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RELATION BETWEEN THE FLOOR BOUND AND THE
ORDER BOUND

Seungkook Park*

Abstract. The purpose of this paper is to show that the coset
bound can be used to prove the floor bound. Our proof provides a
natural relation between the floor bound and the order bound.

1. Introduction

For algebraic geometric codes, it is in general hard to determine
the actual minimum distance. The main methods for finding the lower
bound for the minimum distance of an algebraic geometric code can be
divided into two categories which are Lundell-McCullough floor bound
[4] and Beelen order bound [1]. The connection between the two bounds
were given in [2, 3]. In [3], ABZ bound for codes and ABZ bound for
cosets are formulated. The authors prove that ABZ bound for codes
improves the floor bound. Then by showing that the order bound, ob-
tained with the ABZ bound for cosets, is at least the ABZ bound for
codes, they prove that the order type bound improves the floor bound.
In this paper, we give a direct proof that the floor bound can be ob-
tained by using the decompositions from two different order sequences
and merging them into one new sequence. Our proof establishes a natu-
ral relation between the floor bound and the order bound. The paper is
organized as follows: In Section 2 we give the definition of an algebraic
geometric code and recall the method for finding the lower bound for
the minimum distance based on the order bound. In Section 3 we prove
the Lundell-McCullough floor bound using the order bound, which pro-
vides a better understanding of the relation between the two bounds. In
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Section 3, we give an example for finding the minimum distance using
the floor bound and the order bound.

2. Algebraic geometric codes and order bound

Let X/F be an algebraic curve (absolutely irreducible, smooth, pro-
jective) of genus g over a finite field F. Let F(X) be the function field of
X/F and let Ω(X) be the module of rational differentials of X/F. Given
a divisor E on X defined over F, let L(E) = {f ∈ F(X)\{0} : (f)+E ≥
0}∪{0} and let Ω(E) = {ω ∈ Ω(X)\{0} : (ω) ≥ E}∪{0}. Let K repre-
sent the canonical divisor class. For n distinct rational points P1, . . . , Pn

on X and for disjoint divisors D = P1 + · · ·+ Pn and G, the geometric
Goppa codes CL(D, G) and CΩ(D, G) are defined as the images of the
maps

αL : L(G) −→ Fn, f 7→ ( f(P1), . . . , f(Pn) ),

αΩ : Ω(G−D) −→ Fn, ω 7→ ( resP1(ω), . . . , resPn(ω) ).

The maps establish isomorphisms L(G)/L(G − D) ' CL(D, G) and
Ω(G − D)/Ω(G) ' CΩ(D, G). The codes CL(D,G) and CΩ(D, G)
are dual to each other. The Hamming distance between two vectors
x, y ∈ Fn is d(x, y) = |{i : xi 6= yi}|. The minimum distance of a non-
trivial linear code C is

d(C) = min {d(x, y) : x, y ∈ C, x 6= y}
= min {d(x, 0) : x ∈ C, x 6= 0}.

The Hamming distance between two nonempty subsets X,Y ⊂ Fn is the
minimum of {d(x, y) : x ∈ X, y ∈ Y }. For a proper subcode C′ ⊂ C, the
minimum distance of the collection of cosets C/C′ is

d(C/C′) = min {d(x + C′, y + C′) : x, y ∈ C, x− y 6∈ C′}
= min {d(x, 0) : x ∈ C, x 6∈ C′}.

For two vectors x, y ∈ Fn, let x ∗ y ∈ Fn denote the Hadamard or
coordinate-wise product of the two vectors. We state the theorem of
coset bound from ([3], Theorem 1.2.) without proof.

Theorem 2.1 (Coset bound). Let C/C1 be an extension of F-linear
code with corresponding extension of dual codesD1/D such that dim C/C1

= dimD1/D = 1. If there exist vectors a1, . . . , aw and b1, . . . , bw such
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that {
ai ∗ bj ∈ D for i + j ≤ w,

ai ∗ bj ∈ D1\D for i + j = w + 1,

then d(C/C1) ≥ w.

Theorem 2.1 can be used to estimate the minimum distance d(C/C′)
of an extension C/C′ with dim C/C′ > 1, after dividing C/C′ into subex-
tensions.

Lemma 2.2. Let C/C′ be an extension of F-linear code of length n.
For C ⊃ C′′ ⊃ C′,

d(C/C′) = min { d(C/C′′), d(C′′/C′) }.
Proof.

d(C/C′) = min { d(x, 0) : x ∈ C, x 6∈ C′}
= min {{d(x, 0) : x ∈ C, x 6∈ C′′} ∪ {d(x, 0) : x ∈ C′′, x 6∈ C′}}
= min { d(C/C′′), d(C′′/C′) }.

To find the minimum distance of a code C we use the following lemma:

Lemma 2.3. Let C/C′ be an extension of F-linear codes of length n.
Then the minimum distance of the code C is

d(C) = min{d(C/C′), d(C′)}.
Proof.

d(C) = min { d(x, 0) : x ∈ C, x 6= 0 }
= min {{d(x, 0) : x ∈ C, x 6∈ C′} ∪ {d(x, 0) : x ∈ C′, x 6= 0 }}
= min { d(C/C′), d(C′) }.

The order bound uses a filtration of subcodes of the code obtaining
different coset bounds for different subsets of codewords. In general, we
obtain an improved bound if for each subset we can find a coset bound
better than a uniform bound for all codewords.
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3. Proof of floor bound using order bound

We state and prove the Lundell-McCullough floor bound using the
order bound.

Theorem 3.1 (Lundell-McCullough floor bound). Let G = A+B+Z,
for Z ≥ 0 such that L(A + Z) = L(A) and L(B + Z) = L(B). For D
with supp(D) ∩ supp(Z) = ∅, a nonzero word in CΩ(D, G) has weight
at least deg G− (2g − 2) + deg Z.

Proof. Let G = A + B + Z. We use the coset bound to show that for
each r ≥ 0, a word in CΩ(D, G + rP )\CΩ(D, G + rP + P ) has weight at
least deg G− (2g−2)+deg Z. Let deg A = a, deg B = b, and deg Z = z.
For i = 0, 1, . . . , a,

G + rP + P = (A− iP ) + (B + Z + rP + iP + P ).

For j = 0, 1, . . . , b,

G + rP + P = (A + Z + rP + jP + P ) + (B − jP ).

We claim that among the (a+1)+ (b+1) = a+ b+2 decompositions of
G + rP + P there are at least a + b + 2− 2(g − z) decompositions that
are sums of two nongaps at P .
Since

dimL(A + Z + rP + bP + P )− dimL(A + Z + rP )

+ dimL(A)− dimL(A− aP − P )

≥ deg(A + Z + rP + bP + P ) + 1− g

− (dimL(A + Z + rP )− dimL(A))

≥ deg(A + Z + rP + bP + P ) + 1− g

− (dimL(A+Z+rP )− dimL(A + Z)+dimL(A+Z)− dimL(A))

≥ (a + z + r + b + 1) + 1− g − r = a + b + 2− (g − z),

there are at most (g − z) gaps at P among

{A− aP, . . . , A} ∪ {A + Z + rP + P, . . . , A + Z + rP + bP + P}.
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Similarly, the following inequality

dimL(B + Z + rP + aP + P )− dimL(B + Z + rP )

+ dimL(B)− dimL(B − bP − P )

≥ deg(B + Z + rP + aP + P ) + 1− g

− (dimL(B + Z + rP )− dimL(B))

≥ deg(B + Z + rP + aP + P ) + 1− g

− (dimL(B+Z+rP )− dimL(B+Z) + dimL(B+Z)− dimL(B))

≥ (b + z + r + a + 1) + 1− g − r = a + b + 2− (g − z)

yields that there are at most (g − z) gaps at P among

{B − bP, . . . , B} ∪ {B + Z + rP + P, . . . , B + Z + rP + aP + P}.
Thus among the a + b + 2 decompositions of G + rP + P there are at
least a + b + 2 − 2(g − z) decompositions such that the decomposition
consists of two nongaps at P that sum up to G + rP + P . Thus, by
Theorem 2.1,

d(CΩ(D, G + rP )/CΩ(D, G + rP + P )) ≥ a + b + 2− 2(g− z) for r ≥ 0.

By applying Lemma 2.2 and Lemma 2.3 repeatedly, we have

d(CΩ(D, G)) ≥ a + b + 2− 2(g − z) = deg G− (2g − 2) + deg Z.

4. Example of one-point Hermitian codes

We give an example of how to find the lower bound for the mini-
mum distance of one-point Hermitian code. For comparison, we will use
both the floor bound and order bound to find the lower bound for the
minimum distance.

Example 4.1. Let X be a Hermitian curve defined by y4+y = x5 over
F16. Then X has 65 rational points over F16, denoted by P1, . . . , P64, P∞,
where P∞ is the point at infinity of X. The genus is 6. A canonical
divisor is K = 10P∞. Let F16(X) be the function field of X over F16.
For f ∈ F16(X)\{0}, let (f)∞ denote the pole divisor of f and let (f)0
denote the zero divisor of f . Then the divisor of f can be written as
(f) = (f)0−(f)∞. Consider the Weierstrass semigroup of the point P∞;
that is,

H(P∞) = {n ∈ N0 : ∃ f ∈ F16(X) with (f)∞ = nP∞}.
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Since (x)∞ = 4P∞ and (y)∞ = 5P∞, the gap numbers at P∞ are
{1, 2, 3, 6, 7, 11} and

H(P∞) = 〈4, 5〉 = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, . . .}.
For G = 17P∞ and D = P1 + · · ·+ P64, we show that d(CΩ(D, G)) ≥ 8.

Floor Bound :

For G = 17P∞ = A + B + Z, let A = 10P∞, B = 6P∞, and Z = P∞.
Then

L(A + Z) = L(11P∞) = L(10P∞) = L(A)

and

L(B + Z) = L(7P∞) = L(6P∞) = L(B).

Then by Theorem 3.1,

d(CΩ(D, G)) ≥ deg G− (2g − 2) + deg Z = 17− (10) + 1 = 8.

Order Bound :

To the extension of codes C/C1 = CΩ(D, 17P∞)/CΩ(D, 18P∞) corre-
sponds an extension of dual codes D1/D = CL(D, 18P∞)/CL(D, 17P∞).
If there exist vectors a1, . . . , aw and b1, . . . , bw such that

{
ai ∗ bj ∈ D = CL(D, 17P∞) for i + j ≤ w,

ai ∗ bj ∈ D1\D = CL(D, 18P∞)\CL(D, 17P∞) for i + j = w + 1,

then d(C/C1) ≥ w. In other words, if there exist rational functions
f1, f2, . . . , fw and g1, g2, . . . , gw such that

{
figj ∈ L(17P∞) for i + j ≤ w,

figj ∈ L(18P∞)\L(17P∞) for i + j = w + 1,

then d(C/C1) ≥ w. Note that figj ∈ L(18P∞)\L(17P∞) means that figj

has a pole only at P∞ with exact pole order 18, that is, (figj)∞ = 18P∞.
Now we find the rational functions that satisfy the above conditions.
Consider the following figure. In the figure, the numbers below and to
the right of the functions are the pole order of the functions at P∞.
It follows from the figure that

{
figj ∈ L(17P∞) for i + j ≤ 9,

figj ∈ L(18P∞)\L(17P∞) for i + j = 10.
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f1 f2 f3 f4 f5 f6 f7 f8 f9

1 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y x2y2

0 4 5 8 9 10 12 13 14 15 16 17 18

g1 1 0 18

g2 x 4 18

g3 y 5 18

g4 x2 8 18

g5 xy 9 18

g6 y2 10 18

x3 12

g7 x2y 13 18

g8 xy2 14 18

y3 15

x4 16

x3y 17

g9 x2y2 18 18

Thus d(C/C1) ≥ 9. By a careful observation we notice that the problem
of finding the rational functions is equivalent to finding pairs of numbers
that add up to 18 with both numbers being nongaps. We illustrate the
method below. We write the numbers from 0 to 18 in the first row. In
the second row, we write the numbers from 18 to 0. Then we cross out
the gaps in both rows and count the number pairs that is not crossed
out.

X
0 1 2 3

X
4

X
5 6 7

X
8

X
9

X
10 11 12

X
13

X
14 15 16 17

X
18

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Applying the same method to CΩ(D, 18P∞)/CΩ(D, 19P∞) we have

d(CΩ(D, 18P∞)/CΩ(D, 19P∞)) ≥ 8.

By repeated application, we can compute the lower bound for the weights
of codewords in the subsets(layers) of the code. Thus we have
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≥ 9 CΩ(D, 17P∞)\CΩ(D, 18P∞)

≥ 8 CΩ(D, 18P∞)\CΩ(D, 19P∞)

≥ 9 CΩ(D, 19P∞)\CΩ(D, 20P∞)

≥ 10 CΩ(D, 20P∞)\CΩ(D, 21P∞)

...

By taking the minimum of the weights of the codewords, we have

d(CΩ(D, G)) ≥ 8.

5. Conclusion

In the proof of Theorem 3.1 we use the decompositions from two
different order sequences and merge them into one new sequence. Thus
floor bound equals merging two order sequences.
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