,\kappa\}$, if $U(\mu;t)$ is an enlarged q-ideal of X related to $U(\mu;\frac{t}{\max\{\lambda,\kappa\}})$, then μ is a fuzzy q-ideal of X with degree (λ,κ) .

Proof. Assume that $\mu(0) < t \le \lambda \mu(x)$ for some $x \in X$ and $t \in (0, \lambda]$. Then $\mu(x) \ge \frac{t}{\lambda} \ge \frac{t}{\max\{\lambda, \kappa\}}$ and so $x \in U(\mu; \frac{t}{\max\{\lambda, \kappa\}})$, i.e., $U(\mu; \frac{t}{\max\{\lambda, \kappa\}}) \ne \emptyset$. Since $U(\mu; t)$ is an enlarged q-ideal of X related to $U(\mu; \frac{t}{\max\{\lambda, \kappa\}})$, we have $0 \in U(\mu; t)$, i.e., $\mu(0) \ge t$. This is a contradiction, and thus $\mu(0) \ge \lambda \mu(x)$ for all $x \in X$.

Now suppose that there exist $a, b, c \in X$ such that $\mu(a*c) < \kappa \min\{\mu(a*(b*c)), \mu(b)\}$. If we take $t := \kappa \min\{\mu(a*(b*c)), \mu(b)\}$, then $t \in (0, \kappa] \subseteq (0, \max\{\lambda, \kappa\}]$. Hence $a*(b*c) \in U(\mu; \frac{t}{\kappa}) \subseteq U(\mu; \frac{t}{\max\{\lambda, \kappa\}})$

and $b \in U(\mu; \frac{t}{\kappa}) \subseteq U(\mu; \frac{t}{\max\{\lambda, \kappa\}})$. It follows from Definition 4.2(3) that $a * c \in U(\mu; t)$ so that $\mu(a * c) \ge t$, which is impossible. Therefore

$$\mu(x*z) \ge \kappa \min\{\mu(x*(y*z)), \mu(y)\}$$

for all $x, y, z \in X$. Thus μ is a fuzzy q-ideal of X with degree (λ, κ) . \square

COROLLARY 4.16. Let μ be a fuzzy subset of a BCI-algebra X. For any $t \in [0,1]$ with $t \leq \frac{k}{n}$, if $U(\mu;t)$ is an enlarged q-ideal of X related to $U(\mu;\frac{n}{k}t)$, then μ is a fuzzy q-ideal of X with degree $(\frac{k}{n},\frac{k}{n})$.

THEOREM 4.17. Let $t \in [0,1]$ be such that $U(\mu;t) \neq \emptyset$ is not necessary a q-ideal of a BCI-algebra X. If μ is a fuzzy q-ideal of X with degree (λ, κ) , then $U(\mu; t\min\{\lambda, \kappa\})$ is an enlarged q-ideal of X related to $U(\mu;t)$.

Proof. Since $\min\{\lambda, \kappa\} \leq t$, we have $U(\mu; t) \subseteq U(\mu; \min\{\lambda, \kappa\})$. Since $U(\mu; t) \neq \emptyset$, there exists $x \in U(\mu; t)$ and so $\mu(x) \geq t$. By Definition 4.7(1), we obtain $\mu(0) \geq \lambda \mu(x) \geq \lambda t \geq \min\{\lambda, \kappa\}$. Therefore $0 \in U(\mu; t\min\{\lambda, \kappa\})$.

Let $x,y,z\in X$ be such that $x*(y*z)\in U(\mu;t)$ and $y\in U(\mu;t)$. Then $\mu(x*(y*z))\geq t$ and $\mu(y)\geq t$. It follows from Definition 4.7(2) that

$$\mu(x*z) \ge \kappa \min\{\mu(x*(y*z)), \mu(y)\}$$

$$\ge \kappa t \ge t \min\{\lambda, \kappa\}.$$

so that $x * z \in U(\mu; t\min\{\lambda, \kappa\})$. Thus $U(\mu; t\min\{\lambda, \kappa\})$ is an enlarged q-ideal of X related to $U(\mu; t)$.

Acknowledgements

The authors wish to thank the referees for their valuable suggestions.

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [2] Y. Huang, BCI-algebras, Science Press, Beijing, 2006.
- [3] K. Iśeki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [4] Y. B. Jun and J. Meng, Fuzzy p-ideals in BCI-algebras, Math. Japon. 40 (1994), 271-282.
- [5] Y. B. Jun, E. H. Roh and K. J. Lee, Fuzzy subalgebras and ideals of BCK/BCI-algebras with degree in the interval (0,1], Fuzzy Sets and Systems, submitted.
- [6] Y. L. Liu, J. Meng, X. H. Zhang and Z. C. Yue, q-ideals and a-ideals in BCI-algebras, Southeast Asian Bull. Math. 24 (2000), 243-353.

- [7] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.
- [8] O. G. Xi, Fuzzy BCK-algebras, Math. Japon. **36** (1991), 935-942.
- [9] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.

*

Department of Mathematics Education Dongguk University Seoul 10-715, Republic of Korea *E-mail*: tprud-tjd@hanmail.net

**

Department of Mathematics Eduaction Dongguk University Seoul 100-715, Republic of Korea E-mail: sunshine@dongguk.edu