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A TOPOLOGICAL MINIMAX INEQUALITY WITH
v-DCQCV AND ITS APPLICATIONS

WonN Kyu Kiv*

ABSTRACT. In this paper, using the 7-diagonally C-quasiconcave
condition, we will prove a new minimax inequality in a non-convex
subset of a topological space which generalizes Fan’s minimax in-
equality and its generalizations in several aspects.

1. Introduction

Fan’s minimax inequality [3] is well-known and has become a versa-
tile tool in nonlinear and convex analysis, and there have been numerous
generalizations of Fan’s minimax inequality using general concave condi-
tions as in [4-9]. However, a number of generalizations of Fan’s minimax
inequality and their applications always work only in topological vector
spaces, i.e., the linear structure and the continuity are always needed
(e.g., see [5,6,8,9]).

In a recent paper [4], the author proved a generalization of Fan’s min-
imax inequality using v-diagonally C-quasiconcave (simply, v-DCQCV)
condition, which means his minimax inequality works in a topological
space without assuming the linear structure.

In this paper, using the v-DCQCV condition, we will prove a new
minimax inequality in a non-convex subset of a topological space which
generalizes Fan’s minimax inequality and its generalizations in several
aspects. As an application, we will prove a basic inequality which is an
useful tool for applications in a topological space.
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2. Preliminaries

We begin with some notations and definitions. If A is a subset of
a vector space, we shall denote by co A the convex hull of A. Denote
by [0,1]" the Cartesian product of n unit intervals [0, 1] x --- x [0, 1],
and denote the unit simplex in [0,1]" by A,, and simply denote A\ =
(A, .-, n) €A,

In a recent paper [4], the author introduced a general concave condi-
tion in a topological space without the linear structure as follows:

DEFINITION 2.1. Let Y be a nonempty subset of a topological space
X. Then f:X xY — RU{+4o0} is called diagonally C-quasiconcave
(simply, DCQCV) on Y if for every n > 2, whenever n points
Yl,...,Yn € Y are given, there exists a continuous function ¢, : A, —
Y such that

F(@n(A); on(N) = min{f(¢n(A1, ..., An),wi) [P € T}

forall A= (A,..., ) € Ay, where J = {i € {1,2,--- ,n} | \; #0};
and f is called v-diagonally C-quasiconcave (simply, v-DCQCV) on
Y for some v € (—oo,00] if for every n > 2, whenever n points
Yi,--.,Yn € Y are given, there exists a continuous function ¢, : A, —
Y such that

v > min{f(dn(A1,..., \n),vi) |1 € J}

forall A= (A1,...,\n) € Ay, where J={ie€{1,2,---,n} |\ #0}.
Similarly, we can define the diagonally C-quasiconvex (simply, DCQCX)
and v-diagonally C-quasiconvex (simply, v-DCQCX) conditions for f.

REMARK 2.2. (1) As remarked in [4], in Definition 2.1, when X is
a topological vector space, the diagonal quasiconcavity and v-diagonal
quasiconcavity, introduced by Chang-Zhang [5] and Zhou-Chen [6], clearly
imply the DCQCV and y-DCQCYV conditions for f, respectively, by let-
ting ¢n(A1,. .., An) = AN+ -+ Az forall A= (A,...,\,) € Ay,
and z1,...,z, € X. Therefore, the -DCQCV condition general-
izes many previous concave conditions including the quasiconcave, CF-
concave, C-concave, diagonally quasiconcave, and vy-diagonally quasicon-
cave conditions without assuming the linear structure.
(2) When X is a topological vector space and the case X =Y in the
above definition, as shown in [4], we can obtain the following implication
diagram for general concave conditions, and the converse can not be true
in each step:
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linear = concave = quasiconcave =—> CF-concave = C-concave

— diagonally C-concave = diagonally C-quasiconcave
= v-DCQCV

Throughout this paper, all topological spaces are assumed to be Haus-
dorff, and for the other standard notations and terminologies, we shall
refer to [4-7].

3. A non-convex minimax inequality and its applications

Using the v-DCQCYV condition, we will prove a new non-convex mini-
max inequality in a topological space without assuming the linear struc-
ture which is slightly different from Theorem 1 in [4] as follow:

THEOREM 3.1. Let X be a compact topological space, D a nonempty
subset of X having more than two points, and let f,g : X x X —
R U {400} be two functions satisfying

(1) for each (,y) € X x X, f(z,y) < g(a,y);

(2) for each y € X, x> f(x,y) is lower semicontinuous on X;

(3) for each x € X, y — g(x,y) is v-DCQCV on D when ~ :=

SUPgex 9(7, 7);
(4) for eachy € X\ D, f(z,y) <~ forall =€ D.

Then the minimax inequality

min sup f(z,y) < sup g(z, z)
reX yeX zeX

holds.

Proof. If v = +o00, then we have done so that we may assume that
v < 400. Suppose the contrary, i.e.,

min sup f(z,y) > sup g(z,z) = .
reX yeX zeX

Then, for each z € X, there exists an y € X such that  f(z,y) > 7.
For each y € X, we let
Uly) :=={z e X[ f(z,y) >~}

Note that y ¢ U(y) since f(y,y) < g(y,y) < « for all y € X. By the
assumption (2), U(y) is (possibly empty) open in X for each y € X,
and X = {J,exU(y). Since X is compact, there exists a finite set
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{y1,---,yn} € X such that X = |J;_, U(y;). By the coercive assump-
tion (4), we know that for each y € X \ D, U(y) C X \ D so that
Uyex\pU(y) € X\ D andso D CJ,epU(y). Therefore, by renum-
bering the indices, we can divide the finite set {y1,...,y,} into two
subsets {y1,...,ym} C D and {ym41,.--,yn} C X \ D such that
D C U2, U(y;) and X = J;"; U(y;). Here we note that {ym+1,...,9n}
might be an empty set.

Since X is compact, there exists a partition of unity {aq,---,an}
subordinated to the open covering {U(y1),...,U(yn)} of X, i.e.,

0 <ai(z) <1, Zai(x)zl forall ze X, i=1,...,n;
i=1
and if « ¢ U(y;) for some j, then a;(x) = 0.

For the nonempty finite set {y1,...,ym} C D, since g is v-DCQCV
on D, there exists a continuous mapping ¢,, : A,, — D satisfying the
condition

Y= sggg(m,x) > min{g(¢m(Alv cee 7)‘m)’yj) |] € J} (*)

for all (A1,...,Am) € Ay, where J = {j € {1,2,---,m} | \; #0}.

For each x € D( C UZ, U(y;)), we have aj(z) = 0 for all j =
m+1,...,n so that > ", «a;(x) = 1. Therefore, we can define a
continuous map a: D — A, by «a(z):= (ai1(x), - ,am(x)) for each
x € D, and consider a continuous map @ : A,, — A,, defined by

D(N\):=a o ¢gp(N) = (oq(qﬁm()\)), e ,am(qu(A))) for each A € A,,.

Since ¢, and each «; are continuous, ® : A,, — A,, is continuous on a
compact convex set A,,. Therefore, by Brouwer’s fixed point theorem,
there exists a fixed point A = (A1,..., A\p) € Ay, for @, ie.,

() = © ¢ (V) = ((0n(), - an(@n(V)) = Ar,- o Aw).

Here we let 7 = ¢,()\), then A\ = a(z). By the inequality (), we
have

v = ig}gg(%w) > min{g(Z,y;)[j € J} > min{f(z,y;)|7 € J}, (1)

where J = {j € {1,2,---,m} | A\j # 0}. Here we note that for each
jeJ, A #0 which means «;(Z) # 0. Hence, we have that for
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each j € J, 2 € U(y;) so that f(z,y;) > . Therefore, from the
inequality (), we have

which is a contradiction. This completes the proof. ]

REMARK 3.2. Theorem 3.1 generalizes Fan’s minimax inequality [3],
minimax inequalities due to Chang-Zhang [5], Kim-Lee [7], Kim [4], Tan
[8], and Zhou-Chen [6] in the following aspects:

(a) the function y — f(x,y) need not be quasconcave, C-concave, -
DQCYV nor diagonally C-concave on X. Indeed, the weaker assumption
~v-DCQCYV is sufficient.

(b) When X = D in Theorem 3.1, the coercivity assumption (4) is
automatically satisfied so that Theorem 3.1 reduces to Theorem 1 [4].
Indeed, in Theorem 1 [4], v~-DCQCV condition should be needed on a
compact set D, however, in the above, v-DCQCV condition is needed
on any nonempty subset D of X having more than two points.

Next, we can obtain a generalization of Fan’s minimax inequality in
a topological vector space as an application of Theorem 3.1.

THEOREM 3.3. Let X be a compact convex subset of a topological
vector space, D a nonempty subset of X having more than two points,
and let f : X x X — RU {+oo} be a function satisfying

(1) for each z € X, y — f(z,y) is quasconcave on X;

(2) for each y € X, x— f(x,y) is lower semicontinuous on X ;

(3) foreachy € X\ D, f(x,y) <sup,ex f(2,2) =7 forall =€ D;

(4) for each y € D, f(x,y) >~ forall v € X\ D.

Then we have mingex sup,ex f(2,y) < sup,ey f(z, 7).

Proof. If v = 400, then we have done so that we may assume that
v < +00. In order to apply Theorem 3.1, it suffices to show that for
eachz € X, y — f(z,y) is y-diagonally C-quasiconcave on D. Indeed, in
the previous Remark 3.2, we know that quasiconcave condition implies
the v-DCQCV condition. Here, for the completeness, we can give a
direct proof by using the well-known Fan minimax inequality. For every
n > 2, let n points {y1,...,yn} C D be given and let K := co{y1,...,yn}
be a compact convex subset of X. Consider the restriction g = f|x :
K x K — R of fon K x K. Then g satisfies the whole assumption of
Theorem 1 due to Fan [3] so that we have

min sup ¢g(z,y) < sup g(y,y);
zeK yeK yeK
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i.e., there exists g € K such that

sup g(zo,y) < sup g(y,y) < sup f(y,y) = 7.
yeK yeK yeX

Therefore, by the assumption (4), zp € K must be an element of D
since K N D # ().

We now define a constant continuous map ¢, : A, — D by
On(A) :=x0 forall A= (\,...,\,) € A,. Then, we have

min{ f(¢n(A),4:) | 7 € J} < sup{f(wo, i) | i€ J} < sgflgf(y,y) <,
Yy

where J = {j € {1,2,---,n} | \; # 0}, so that f is v-diagonally C-
quasiconcave on D which completes the proof. O

REMARK 3.4. (1) Modifying the proof of Theorem 3.3, we can re-
place the quasiconcave assumption (1) by the following general concave
conditions without affecting the conclusion:

(a) the linear or concave condition due to von Neumann [10];

(b) the quasiconcave condition due to Fan [3];

(c) the C-concave condition due to Kim-Lee [7];

(d) the diagonally concave condition due to Zhou-Chen [6];

(2) When X = D is compact and convex, then the assumptions (3)
and (4) of Theorem 3.3 are automatically satisfied so that the minimax
inequality due to Fan [3] is a consequence of Theorem 3.3.
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