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A TOPOLOGICAL MINIMAX INEQUALITY WITH
γ-DCQCV AND ITS APPLICATIONS

Won Kyu Kim*

Abstract. In this paper, using the γ-diagonally C-quasiconcave
condition, we will prove a new minimax inequality in a non-convex
subset of a topological space which generalizes Fan’s minimax in-
equality and its generalizations in several aspects.

1. Introduction

Fan’s minimax inequality [3] is well-known and has become a versa-
tile tool in nonlinear and convex analysis, and there have been numerous
generalizations of Fan’s minimax inequality using general concave condi-
tions as in [4-9]. However, a number of generalizations of Fan’s minimax
inequality and their applications always work only in topological vector
spaces, i.e., the linear structure and the continuity are always needed
(e.g., see [5,6,8,9]).

In a recent paper [4], the author proved a generalization of Fan’s min-
imax inequality using γ-diagonally C-quasiconcave (simply, γ-DCQCV)
condition, which means his minimax inequality works in a topological
space without assuming the linear structure.

In this paper, using the γ-DCQCV condition, we will prove a new
minimax inequality in a non-convex subset of a topological space which
generalizes Fan’s minimax inequality and its generalizations in several
aspects. As an application, we will prove a basic inequality which is an
useful tool for applications in a topological space.
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2. Preliminaries

We begin with some notations and definitions. If A is a subset of
a vector space, we shall denote by coA the convex hull of A. Denote
by [0, 1]n the Cartesian product of n unit intervals [0, 1] × · · · × [0, 1],
and denote the unit simplex in [0, 1]n by ∆n, and simply denote λ =
(λ1, . . . , λn) ∈ ∆n.

In a recent paper [4], the author introduced a general concave condi-
tion in a topological space without the linear structure as follows:

Definition 2.1. Let Y be a nonempty subset of a topological space
X. Then f : X × Y → R ∪ {+∞} is called diagonally C-quasiconcave
(simply, DCQCV) on Y if for every n ≥ 2, whenever n points
y1, . . . , yn ∈ Y are given, there exists a continuous function φn : ∆n →
Y such that

f(φn(λ), φn(λ)) ≥ min{f(φn(λ1, . . . , λn), yi) | i ∈ J}
for all λ = (λ1, . . . , λn) ∈ ∆n, where J = {i ∈ {1, 2, · · · , n} | λi 6= 0};
and f is called γ-diagonally C-quasiconcave (simply, γ-DCQCV) on
Y for some γ ∈ (−∞,∞] if for every n ≥ 2, whenever n points
y1, . . . , yn ∈ Y are given, there exists a continuous function φn : ∆n →
Y such that

γ ≥ min{f(φn(λ1, . . . , λn), yi) | i ∈ J}
for all λ = (λ1, . . . , λn) ∈ ∆n, where J = {i ∈ {1, 2, · · · , n} | λi 6= 0}.
Similarly, we can define the diagonally C-quasiconvex (simply, DCQCX)
and γ-diagonally C-quasiconvex (simply, γ-DCQCX) conditions for f .

Remark 2.2. (1) As remarked in [4], in Definition 2.1, when X is
a topological vector space, the diagonal quasiconcavity and γ-diagonal
quasiconcavity, introduced by Chang-Zhang [5] and Zhou-Chen [6], clearly
imply the DCQCV and γ-DCQCV conditions for f , respectively, by let-
ting φn(λ1, . . . , λn) := λ1x1 + · · ·+ λnxn for all λ = (λ1, . . . , λn) ∈ ∆n,
and x1, . . . , xn ∈ X. Therefore, the γ-DCQCV condition general-
izes many previous concave conditions including the quasiconcave, CF-
concave, C-concave, diagonally quasiconcave, and γ-diagonally quasicon-
cave conditions without assuming the linear structure.
(2) When X is a topological vector space and the case X = Y in the
above definition, as shown in [4], we can obtain the following implication
diagram for general concave conditions, and the converse can not be true
in each step:
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linear =⇒ concave =⇒ quasiconcave =⇒ CF-concave =⇒ C-concave

=⇒ diagonally C-concave =⇒ diagonally C-quasiconcave

=⇒ γ-DCQCV

Throughout this paper, all topological spaces are assumed to be Haus-
dorff, and for the other standard notations and terminologies, we shall
refer to [4-7].

3. A non-convex minimax inequality and its applications

Using the γ-DCQCV condition, we will prove a new non-convex mini-
max inequality in a topological space without assuming the linear struc-
ture which is slightly different from Theorem 1 in [4] as follow:

Theorem 3.1. Let X be a compact topological space, D a nonempty
subset of X having more than two points, and let f, g : X × X →
R ∪ {+∞} be two functions satisfying

(1) for each (x, y) ∈ X ×X, f(x, y) ≤ g(x, y);
(2) for each y ∈ X, x 7→ f(x, y) is lower semicontinuous on X;
(3) for each x ∈ X, y 7→ g(x, y) is γ-DCQCV on D when γ :=

supx∈X g(x, x);
(4) for each y ∈ X \D, f(x, y) ≤ γ for all x ∈ D.

Then the minimax inequality

min
x∈X

sup
y∈X

f(x, y) ≤ sup
x∈X

g(x, x)

holds.

Proof. If γ = +∞, then we have done so that we may assume that
γ < +∞. Suppose the contrary, i.e.,

min
x∈X

sup
y∈X

f(x, y) > sup
x∈X

g(x, x) = γ.

Then, for each x ∈ X, there exists an y ∈ X such that f(x, y) > γ.
For each y ∈ X, we let

U(y) := {x ∈ X | f(x, y) > γ}.
Note that y /∈ U(y) since f(y, y) ≤ g(y, y) ≤ γ for all y ∈ X. By the
assumption (2), U(y) is (possibly empty) open in X for each y ∈ X,
and X =

⋃
y∈X U(y). Since X is compact, there exists a finite set
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{y1, . . . , yn} ⊆ X such that X =
⋃n

i=1 U(yi). By the coercive assump-
tion (4), we know that for each y ∈ X \ D, U(y) ⊂ X \ D so that⋃

y∈X\D U(y) ⊆ X \D and so D ⊆ ⋃
y∈D U(y). Therefore, by renum-

bering the indices, we can divide the finite set {y1, . . . , yn} into two
subsets {y1, . . . , ym} ⊂ D and {ym+1, . . . , yn} ⊂ X \ D such that
D ⊆ ⋃m

i=1 U(yi) and X =
⋃n

i=1 U(yi). Here we note that {ym+1, . . . , yn}
might be an empty set.

Since X is compact, there exists a partition of unity {α1, · · · , αn}
subordinated to the open covering {U(y1), . . . , U(yn)} of X, i.e.,

0 ≤ αi(x) ≤ 1,

n∑

i=1

αi(x) = 1 for all x ∈ X, i = 1, . . . , n;

and if x /∈ U(yj) for some j, then αj(x) = 0.

For the nonempty finite set {y1, . . . , ym} ⊂ D, since g is γ-DCQCV
on D, there exists a continuous mapping φm : ∆m → D satisfying the
condition

γ = sup
x∈X

g(x, x) ≥ min{g(
φm(λ1, . . . , λm), yj

) | j ∈ J} (∗)

for all (λ1, . . . , λm) ∈ ∆m, where J = {j ∈ {1, 2, · · · ,m} | λj 6= 0}.
For each x ∈ D

( ⊆ ⋃m
i=1 U(yi)

)
, we have αj(x) = 0 for all j =

m + 1, . . . , n so that
∑m

i=1 αi(x) = 1. Therefore, we can define a
continuous map α : D → ∆m by α(x) := (α1(x), · · · , αm(x)) for each
x ∈ D, and consider a continuous map Φ : ∆m → ∆m defined by

Φ(λ) := α ◦ φm(λ) =
(
α1(φm(λ)), . . . , αm(φm(λ))

)
for each λ ∈ ∆m.

Since φm and each αi are continuous, Φ : ∆m → ∆m is continuous on a
compact convex set ∆m. Therefore, by Brouwer’s fixed point theorem,
there exists a fixed point λ̄ = (λ̄1, . . . , λ̄m) ∈ ∆m for Φ, i.e.,

Φ(λ̄) = α ◦ φm(λ̄) =
(
α1(φm(λ̄)), . . . , αm(φm(λ̄))

)
= (λ̄1, . . . , λ̄m).

Here we let x̄ = φm(λ̄), then λ̄ = α(x̄). By the inequality (∗), we
have

γ = sup
x∈X

g(x, x) ≥ min{g(x̄, yj) | j ∈ J} ≥ min{f(x̄, yj) | j ∈ J}, (†)

where J = {j ∈ {1, 2, · · · ,m} | λ̄j 6= 0}. Here we note that for each
j ∈ J, λ̄j 6= 0 which means αj(x̄) 6= 0. Hence, we have that for
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each j ∈ J, x̄ ∈ U(yj) so that f(x̄, yj) > γ. Therefore, from the
inequality (†), we have

γ ≥ min{g(x̄, yj) | j ∈ J} ≥ min{f(x̄, yj) | j ∈ J} > γ,

which is a contradiction. This completes the proof.

Remark 3.2. Theorem 3.1 generalizes Fan’s minimax inequality [3],
minimax inequalities due to Chang-Zhang [5], Kim-Lee [7], Kim [4], Tan
[8], and Zhou-Chen [6] in the following aspects:

(a) the function y 7→ f(x, y) need not be quasconcave, C-concave, γ-
DQCV nor diagonally C-concave on X. Indeed, the weaker assumption
γ-DCQCV is sufficient.

(b) When X = D in Theorem 3.1, the coercivity assumption (4) is
automatically satisfied so that Theorem 3.1 reduces to Theorem 1 [4].
Indeed, in Theorem 1 [4], γ-DCQCV condition should be needed on a
compact set D, however, in the above, γ-DCQCV condition is needed
on any nonempty subset D of X having more than two points.

Next, we can obtain a generalization of Fan’s minimax inequality in
a topological vector space as an application of Theorem 3.1.

Theorem 3.3. Let X be a compact convex subset of a topological
vector space, D a nonempty subset of X having more than two points,
and let f : X ×X → R ∪ {+∞} be a function satisfying

(1) for each x ∈ X, y 7→ f(x, y) is quasconcave on X;
(2) for each y ∈ X, x 7→ f(x, y) is lower semicontinuous on X;
(3) for each y ∈ X \D, f(x, y) ≤ supz∈X f(z, z) = γ for all x ∈ D;
(4) for each y ∈ D, f(x, y) > γ for all x ∈ X \D.

Then we have minx∈X supy∈X f(x, y) ≤ supx∈X f(x, x).

Proof. If γ = +∞, then we have done so that we may assume that
γ < +∞. In order to apply Theorem 3.1, it suffices to show that for
each x ∈ X, y 7→ f(x, y) is γ-diagonally C-quasiconcave on D. Indeed, in
the previous Remark 3.2, we know that quasiconcave condition implies
the γ-DCQCV condition. Here, for the completeness, we can give a
direct proof by using the well-known Fan minimax inequality. For every
n ≥ 2, let n points {y1, . . . , yn} ⊂ D be given and let K := co{y1, . . . , yn}
be a compact convex subset of X. Consider the restriction g = f |K :
K ×K → R of f on K ×K. Then g satisfies the whole assumption of
Theorem 1 due to Fan [3] so that we have

min
x∈K

sup
y∈K

g(x, y) ≤ sup
y∈K

g(y, y);
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i.e., there exists x0 ∈ K such that

sup
y∈K

g(x0, y) ≤ sup
y∈K

g(y, y) ≤ sup
y∈X

f(y, y) = γ.

Therefore, by the assumption (4), x0 ∈ K must be an element of D
since K ∩D 6= ∅.

We now define a constant continuous map φn : ∆n → D by
φn(λ) := x0 for all λ = (λ1, . . . , λn) ∈ ∆n. Then, we have

min{f(φn(λ), yi) | i ∈ J} ≤ sup{f(x0, yi) | i ∈ J} ≤ sup
y∈K

f(y, y) ≤ γ,

where J = {j ∈ {1, 2, · · · , n} | λj 6= 0}, so that f is γ-diagonally C-
quasiconcave on D which completes the proof.

Remark 3.4. (1) Modifying the proof of Theorem 3.3, we can re-
place the quasiconcave assumption (1) by the following general concave
conditions without affecting the conclusion:

(a) the linear or concave condition due to von Neumann [10];
(b) the quasiconcave condition due to Fan [3];
(c) the C-concave condition due to Kim-Lee [7];
(d) the diagonally concave condition due to Zhou-Chen [6];

(2) When X = D is compact and convex, then the assumptions (3)
and (4) of Theorem 3.3 are automatically satisfied so that the minimax
inequality due to Fan [3] is a consequence of Theorem 3.3.
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