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A NEW TOPOLOGY FROM AN OLD ONE

HALGWRD MOHAMMED DARWESH*

ABSTRACT. In the present paper we construct and introduce a new
topology from an old one which are independent each of the other.
The members of this topology are called ws-open sets. We investi-
gate some basic properties and their relationships with some other
types of sets. Furthermore, a new characterization of regular and
semi-regular spaces are obtained. Also, we introduce and study
some new types of continuity, and we obtain decompositions of some
types of continuity.

1. Introduction

A subset A of a topological space X is called regular open [18] if
A = intClA. The collection of all regular open subsets of a topological
space (X, 7) forms a base for a topology 75 on X coarser than 7, (X, 75) is
called the semiregularization of (X, 7). In 1968, Velicko [20], has defined
d-open and #-open sets to investigate some characterizations of H-closed
spaces, and he showed that the collection of all #-open and d-open subsets
of a topological space (X, 7) form topologies on X which are denoted by
79 and 75, respectively. It is well known that 7, = 75 and 79 C 75 C 7. In
1982, Hdeib [7] introduced the notations of w-closedness and w-openness.
The collection of all w-open subsets of a space (X, 7) is a topology on X
which is denoted by 7 and it is finer than 7. Al-Hawary et. al. [1] and
Ekici et. al. [5] have introduced the concepts of w’-open and wyp-open
sets, respectively. Also, they showed that the collection of all w®-open
sets w?O(X) and the collection of all wyg-open sets wyO(X) are topologies
on X such that 7 C wpO(X) C w?O(X) C 7¢. In Section 2, we will offer
topology on X by utilizing the new notion of sets which we call ws-
open sets. This topology is strictly finer than each of wyO(X) and the
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semiregularization topology of X and it is strictly coarser than w?O(X).
Moreover, it is independent of 7. Furthermore, we introduce some other
new notions of sets and we will obtain new characterizations of regular
and semi-regular spaces. After Levine’s decomposition of continuity [9],
authors in topological spaces have defined some type of continuity and
they obtained some decompositions of some types of continuity such as
[2, 19, 3, 6]. In section 3, we introduce a new type of continuity by using
the concept of ws-open sets and some other weaker forms of continuity
and we obtain some decompositions of some types of continuity.

2. Preliminaries

Throughout the present paper, spaces always mean topological spaces
on which no separation axioms are assumed unless explicitly stated. Let
A be a subset of a space X. The closure and interior of A are denoted
by ClA and intA, respectively.

DEFINITION 2.1. A subset G of a topological space (X, 7) is called
d-open (resp. #-open) set [20] if for each x € G, there exists an open set
O containing x such that intClO C G (resp. ClO C G).

For a subset A of a space X, the intsA and intgA will be denoted
the d-interior and f-interior of A, respectively.

DEFINITION 2.2. A space (X,7) is said to be semi-regular [15] if
T = Ts.

THEOREM 2.3. A space (X, 7) is regular [11] if and only if 7 = 74.

DEFINITION 2.4. A subset U of a topological space (X, 7) is called
w-open [7] (resp. w®-open [1] and wyp-open [5])set if for each = € U, there
exists an open set O containing x such that O — U (resp. O —intU and
O — intpU) is countable.

The w-interior of a subset A of a space X is denoted by int,, A.

3. A new topology

DEFINITION 3.1. A subset U of a topological space (X, 7) is called
ws-open if for each x € U, there exists an open set G containing = such
that G —intsU is countable. The complement of ws-open sets are called
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ws-closed sets. The family of all ws-open (resp. ws-closed) subset of a
space X are denoted by wsO(X) (resp. wsC(X)).

It is easy to see that each clopen, #-open, wyg-open, regular open and
d-open sets are wg-open and each ws-open set is w?-open and w-open,
but not conversely. The following examples support our claim.

EXAMPLE 3.2. Let X={a,b} and 7={¢,{a},X}. Then 75= {¢,X}=
T and wsO(X)={¢, {a}, {b}, X }=wpO(X)=w?(X)=7. Thus the set
A={b} is ws-open, wy-open, w’-open and w-open but it is neither clopen,
f-open, d-open nor open.

ExXAMPLE 3.3. Let the set of all real number R be equipped with
the topology 7= {¢,[0,1], R}. The set A = [0, 1] is open, w’-open and
w-open but it is neither ws-open, #-open nor d-open.

EXAMPLE 3.4. Let the set of all real number R be equipped with the
topology 7 = {¢,Q°,Q N (0,1),Q°U (Q N (0,1)),R}, where Q¢ and Q
are denoted the set of all irrational and rational numbers, respectively.
Then the set A = Q¢ is ws-open set but not wy-open.

From the above examples, we conclude that the concepts of ws-open
sets and open sets are independent topological concepts.

THEOREM 3.5. Let U be a subset of a space X. Then U is ws-open
if and only if for each x € U, there exists an open set G containing x
and a countable set C such that G — C C intsU.

Proof. Let U be an wg-open subset of X and let z be any element of
U. Then by Definition 3.1, there exists an open set G containing x such
that the set C' = G — intsU is countable. Therefore, G — C C intsU.
Conversely; let z € U. Then by hypothesis, there exists an open set G
containing x and a countable set C' such that G — C C intsU. Thus
G —intsU C C, this means that G — intsU is countable. Hence U is an
wg-open set,. [

THEOREM 3.6. For any space X, the family wsO(X) forms a topology
on X.

Proof. Since ¢ and X are d-open subsets of X and each d-open set
is ws-open, then ¢, X € wsO(X). Let U,V € wsO(X) and x € UNV.
Then there exist open sets G and O both containing = such that G —
intsU and O — intsV are countable sets. Since GNO — ints(UNV) C
(G —intsU) U (O —intsV), then G N O —ints(UNV) is a countable
subset of X. Hence UNV € wsO(X). Let {Ux;A € A} C wsO(X)
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and z € [J{Ux; A € A }. Then there exist A\g € A and an open set G
containing x such that = € Uy, and G — int;U), is countable. Since
G —ints(U{Ux; A € A}) C G —intsUy,, then J{Ux; X € A} € w;0(X).
Thus ws;O(X) is a topology on X. O

REMARK 3.7. From what we have done above, we notice that for any
space (X,7), 79 C 75 C wsO(X) C w?O(X) C 7 and 79 C wpO(X) C
wsO(X) C w?O(X) C 7,. Further, 7 and wsO(X) are independent
topologies on X.

PROPOSITION 3.8. Let (X, 7) be a topological space. Then

(1) (X, 7) is locally countable if and only if wsO(X) is a discrete topol-
ogy on X.

(2) (X, 7) is an anti-locally countable space if and only if (X, wsO(X))
is anti-locally countable.

Proof. (1) Let A be any subset of X and = € A. Since X is locally
countable, then there exists a countable open subset G of X contains x.
Since G — intsA C G, then G — intsA is countable. Thus A is ws-open.
Hence in view of Theorem 3.6, wsO(X) is a discrete topology on X. The
converse part is obvious.

(2) Let (X, 7) be an anti-locally countable space. To show (X, wsO(X))
is anti-locally countable. On contrary, we suppose that (X,wsO(X))
is not anti-locally countable. Then there exists a countable non-empty
ws-open subset U of X. Therefore, there exists a point z € U and
by Definition 3.1, there exists an open set G containing x such that
G — intsU is countable. But since G — U C G — intsU, then G — U is
countable. Since G = U U (G — U), then G is a non-empty countable
open subset of X, this is impossible. Conversely, let (X, 7) be a space
for which (X,wsO(X)) is an anti-locally countable space. We suppose
that (X, 7) is not anti-locally countable space. Then there exists a non-
empty countable open subset G of X. Let z be any point of G. Since
G — intsG C G, then G — intsG is countable and hence G is a non-
empty countable ws-open subset of X which is a contradiction to our
hypothesis. Hence (X, 7) is anti-locally countable. O

THEOREM 3.9. If (X, 7) is a Lindeldf space, then so is (X, wsO(X)).

Proof. Let ¥ = {V\;\ € A } be any ws-open cover of X. Then
for each = € X, there exists A\, € A and an open set GG), containing
x such that C\, = Gy, —intsV), is countable. Let Ax = {\; € A;
x € X}. Then {Gy,;\r € Ax } is an open cover of X. Since X is
Lindel6f, then there exists a countable subset Ay of Ax (hence of A)
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such that {Gy; A € A} covers X. Therefore, the family {Vy; A € Ao}
covers X except the countable subset C' = U{Cy; A € Ap} of X. Since
C is countable, then it is clear that there exists a countable subset A;
of A such that {Vy; X € A1} covers C, and hence {Vy; A € Ay UAp} is a
countable subcover of . Thus (X, wsO(X)) is Lindelof. O

The following example shows that the converse of the above theorem
is not true in general.

ExamMpPLE 3.10. Consider the particular uncountable point topology
S ={G CR;(0,1) C G} U{p} on R ([17], Example 10, p. 44). Since
the open cover {(0,1) U {p};p € R—(0,1)} of R has no any countable
subcover, so (R, <) is not Lindeléf. But Since Ss={¢, R}, so it is easy
to see that wsO(R)={¢, R}, and hence (R, wsO(R)) is Lindelof.

Recall that a space X is said to be a nearly Lindeldf space [4] if every
regular open cover of X has a countable subcover.

PrOPOSITION 3.11. Let (X, 7) be a space such that (X,wsO(X)) is
Lindel6f. Then (X, 7) is nearly Lindelof.

Proof. Obvious. O

The following example shows that the converse of the above proposi-
tion is not true in general.

ExamMpPLE 3.12. Consider the finite particular point topology 7 =
{G CR;0 € G}U{¢p} on R ([17], Example 8, p. 44). Since 15={¢, R},
then this space is nearly Lindel6f. But since the space (R, 7) is a locally
countable space, then by part (1) of Proposition 3.8, (R,wsO(R)) is an
uncountable discrete space, and hence it is not Lindelof.

Recall that a space X is said to be nearly compact [16] if each regular
open cover of X has a finite subcover. Then it is easy to see that for any
space (X, 7), compactness of (X,wsO(X)) implies nearly compactness
of the space (X, 7). But not conversely as the following example shows:

ExaMPLE 3.13. Let the set of all natural numbers N be equipped
with the indiscrete topology jng. Then (N, Sj4) is both compact and
nearly compact space. But since (N, 3j,4) is locally-countable, then by
part (1) of Proposition 3.8, wsO(N) is the discrete topology on N and
hence (N,wsO(N)) is not compact.

EXAMPLE 3.14. Let the set of all real numbers R be equipped with the

co-countable topology T.o.. Then it is clear that (R, 7¢s) is not compact.
But since wsO(R) = {¢, X} = 75, then (R, wsO(R)) is compact.
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The last two examples show that the compactness of a space (X, 7) is
neither imply nor implied by the compactness of the space (X, wsO(X)).

DEFINITION 3.15. Let A be a subset of a topological space X. Then

(1) The intersection of all ws-closed subsets of X containing A is called
wg-closure of A and it is denoted by wsClA.

(2) The union of all ws-open subsets of X contained in A is called
ws-interior of A and it is denoted by wgsintA.

LEMMA 3.16. Let A and B be any subsets of a topological space X.
Then

(1) wsClA C ClsA and ints A C wsintA.

(2) If AC B, then wsCIA C wsCIB and wsintA C wsintB.

(3) x € wsClA if and only if ANU # ¢ for each ws-open set U
containing x, and = € wgintA if and only if there exists an ws-
open set U such that z € U C A.

(4) wsClA € wsC(X) and wgintA € wsO(X).

(5) A is ws-open (resp. ws-closed) if and only if A = wsintA (resp.
A =wsClA).

(6) wsCl(wsClA) = wsCIA and wgint(wgintA) = wsint A.

(7) wsCl(X — A) = X — wsintA and wsint(X — A) = X — wsCIA.

(8) wsint(A N B) = wsintA NwsintB and wsCl(AU B) = wsCIA U
wsCIB.

DEFINITION 3.17. A subset U of a topological space X is said to be
wg—open ( resp. w§-open, wg—open and wy-open), if wsintU = intsU. (
resp. wsintU = intU, wsintU = intpU and wsintU = int,U).

REMARK 3.18. It is easy to see that
1) Every ws-open set is w§-open.

3) Every #-open set is wg—open, wg—open, w§-open and wy-open.

(
2) Every d-open set is wl-open, w2-open and w¥-open.
Yy 1% 5-O0pen, Ws-0p 5 ~OP
(
(4) Every wg—open set is wg-open.

In Example 3.4 the set Q° is wg—open but not wg—open. This with the
following examples show that the converse of neither parts of the above
remark are true.

ExaMPLE 3.19. Consider the topological space (R,7), where 7=
{#,R,Q°} and the set of all natural numbers N. Since wsintN=¢=
intsN=intyN = intN = int,N, then N is wf-open, wg—open, w§-open
and wg—open. But it is neither open, d-open, #-open, ws-open nor w-
open. However, the set Q¢ is w-open but not w§-open.
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REMARK 3.20. The first and second components of each of the fol-
lowing order pairs are independent, (open, wg—open), (open, w§-open),
(open, wg—open), (wg—open,wg—open), (wg—open,wg"—open), (ws-open, wg—
open), (ws-open, wi-open), (ws-open, wi-open), (wg-open, w¥-open) and
(w-open, wy-open):

(1) In Example 3.2, the set A = {a} is ws-open, open, w-open, w§-open
and wy-open but it is neither wg—open nor wg—open. However, the
set B = {b} is ws-open but it is neither wl-open nor wg-open.

(2) In Example 3.14, the set A = R — N is wl-open but it is neither
w§-open nor wy-open.

(3) In the usual space (R, 7), the set A = {0} is wi-open, w$-open, w?-
open and wy-open but it is neither open, d-open, f-open, w-open
nor ws-open.

Thus we obtain the following diagram

w§ — open regular open open w — open
N 1 / N T
wg —open <+ 0 — open — ws—open — w°— open
T T T N
wg —open <+ 0 — open —  wy — open w§ — open
7
clopen

THEOREM 3.21. Let U be a subset of a space (X, 7). Then
(1) U is ws-open if and only if it is w-open and w§-open.
(2) U is 0-open if and only if it is ws-open and wg-open.
(3) U is B-open if and only if it is ws-open and wg—open.
(4) U is B-open if and only if it is wy-open and wg-open.

Proof. (1) Let U be an ws-open set. Then U is both w-open and
ws-open.
Conversely, let U be an w-open and wy-open. Then A = int, A =
wsintA, and hence by part (6) of Lemma 3.16, A is an ws-open set.
The proof of the other parts are similar to the proof of part (1). O

THEOREM 3.22. Let U be a subset of a space (X, 7). Then
(1) If U is open and w§-open, then it is ws-open.
(2) If U is ws-open and w§-open, then it is open.
(3) U is open and w§-open if and only if it is ws-open and w§-open.

Proof. Obvious. O
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COROLLARY 3.23. An w$-open subset U of a space X is open if and
only if it is wg-open.

The following results are characterizations of semi-regular and regular
spaces.

THEOREM 3.24. Let (X, 7) be any space. Then (X,7) is a semi-
regular space if and only if every open subset of X is both w§-open and
wl-0

$-open.

Proof. Let X be a semi-regular space, then 75 = 7. Now, if G is
open, then intG' = intsG = wsintG, and hence it is both w$-open and
wg—open.

Conversely; let G be any open subset of X. Then intG = GG, and by our
hypothesis, the set G is both w§-open and wg—open. Then wsintG = intG
and wgintG = intsG. Thus G = intsG. Hence 75 = 7. Therefore, X is
a semi-regular space. O

THEOREM 3.25. Let (X, 7) be any space. Then (X, 7) is a regular
space if and only if every open subset of X is both w$-open and wg—open.

Proof. 1t is similar to the proof of the above result. O

4. ws-Continuous functions and decompositions of some types
of continuity

DEFINITION 4.1. A function f : (X,7) — (Y, 0) is said to be an ws-
continuous function if the inverse image of each open subset of Y is an
wg-open subset of X.

THEOREM 4.2. For a function f : (X,7) — (Y,0), the following
statements are equivalent:

(1) The inverse image of each closed subset of Y is an ws-closed subset
of X.

f(wsClA) C Clf(A) for each subset A of X.

wsClLf~Y(B) C f~Y(CIB) for each subset B of Y.

f~Y(intB) C wsintf~1(B) for each subset B of Y.

[ (X, w;0(X)) — (Y,0) is continuous.

For each x € X and each open subset G of Y containing f(x), there
exists an ws-open subset U of X containing x such that f(U) C G.

(2)
(3)
(4)
()
(6)

Proof. Straightforward. O
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THEOREM 4.3. Let f:(X,7) — (Y, 0) be an onto ws-continuous func-
tion. If (X,wsO(X)) is Lindelof, then Y is Lindelof.

Proof. Let (X,7) be a space for which (X,wsO(X)) is a Lindelof
space. Let U = {G; XA € A } be any open cover of Y. Since f is ws-
continuous, then f~1(G)) is an ws-open subset of X for each \ € A.
Thus {f~1(G\); A € A} is an ws-open cover of X. Since (X,wsO(X))
is a Lindelof space, then there exits a countable subset Ag of A such

that X = |J f~1(G)). Since f is an onto function, then Y = f(X) =
AEAQ

U f(f71(Gy) = U (G,). Thus ¥ has a countable subcover. Hence
A€Ao A€ho
Y is Lindelof. U

COROLLARY 4.4. Let f : X — Y be an onto ws-continuous function.
If X is Lindelof, then so is Y.

We recall the following definitions:

DEFINITION 4.5. A function f : X — Y is said to be a super-
continuous [14](resp. clopen-continuous [12], Strongly #-continuous (
briefly, st.f-continuous) [13, 10], w-continuous [8], w®-continuous [2] and
wp-continuous [5]) function, if the inverse image of each open subset of Y’
is a d-open (resp. clopen, #-open, w-open, w®-open and wyp-open) subset
of X.

REMARK 4.6. It is easy to see that:

(1) Every clopen-continuous, super-continuous, st.f-continuous and
wy-continuous function is wg-continuous.

(2) Every ws-continuous function is w-continuous and w°-continuous.

(3) Every wg-continuous function is ws-continuous.

The converse of neither part of the above remark is true. Also, the
wg-continuity and continuity are independent concepts, as the following
examples show:

EXAMPLE 4.7. Let (X, 7) be the space of Example 3.2 and let Sy;s
be the discrete topology on X. Then the identity function f: (X, 7) —
(X, S4is) is an wg-continuous, wy-continuous, w’-continuous and w- con-
tinuous but it is neither continuous, clopen-continuous, super-continuous
nor st.f-continuous.

ExXAMPLE 4.8. Let (R,7) be the space of Example 3.3. Then the
identity function f : (R,7) — (R, 7) is continuous, w-continuous and
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w-continuous but it is neither ws-continuous, st.f-continuous nor - con-
tinuous.

EXAMPLE 4.9. Let (R, 7) be the space of Example 3.4. Then the iden-
tity function f : (R,7) — (R, 7) is ws-continuous but not wg-continuous.

DEFINITION 4.10. A function f : X — Y is said to be an wy-
continuous (resp. wg—continuous, wg-continuous and wg—continuous), if

the inverse image of each open subset of Y is an w¥-open (resp. wg—opem
wg-open and wg—open) subset of X.

REMARK 4.11. It is easy to see that

(1)
(2)

(3)
(4)

Every ws-continuous function is wy-continuous.

Every super-continuous function is wg—continuous, wg-continuous
and wy'-continuous.

Every st.f-continuous function is wg)—continuous, wg—con‘cinuous7
w§-continuous and wy-continuous.

Every wg—continuous function is wg—continuous.

EXAMPLE 4.12. (1) The identity function f : (R,7) — (R,S),

where 7 = {¢,R,Q°} and § = {¢,R,N} is (wl, w¥, w§ and wf)-
continuous but it is neither continuous nor (copen, super, st.f ws,
w? nor w)-continuous.

The identity function f : (X, 7) — (X, 7), where (X, 7) is the space
of Example 3.2 is continuous and (w§, wy and ws)-continuous but
it is neither (w? nor w?)-continuous.

The identity function f : (R, 7eoe) — (R, Teoc) is continuous and wg—
continuous but it is neither (super, st.f, ws, w§ nor wg)—continuous.
The identity function f : (R,7) — (R, 7), where (R, 7) is the space
of Example 3.19 is w-continuous but not ws-continuous.

The identity function f : (R,7) — (R, 7), where (R, 7) is the space
that given in Example 3.4 is (ws and w§)-continuous but it is not
wg—continuous.

The next result is the following decompositions of some types of con-
tinuity

THEOREM 4.13. Let f: X — Y be a function. Then

(1)
(2)

[ is ws-continuous if and only if it is w-continuous and wy'-continuous.
f is super-continuous if and only if it is ws-continuous and wg—
continuous.
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(3) f is st.f-continuous if and only if it is ws-continuous and wf-
continuous.

(4) f is st.f-continuous if and only if it is wp-continuous and wf-
continuous.

Proof. (1) Let f be an ws-continuous function. Let G be any open
subset of Y. Then f~!(G) is an ws-open subset of X. So by part (1)
of Theorem 3.21 G is both w-open and wy-open. Thus f is both w-
continuous and w§-continuous. Conversely; let f be a function which
is both w-continuous and wy-continuous. If G is any open subset of Y,
then f~!(G) is both w-open and w¢-open. So by part (1) of Theorem
3.21 G is an wg-open subset of X. Hence f is ws-continuous.

The proof of other parts are similar to the proof of part (1). O]

THEOREM 4.14. Let f: X — Y be a function. Then

(1) If f is continuous and w§-continuous, then f is ws-continuous.

(2) If f is ws-continuous and w-continuous, then it is continuous.

(3) f is continuous and w§-continuous if and only if ws-continuous and
w§-continuous.

Proof. 1t follows from Theorem 3.22. O

DEFINITION 4.15. A function f : (X,7) — (Y,0) is said to be wj-

continuous if f~1(Fr(Q)) is ws-closed for each open subset G of Y, where
Fr(G) =CIG - G.

It is easy to see that each ws-continuous function is wj-continuous,
but not conversely as the following example shows:

EXAMPLE 4.16. Let f : (R, 7eoc) — (Y, S4is), where Y = {a, b} be a
a, fzeQ

function given by f(z) = b, ifzeQs
, ifax

Then f is wj-continuous but

it is not ws-continuous.

DEFINITION 4.17. A function f : (X, 7) — (Y, 0) is said to be weakly
ws-continuous (simply, wws-continuous) if f~1(G) C wsintf~1(CIG).

It is easy to see that each wg-continuous function is wwg-continuous,
but not conversely as the following example shows:

EXAMPLE 4.18. Let Y = {a,b,c} and & = {¢,Y, {a}, {0}, {a,b}} and
a, ifzre@
e, ifrxeQ’
Then f is wws-continuous but it is neither ws-continuous nor wj-continuous.

let f: (R, 7ec) — (Y, ) be a function given by f(z) =
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Since the function which given in Example 4.16, is w3-continuous but
not wws-continuous. Therefore, w5-continuity and wws-continuity are
independent concepts. Thus we obtain the following diagram, where by
”cont.” we mean ”continuous”

cont. — w’—cont. — w — cont.
w§ — cont. T T wws — cont.
AN T T /
wg —cont. <« super —cont. — ws—cont. — ws — cont.
7 7 7 N\
wg —cont. <« st.0 — cont. —  wy — cont. wg" — cont.
T

clopen — cont.

Our final result is the following decompositions of ws-continuity:

THEOREM 4.19. A function f : X — Y is ws-continuous if and only
if it is wws-continuous and wj-continuous.

Proof. The part ws-continuity implies wws-continuity and wj-continuity
is obvious. Conversely, suppose that f is both wws-continuous and wj-
continuous. To show f is ws-continuous. Let G be any open subset of
Y. Then by wws-continuity of f, we have f~1(G) C wsintf }(CIG)
and by w}-continuity of f, we have f~1(Fr(G)) is an ws-closed subset
of X. Since f~H(G)N f~Y(Fr(G) = ¢, then f~1(G) C X — f~1(Fr(Q)).
Since X — f~1(Fr(G)) is ws-open, then by Lemma 3.16, f~'(G)
wsint(X — f~Y(Fr(G))) and since G = CIG — Fr(G), then f~1(G)
wsint f~H(CIG) Nwsint(X — f~H(Fr(Q))) = wsint f~1(CIG — Fr(Q))
wsint f~1(G). Hence by Lemma 3.16 f~!(G) is an ws-open subset of X.
Thus f is ws-continuous.
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