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ANALOGUE OF WIENER INTEGRAL IN THE SPACE
OF SEQUENCES OF REAL NUMBERS

Kun Sik Ryu*

Abstract. Let T > 0 be given. Let (C[0, T ], mϕ) be the ana-
logue of Wiener measure space, associated with the Borel proba-
bility measure ϕ on R, let (L2[0, T ], ω̃) be the centered Gaussian

measure space with the correlation operator (− d2

dx2 )−1 and (`2, m̃)
be the abstract Wiener measure space.

Let U be the space of all sequence 〈cn〉 in `2 such that the limit
limm→∞ 1

m+1

∑m
n=0

∑n
k=0 ck cos kπt

T
converges uniformly on [0, T ]

and give a set function m such that for any Borel subset G of `2,
m(U ∩ P−1

0 ◦ P0(G)) = m̃(P−1
0 ◦ P0(G)).

The goal of this note is to study the relationship among the
measures mϕ, ω̃, m̃ and m.

1. Preliminaries

In 1965, Gross present the theory of the abstract Wiener measure
ω on B, the infinite dimensional real separable Banach space [3]. In
2002, the author and Dr. Im defined the analogue of Wiener measure
mϕ on C[0, T ], the space of all real-valued continuous functions on [0, T ]
[6]. This measure is a kind of the generalization of the concrete Wiener
measure mϕ on C0[0, T ], the space of all real-valued continuous functions
on [0, T ] that vanish at 0.

Let U be the space of all sequences which consists of Fourier coeffi-
cients, related with analogue of Wiener paths and let m be a set function
such that for any Borel subset G of `2, m(U ∩P−1

0 P0G) = m̃(P−1
0 P0G).

The purpose of this article is to study the relationship between the mea-
sures mϕ, ω̃, m̃ and a set function m.
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We will introduce some notations, definitions and known facts which
are need in the next sections.

(A) Let N be the set of all natural numbers and let N0 = N ∪ {0}.
Throughout in this note, every sequences are functions on N0. Let R be
the set of all real numbers and let mL be the Lebesgue measure on R.
For a metric space X, let B(X) be the set of all Borel subset of X.

(B)(The analogue of Wiener measure mϕ)
Let T be a positive real number and let C[0, T ] be the space of all real-

valued continuous functions on [0, T ] with the supremum norm || · ||∞.
Let ϕ be the Borel probability measure on R. For ~t = (t0, t1, · · · , tn)
with 0 = t0 < t1 < t2 < · · · < tn ≤ T , let J~t : C[0, T ] → Rn+1 be the
function given by J~t(x) = (x(t0), x(t1), · · · , x(tn)).
For Bj (j = 0, 1, 2, · · · , n) in B(R), we let

mϕ(J−1
~t

(
n∏

j=0

Bj))

=
n∏

j=1

[(2π)(tj − tj−1)]−
1
2

∫

B0

[ ∫
∏n

j=1 Bj

exp{−1
2

n∑

j=1

(uj − uj−1)2

tj − tj−1
}

d(
n∏

j=1

mL)(u1, u2, · · · , un)
]
dϕ(u0).

Then mϕ can be uniquely extended onto B(C[0, T ]). We shall denote it
by mϕ, again. This measure mϕ is called the analogue of Wiener mea-
sure associated with ϕ [6].

(C) (The centered Gaussian measure ω̃ with the correlation operator
(− d2

dx2 )−1 on L2[0, T ])

For n in N, let en(t) = cos nπt
T and let λn = n2π2

T 2 . Then λn is an eigen-
value of− d2

dt2
with respect to en. For n in N and for F in B(Rn), let MF =

{f in L2[0, T ] | (
∫ T
0 f(t)e1(t)dmL(t),

∫ T
0 f(t)e2(t)dmL(t) , · · · ,

∫ T
0 f(t)

en(t)dmL(t)) is in F}. Let ω̃(MF ) = (2π)−
n
2 (

∏n
j=1 λ

1
2
j )

∫
F exp{−1

2

∑n
j=1

λju
2
j}d(

∏n
j=1 mL) (u1, u2, · · · , un). Then ω̃ can be uniquely extended

onto B(L2[0, T ]). We shall denote it by ω̃, again.
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Remark that if f is in L2[0, T ] and α is any real number then
∫ T
0 (f(t)+

α)en(t)dmL(t) =
∫ T
0 f(t)en(t)dmL(t) for all n in N, so if f is in MF as

in above then f + α is in MF for all real number α. Hence, by the
essentially similar method as in [7], we have the following lemma.

Lemma 1.1. For any A in B(L2[0, T ]), A ∩ C[0, T ] is in B(C[0, T ])
and ω̃(A) = mϕ(A ∩ C[0, T ]).

(D)(The abstract Wiener measure)
Let H be an infinite dimensional real Hilbert space with norm || · || =√
〈·, ·〉. For a finite dimensional orthogonal projection P of H with

dimP (H) = n and for F in B(Rn), we let

v(E)

= (2π)−
n
2

∫

F
exp{−1

2

n∑

j=1

u2
i } d(

n∏

j=1

mL)(u1, u2, · · · , un)

where E = {x in H|P (x) is in F }. Then v is finitely additive but not
countably-additive. Let {hk|k is in N} be an orthonormal basis of H.
For F in B(Rn), we let vh1,h2,··· ,hn(F ) = v({x in H|(〈x, h1〉, 〈x, h2〉, · · · ,
〈x, hn〉) is in F}). Then {vh1,h2,··· ,hn |n is in N} is a consistent family of
probability measures. By Kolmogorov’s theorem, there exists a proba-
bility measure space (Ω,m) and random variables Xk (k is in N) on Ω
such that for F in B(Rn), m({ω in Ω|(X1(ω), X2(ω), · · · , Xn(ω)) is in
F}) = vh1,h2,··· ,hn(F ).

For a measurable semi-norm || · || in H, let B = H
||·||, the closure of

H with respect to || · ||. In case (i,H,B) is called an abstract Wiener
space where i : H → B is the inclusion map.
Given an element h ∈ H, the Wiener integral 〈h, ·〉∧ of h is defined on
B by

〈h, ·〉∧ = L2 − lim
n→∞〈h,

n∑

j=1

hj(·)〉

if the L2-limit exists. (Compare with [2] and [5])

(E) (Spaces ; H, `1,U and `2 )
Let `1 be the space of all sequences 〈cn〉 in R with a norm ||〈cn〉||1 =∑∞
n=0 |cn| < +∞. Let `2 be the space of all sequences 〈cn〉 in R with

a norm ||〈cn〉||2 =
√∑∞

n=0 c2
n < +∞. Let H be the space of all se-

quences 〈cn〉 in R with an inner product 〈〈cn〉, 〈dn〉〉 =
∑∞

n=0(n+1)2cndn
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for 〈cn〉 and 〈dn〉 in H. For 〈cn〉 in H, let ||〈cn〉||H =
√
〈〈cn〉, 〈cn〉〉.

Let U be the space of all sequences 〈cn〉 in `2 such that the limit
limm→∞ 1

m+1

∑m
n=0

∑n
k=0 ckcos

kπt
T converges uniformly on [0, T ].

(F) (The Fourier cosine series)
For x in L2[0, T ], we let x∗(t) = x(|t|) on [−T, T ] and x̂(t + 2kT ) =

x∗(t) for all t in [−T, T ] and for all integer k. Then x̂ is an even pe-
riodic function on R having the period 2T . For x in L2[0, T ], we let
ax,0 = 1

2T

∫ T
−T x̂(t)dmL(t) and ax,n = 1

T

∫ T
−T x̂(t)cosnπt

T dmL(t). Then∑∞
n=0 ax,ncosnπt

T is the Fourier cosine series of x̂.

2. Relationship between the spaces H, `1,U and `2

In this section, we will treat the relationship between the spaces
H, `1,U and `2.

Theorem 2.1. H ⊂
6=

`1 ⊂6= U ⊂
6=

`2.

Proof. If 〈cn〉 is in H then from Schwarz’s inequality,
∞∑

n=0

|cn|

=
∞∑

n=0

(
1

n + 1
)((n + 1)|cn|)

≤
√√√√

∞∑

n=0

1
(n + 1)2

√√√√
∞∑

n=0

(n + 1)2c2
n

=
π√
6
||〈cn〉||H < +∞,

so we have H ⊂ `1. Putting cn = 1

(n+1)
3
2

for n in N0, by the p-series
∑∞

n=0 |cn| < +∞, that is, 〈cn〉 is in `1 but ||〈cn〉||H =
√∑∞

n=0
1

n+1 ,
which implies that H ⊂

6=
`1.

Suppose 〈cn〉 is in `1. From `1 is a subset of `2, 〈cn〉 is in `2. Using Weier-
strass’s M-test, the series

∑∞
k=0 ckcos

kπt
T converges uniformly on [0, T ],

so a function x(t) ≡ ∑∞
k=0 ckcos

kπt
T is continuous on [0, T ]. From the

dominated convergence theorem, the Fourier series of x̂ is
∑∞

k=0 ckcos
kπt
T

on [−T, T ]. By Fejér’s theorem, the limit limm→∞ 1
m+1

∑m
n=0

∑n
k=0 ck
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cos kπt
T converges uniformly to x̂ on [−T, T ], so 〈cn〉 is in U , that is,

`1 ⊂ U . Fejér gave an example of an even continuous function f , having
a period 2π, whose Fourier series diverges at origin [1], so

∑∞
n=0 af,n

diverges, that is,
∑∞

n=0 |af,n| diverges. Hence, we obtain `1 ⊂6= U .

Lastly, we must show that U ⊂
6=

`2. For n ∈ N0, we let cn = 1
n+1 .

Then 〈cn〉 is in `2. We assume that 〈 1
m+1

∑m
n=0

∑n
k=0 ck cos kπ

T t〉 con-
verges uniformly of t. Then putting t = 0, 〈 1

m+1

∑m
n=0

∑n
k=0 ckcos

kπ
T t〉

converges. Then from Tauberian’s theorem [2],
∑∞

k=0
1

k+1 converges, a
contradiction. Thus, we have U ⊂

6=
`2.

Theorem 2.2. Let J1 : L2[0, T ] → `2 be a function with J1(x) =
〈ax,n〉. Then J1 is an isometric isomorphism and J1(C[0, T ]) = U .

Proof. By the uniqueness theorem for Fourier series of L2-function,
J1 is injective and by Bessel’s inequality and monotonic convergence
theorem, J1 is isometric. From Parserval’s identity, we have J1 is iso-
metric. By Fejér’s theorem, we obtain J1(C[0, T ]) ⊂ U . Now, we assume
that 〈cn〉 is in U . Put x(t) = limm→∞ 1

m+1

∑m
n=0

∑n
k=0 ck cos kπt

T for t in

[0, T ]. Then ax,0 = 1
2T limm→∞ 1

m+1

∑m
n=0

∑n
k=0 ck

∫ T
−T cos kπt

T dmL(t) =
c0 and for p in N,

ax,p =
1
T

∫ T

−T
x̂ cos

pπt

T
dmL(t)

=
1
T

lim
m→∞

1
m + 1

m∑

n=0

n∑

k=0

ck

∫ T

−T
cos

pπt

T
cos

kπt

T
dmL(t)

=
1
T

lim
m→∞

1
m + 1

m∑

n=0

T cpχAp(n)

= lim
m→∞

m− p + 1
m + 1

cp

= cp,

as desired. Here Ap = {n in N0|n ≥ p} and χAp is a characteristic
function, associated with Ap.

Remark 2.3. (1) Let I1 : (C[0, T ], || · ||∞) → L2[0, T ] be an inclusion
map. Then I1 is an injective continuous function. Since C[0, T ] is a
dense subset of L2[0, T ], (J1 ◦ I1)(C[0, T ]) = U is a dense subset of `2.
Let I2 : U → `2 be an inclusion map. Then I2 is an injective continuous
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function. Let J2 : C[0, T ] → U be a function with J2(x) = 〈ax,n〉. Then
J2 is a bijective continuous function and J1 ◦ I1 = I2 ◦ J2.

(2) Let 〈cn〉 be in `2. For m in N0, put

d(m)
n =

{
cn , if n ≤ m
0 , otherwise .

Then 〈d(m)
n 〉 is in H and 〈〈d(m)

n 〉〉 converges to 〈cn〉 as m → ∞ with
respect to || · ||2. Hence, we have H||·||2 = U ||·||2 = `2 where X

||·||2 means
the closure of X with respect to || · ||2.

We give a topology on U such that J2 is a homeomorphism.

3. The analogue of Wiener measure and a measure on U

In this section, we will derive a measure m on U and investigate the
properties of it.

Theorem 3.1. || · ||2 is a measurable norm on H.

Proof. For n in N0, let

fn(m) =
{

1
n+1 , if n = m
0 , otherwise

,

for m in N0. Then {fn|n is in N0} is an orthonormal basis of H. Let T :
H → H be an operator with T (〈cn〉) = 〈 1

n+1cn〉. Then
∑∞

n=0 ||T (fn)||2H =∑∞
n=0

1
(n+1)2

= π2

6 < +∞, so T is a Hilbert-Schmidt operator on H and
||〈cn〉||22 =

∑∞
n=0 c2

n = ||T (〈cn〉)||2H, so || · ||2 is a measurable norm on H
by [4].

From the above theorem and Remark 2.3 (2), (i,H, `2) is an abstract
Wiener space.

Theorem 3.2. For 〈vn〉 in H, the Wiener integral 〈〈vn〉, ·〉∧ = `2 -
limm→∞ 〈〈vn〉,

∑m
k=0 fk(·)〉 exists on `2, always where fn’s are given in

the proof of 3.1.

Proof. Let 〈cn〉 be in `2. It suffices to show that 〈〈〈vn〉,
∑m

k=0 fn(〈cn〉)〉〉
is Cauchy. Then for two natural numbers m1,m2 with m1 < m2, by
Schwarz’s inequality,

|〈〈vn〉,
m2∑

k=m1+1

fn(〈cn〉)〉|
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= |
m2∑

k=m1+1

(k + 1) vk ck|

≤ ||〈vn〉||H

√√√√
m2∑

k=m1+1

c2
k,

〈〈〈vn〉,
∑m

k=0 fn(〈cn〉)〉〉 is Cauchy of m in the || · ||2-norm sense.

We can give a probability measure m̃ on `2 such that for fn in H,
〈fn, ·〉∼ is normal distributed on `2 with mean 0 and variance 1 as follows.
For E in B(Rm), letting IE = {〈cn〉 in `2|(〈f0, 〈cn〉〉∧, 〈f1, 〈cn〉〉∧, · · · ,
〈fm−1, 〈cn〉〉∧) is in E} = {〈cn〉 in `2|(c0, 2c1, · · · ,mcm−1) is in E}, let
m̃(IE) = v(E) = (2π)−

m
2

∫
E exp {−1

2

∑m
j=1 u2

j}d(
∏m

j=1 mL) (u1, u2, · · · ,

um). Then m̃ can be uniquely extended onto B(`2). We shall denote it
by m̃, again.

Remark 3.3. Let S be the set of all sequences. Let P0, L, M : S → S
be a functions with P0(〈cn〉) = 〈c1, c2, c3, · · · 〉, L(〈cn〉) = 〈nπcn

T 〉 and
M(〈cn〉) = 〈(n + 1)cn〉. For m in N, let Lm,Mm : S → Rm be
a functions with Lm(〈cn〉) = (πc1

T , 2πc2
T , · · · , mπcm

T ) and Mm(〈cn〉) =
(2c1, 3c2, 4c3, · · · , (m + 1)cm). Then for E in B(Rm), ω̃({f in L2[0, T ]|
Lm(J1(f)) is in E}) = m̃({〈cn〉 in `2|Mm(〈cn〉) is in E}) = (2π)−

m
2

∫
E exp

{−1
2

∑m
j=1 u2

j}d(
∏m

j=1 mL) (u1, u2, · · · , um). Hence, for all cylinder sets
in `2, ω̃ ◦ (J−1

1 ◦ L−1 ◦ P−1
0 ) = m̃ ◦ (M−1 ◦ P−1

0 ) holds. So, ω̃ ◦ (J−1
1 ◦

L−1 ◦ P−1
0 ) = m̃ ◦ (M−1 ◦ P−1

0 ) holds on B(`2).

Let M = {U ∩ ((P−1
0 ◦ P0)(B))|B is in B(`2)} and let X : S → S

be a functions with X(〈cn〉) = 〈2T
π c1,

3T
2π c2, · · · , (n+1)T

nπ cn, · · · 〉. For B in
B(`2), let m(U ∩ ((P−1

0 ◦ P0)(B))) = mϕ(C[0, T ] ∩ J−1
1 (X−1(B))).

Theorem 3.4. For B in B(`2), m(U ∩ ((P−1
0 ◦ P0)(B))) = m̃((P−1

0 ◦
P0)(B)).

Proof. By Lemma 1.1, m(U∩((P−1
0 ◦P0)(B))) = mϕ(C[0, T ]∩J−1

1 (X−1

(B))) = ω̃(J−1
1 (X−1(B))). Since M−1 ◦ P−1

0 ◦ P0 ◦ L ◦ X−1(〈cn〉) =
P−1

0 ◦P0(〈cn〉), from Remark 3.3, ω̃(J−1
1 (X−1(B))) = ω̃(J−1

1 ◦L−1◦P−1
0 ◦

(P0◦L◦X−1)(B)) = m̃(M−1◦P−1
0 ◦P0◦L◦X−1(B)) = m̃((P−1

0 ◦P0)(B))
as desired.

Remark 3.5. Neither M is a σ-algebra on U nor m is a measure on
M, but if we ignore the first term c0 of 〈cn〉 in U then (U ,M, m) is a
measure space.
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