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LARGE DEVIATIONS FOR THE BUSY PERIOD IN
THE M/G/1 QUEUE

Jeongsim Kim*

Abstract. When the service time distribution has a finite expo-
nential moment, we present a large deviations result for the busy
period distribution in the M/G/1 queue without the assumption of
Abate and Whitt (1997) and Kyprianou (1971).

1. Introduction

We are interested in the tail asymptotics of the busy period distri-
bution. De Meyer and Teugels [6] showed that if the service time dis-
tribution has a regularly varying tail then the busy period distribution
in the M/G/1 queue has also regularly varying tail of the same index,
and vice versa. Zwart [7] generalized a result of de Meyer and Teugels
[6] and characterized the tail behaviour of the busy period distribution
in the GI/G/1 queue under the assumption that the tail of the service
time distribution is of intermediate regular variation. In [2] and [4], the
tail asymptotics of the busy period distribution was investigated for the
GI/G/1 queue when the service time distribution belongs to another
subclass of heavy tailed distributions.

On the other hand, this paper presents a large deviations analysis
for the busy period distribution in the M/G/1 queue under the light
tailed assumption of the service time distribution, i.e., the service time
distribution has a finite exponential moment. Abate and Whitt [1] and
Kyprianou [5] gave the exact tail asymptotics of the busy period distri-
bution, under a technical assumption. The contribution of this paper
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is to obtain the large deviations result for the busy period distribution
without the assumption of Abate and Whitt [1] and Kyprianou [5].

2. Main result

We consider the M/G/1 queue where customers arrive according to a
Poisson process with rate λ and service times are independent and iden-
tically distributed. Let B denote a generic random variable representing
the service time, g(s) = E[esB] be the moment generating function of
the service time distribution, and 1

µ be the mean service time of a cus-
tomer. The traffic load ρ is defined as ρ = λ

µ . We assume that ρ < 1 for
stability of the system. Moreover, it is assumed that the service time
distribution has a finite exponential moment, i.e.,

s∗ = sup{s ≥ 0 : E[esB] < ∞} > 0.

We define

ζ = sup{s ≥ 0 : E[BesB] ≤ 1
λ
}.

Remark 2.1. Let g1(s) = E[BesB] = g′(s). If g1(s∗) = E[Bes∗B] >
1
λ , then ζ is the unique solution of g1(s) = 1

λ in (0, s∗). If g1(s∗) ≤ 1
λ ,

then ζ = s∗. See Figure 1.

Before presenting our main result, we introduce the following lemma;
its proof can be found in Theorem 7.1 of Abate and Whitt [1], the
appendix of Cox and Smith [3] (Equation (46) on page 154) and Theorem
1 of Kyprianou [5]. Let G be a generic random variable representing the
busy period and b(t) its density. We will write f(t) ∼ h(t) as t →∞ to
mean that limt→∞

f(t)
h(t) = 1.

Lemma 2.2. (Abate and Whitt [1], Cox and Smith [3], and Kyprianou
[5]) If ζ < s∗, then

b(t) ∼ ct−
3
2 e−σt as t →∞,

where

c = (2πλ3g′′(ζ))−
1
2 ,

σ = λ + ζ − λg(ζ).(2.1)

The constant σ is called the asymptotic decay rate. The next corol-
lary is immediate from Lemma 2.2.
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Figure 1. The graph of g1(s).

Corollary 2.3. If ζ < s∗, then

lim
t→∞−

1
t

logP(G > t) = σ,

where σ is given in (2.1).

Now, we present the following large deviations result for the busy
period distribution without the assumption of Corollary 2.3. The proof
is given in the next section.

Theorem 2.4. We have

lim
t→∞−

1
t

logP(G > t) = σ.
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3. Proof of main result

In this section we prove our main result, Theorem 2.4. If g1(s∗) > 1
λ ,

then ζ < s∗ and so Theorem 2.4 follows from Corollary 2.3. Now,
suppose that g1(s∗) ≤ 1

λ . To prove Theorem 2.4, we have to show the
following:

lim sup
t→∞

−1
t

logP(G > t) ≤ σ,(3.1)

lim inf
t→∞ −1

t
logP(G > t) ≥ σ,(3.2)

whose proofs are carried out in the following two subsections.

3.1. Upper bound

To prove (3.1), we consider the M/G/1 queue with arrival rate λ and
service times B ∧ M ≡ min(B,M) for M > 0. Let GM be a generic
random variable for the busy period in the M/G/1 queue with arrival
rate λ and service times B ∧M . Since G ≥ GM stochastically, we have

lim sup
t→∞

−1
t

logP(G > t) ≤ lim
t→∞−

1
t

logP(GM > t).(3.3)

Let gM (s) = E[es(B∧M)] and gM
1 (s) = E[(B∧M)es(B∧M)]. Then gM

1 (s) <
∞ for all s > 0, gM

1 (s) is increasing in s, and lims→∞ gM
1 (s) = ∞.

Therefore, by Corollary 2.3,

lim
t→∞−

1
t

logP(GM > t) = λ + ζM − λgM (ζM ),(3.4)

where ζM is the unique positive solution of E[(B ∧M)eζM (B∧M)] = 1
λ .

It can be easily seen that limM→∞ ζM = ζ. Now we will prove

lim
M→∞

gM (ζM ) = lim
M→∞

E[eζM (B∧M)] = g(ζ).(3.5)

By Fatou’s lemma,

lim inf
M→∞

E[eζM (B∧M)] ≥ E[eζB] = g(ζ).(3.6)

To show lim supM→∞ E[eζM (B∧M)] ≤ g(ζ), we note that

E[eζM (B∧M)1{B∧M>k}] ≤
1
k
E[(B ∧M)eζM (B∧M)] =

1
kλ

.
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Therefore, for any ε > 0, there exists k such that E[eζM (B∧M)1{B∧M>k}]
< ε for all M > 0 and so

lim sup
M→∞

E[eζM (B∧M)] ≤ lim
M→∞

E[eζM (B∧M)1{B∧M≤k}] + ε

= E[eζB1{B≤k}] + ε

≤ g(ζ) + ε.

Since ε is arbitrary,

lim sup
M→∞

E[eζM (B∧M)] ≤ g(ζ),

from which and (3.6) we have (3.5). Therefore, letting M →∞ in (3.4)
and using (3.3) yields (3.1).

3.2. Lower bound

To prove (3.2), for ε ∈ (0, (1− ρ) s∗
λ ), let B̃ε be a nonnegative random

variable with the complementary distribution function

P(B̃ε > t) = εe−s∗t, t ≥ 0,

and assume that it is independent of B. Consider the M/G/1 queue
with arrival rate λ and service times B + B̃ε. Note that λE[B + B̃ε] =
ρ + λε

s∗ < 1. Let G̃ε be a generic random variable for the busy period in
the M/G/1 queue with arrival rate λ and service times B + B̃ε. Since
G ≤ G̃ε stochastically, we have

lim inf
t→∞ −1

t
logP(G > t) ≥ lim

t→∞−
1
t

logP(G̃ε > t).(3.7)

Let g̃ε(s) = E[es(B+B̃ε)] and g̃ε
1(s) = E[(B + B̃ε)es(B+B̃ε)]. Then g̃ε

1(s) <
∞ for s ∈ (0, s∗), g̃ε

1(s) is increasing in s on (0, s∗) and lims→s∗− g̃ε
1(s) =

∞. Therefore, by Corollary 2.3,

lim
t→∞−

1
t

logP(G̃ε > t) = λ + ζ̃ε − λg̃ε(ζ̃ε),(3.8)

where ζ̃ε is the unique positive solution of E[(B + B̃ε)eζ̃ε(B+B̃ε)] = 1
λ . It

can be easily seen that limε→0+ ζ̃ε = ζ. In what follows we will prove

lim
ε→0+

g̃ε(ζ̃ε) = g(ζ).(3.9)

Since E[(B+B̃ε)eζ̃ε(B+B̃ε)] = 1
λ , i.e., E[Beζ̃εBeζ̃εB̃ε

]+E[B̃εeζ̃εBeζ̃εB̃ε
] = 1

λ ,
we have

E[Beζ̃εB]E[eζ̃εB̃ε
] ≤ 1

λ
.



752 Jeongsim Kim

We note that limε→0+ E[Beζ̃εB] = 1
λ . Therefore, lim supε→0+ E[eζ̃εB̃ε

] ≤
1. Moreover, E[eζ̃εB̃ε

] ≥ 1 trivially. Thus limε→0+ E[eζ̃εB̃ε
] = 1 and so

lim
ε→0+

g̃ε(ζ̃ε) = lim
ε→0+

E[eζ̃ε(B+B̃ε)] = lim
ε→0+

E[eζ̃εB]E[eζ̃εB̃ε
] = g(ζ),

from which (3.9) follows. Finally, letting ε → 0+ in (3.8) and using (3.7)
yields (3.2).
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