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FINITELY GENERATED gr-MULTIPLICATION
MODULES

SEUNGKOOK PARK*

ABSTRACT. In this paper, we investigate when gr-multiplication
modules are finitely generated and show that if M is a finitely
generated gr-multiplication R-module then there is a lattice iso-
morphism between the lattice of all graded ideals I of R containing
ann(M) and the lattice of all graded submodules of M.

1. Introduction

Let R be a commutative ring with identity 1 # 0 and M a unital R-
module. M is called a multiplication module module provided for each
submodule N of M, there exists an ideal I of R such that N = IM [2].
Let G be a multiplicative group with identity e. A ring R is said to be a
graded ring of type GG if there is a family of additive subgroups of R, say
{R; | i € G}, such that R = @, ; R; and R;R; C Ry; for all 4, j € G,
where R;R; is the set of all finite sums of products r;r; with r; € R; and
rj € Rj. The elements of h(R) = |J;c R; are called the homogeneous
elements of R. Any nonzero r € R has a unique expression as a sum of
homogeneous elements, that is, » = >, 5 r; where 7; is nonzero for a
finite number of 7 in G. The nonzero elements 7; in the decomposition of
r are called the homogeneous components of r. Let R be a graded ring
of type G. An R-module M is said to be a graded R-module if there is a
family {M; | i € G} of additive subgroups of M such that M = @, M;
and R;M; C M;; for all i, j € G. Elements of h(M) = (J;co M; are
called the homogeneous elements of M. A submodule N of M is a
graded submodule if N = @,.o(N N M;), or equivalently, if for any
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x € N, the homogeneous components of x are again in N. Properties of
finitely generated multiplication module have been studied in [2], [3], [6],
and [7]. In this paper, we study the properties of finitely generated gr-
multiplication modules and investigate when gr-multiplication modules
are finitely generated.

2. Main results

DEFINITION 2.1. Let R be a graded ring and let M be a graded R-
module. Then M is called a gr-multiplication module if for any graded
submodule N of M, there exists a graded ideal I of R such that N = I M.

REMARK 2.2. [4] Let R be a graded ring. If M is a graded R-module
and N is a submodule of M, then (N : M) is a graded ideal of R, where
(N:M)={reR|rM CN}.

For any graded submodule N of M, we denote (N : M), the graded
ideal of R generated by (h(N) : h(M)) = {r € h(R) | rh(M) C h(N)}.
Note that (N : M), is the graded ideal of R generated by (N : M)Nh(R)
and that (N : M), = (N : M).

The following lemma can be found in [1] and also in [§].

LEMMA 2.3. Let R be a graded ring. Let M be a finitely generated
graded R-module and let I be a graded ideal of R such that M = IM.
Then there exists q € I such that (1 —q)M = 0.

Proof. See Lemma 2.1 in [8] O

DEFINITION 2.4. An R-module M is faithful if, whenever r € R is
such that rM = 0, then r = 0.

THEOREM 2.5. Let R be a graded ring and M a faithful gr-multiplication
R-module. Then the following statements are equivalent.

(i) M is finitely generated.
(ii) If A and B are graded ideals of R such that AM C BM then
ACB.
(iii) For each graded submodule N of M, there exits a unique graded
ideal I of R such that N = IM.
(iv) M # AM for any proper graded ideal A of R.
(v) M # PM for any gr-maximal ideal P of R.

Proof. (1) = (ii).
Suppose that M is finitely generated. Let A and B be graded ideals of
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R such that AM C BM. Let a € h(A). Let K = {r € R | ra € B}.
Then K is a graded ideal of R. Suppose K # R. Then there exists
a gr-maximal ideal P of R such that K C P. Suppose M = PM.
By Lemma 2.3, (1 — p)M = 0 for some p € P. Since M is faithful,
p = 1, which is a contradiction. Thus M # PM. Let m € h(M) with
m & PM. Then there exists a graded ideal I of R such that Rm = I M.
If I € P then Rm = IM C PM and hence m € PM, which is a
contradiction. Therefore I ¢ P. Since R = P + 1, 1 = ¢+ i for some
g€ Pand i€l Hencel—qe I Thus(l—q¢M CIM = Rm. In
particular, (1 — g)am € (1 — ¢q)BM = B(1 — ¢)M C Bm. Thus there
exists b € B such that [(1 — g)a — bjm = 0. Since (1 — ¢) ann(m)M =
ann(m)(1—¢)M C ann(m)Rm = 0, (1—¢) ann(m) C ann(M) = 0. Thus
(1 -¢)[(1 - g)a — b] = 0 and this implies that (1 — ¢)?a = (1 —q)b € B
so that (1 — ¢)? € K C P, which is a contradiction. This contradiction
leads us to the conclusion that K = R and hence a € B. It follows that
AC B.

(i) = (iii).
Let N be a graded submodule of M. Suppose that [ is a graded ideal
of R such that N = IM. Since I C (N : M) = (N : M)y, N =1IM C
(N:M);M CN. Thus N = (N : M)yM. Then (N : M)yM = IM and
hence (N : M), = I by (ii).

(ili) = (iv) = (v).
These are trivial.

(v) = (i).
Let P be a gr-maximal ideal of R. Then M # PM. So there exists
m € h(M) with m ¢ PM. Then Rm = BM for some graded ideal B
of R. Clearly B ¢ P. Thus (Rm : M) ¢ P and (Rm : M) is a graded
ideal of R. It follows that R =} cpp(Rm : M). There exists a
positive integer n and elements m; € h(M), r; € (Rm; : M) such that
l=ri+---+r,. fzx e M, thenz =riz+---+rpx € Rmi+---+ Rm,,.
If follows that M = Rmy + --- + Rm,,. ]

COROLLARY 2.6. Let R be a graded ring. If M is a finitely generated
gr-multiplication R-module then there is a lattice isomorphism ¢ from
the lattice of all graded ideals I of R containing ann(M) and the lattice
of all graded submodules of M given by ¢(I) = IM.

Let R be a graded ring and let M be a graded R-module. Let 7
denote the collection of graded ideals I of R such that M = IM, and
7(M) the intersection of all graded ideals in 7. Then 7(M) is a graded
ideal of R. The following corollary is a restatement of Theorem 2.5
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COROLLARY 2.7. Let R be a graded ring. A faithful gr-multiplication
R-module M is finitely generated if and only if (M) = R.

LEMMA 2.8. Let R be a graded ring and let M be a faithful gr-
multiplication R-module. Then M = 7(M)M.

Proof. Let T be the collection of graded ideals Iy (A € A) of R such
that M = I\M. Then 7(M) = Nxealn. Let © € h(M) = h (Nxea(I\M))
and let K = {r € R | rz € 7(M)M} be a graded ideal of R. Suppose
K # R. Then there exists a gr-maximal ideal P of R such that K C P.
Suppose that M = PM. Since Rx = AM for some graded ideal A
of R, we have Re = AM = APM = PAM = Pz and z = px for
some p € P. Thus (1 —p)r = 0. Hence 1 —p € K C P, which is a
contradiction. Thus M # PM. Let m € h(M) with m ¢ PM. Then
there exists a graded ideal B of R such that Rm = BM. If B C P
then Rm = BM C PM and hence m € PM, which is a contradiction.
Therefore B ¢ P. Since R = P+ B, 1 =g+ for some ¢ € P and b € B.
Hence 1 — g € B. Thus (1 —¢)M C BM = Rm. Then (1 — q)z € (1 —
@) IhuM = I1(1 —¢)M C Iym for all A € A. Thus (1 — q)z € Nxea(Lam).
For each A € A, there exists ay € I such that (1 — ¢)x = aym. Choose
a € A. For each A\ € A, a,m = aym so that (aq, — ay)m = 0. Now
(1 =q)(aa —ax)M = (aq — ax)(1 — ¢9)M C (aq — ar)Ry, = 0 implies
(1 = ¢)(aq — ax) = 0. Therefore (1 — q)ag = (1 — q)ay € I (A € A) and
hence (1 — q)aq € T7(M). Thus (1 — ¢)%x = (1 — q@)aam € T(M)M. Tt
follows that (1 — ¢)? € K C P, which is a contradiction. Thus K = R
and x € T7(M)M. Hence h(M) = h(Nxea(IxM)) C 7(M)M. This
shows that M C 7(M)M and hence M = 7(M)M. O

A graded ideal P of R (i.e., a graded R-submodule of R) is called
gr-prime if P # R and whenever rs € P (r,s € h(R)) then r € P or
se P.

LEMMA 2.9. Let R be a graded ring. Let M be a faithful gr-multiplication
R-module and T' = 7(M). Then we have

(i) m € T'm for each m € h(M),
(i) T =12,
(iii) T € P or R=T + P for every gr-prime ideal P of R.

Proof. (i), (ii) See Lemma 2.6 in [1]
(iii) Let P be a gr-prime ideal of R. If M = PM then T'C P. Suppose
M # PM, then there exists m € h(M) such that m ¢ PM. So Rm =
IM for some graded ideal I of R. Clearly I ¢ P. By (i), there exists
t € T such that (1 —¢)m = 0 and hence (1 —¢t)IM = (1 —t)Rm = 0.
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Since M is faithful, (1 —¢)I = 0 € P and hence 1 — ¢t € P, that is,
R=T+P. O

The following lemma can be found in [5].

LEmMA 2.10. If I is a finitely generated idempotent ideal of a com-
mutative ring R, then I is principal and is generated by an idempotent
element

THEOREM 2.11. Let R be a graded ring. A faithful gr-multiplication
R-module M is finitely generated if and only if (M) is finitely gener-
ated.

Proof. Let T = 7(M). If M is finitely generated, then 7' = R by
Corollary 2.7. Thus T is finitely generated.

Conversely, suppose that T is finitely generated. Since M is a faithful
gr-multiplication R-module, T = 72. By Lemma 2.10, T = Re for
some idempotent element e of R. By Lemma 2.8, M = TM. Then
(1—e)M =(1—e)TM =TM — eI'M = ReM — Re? M = 0 and hence
1—e = 0. Therefore T'= R. By Corollary 2.7, M is a finitely generated
R-module. O

From Corollary 2.7 and Theorem 2.11 we have that for a graded ring R
and a faithful gr-multiplication R-module M, the following are equiva-
lent :

(i) M is finitely generated.
(ii) 7(M) = R.
(iii) 7(M) is finitely generated.

THEOREM 2.12. Let M be a faithful gr-multiplication R-module.
Then M is finitely generated if and only if M # PM for all minimal
gr-prime ideals P of R.

Proof. The necessity is an immediate consequence of Theorem 2.5.

Conversely, suppose that M is not finitely generated. By Corollary
2.7, T =7(M) # R. Let Q be a gr-maximal ideal of R such that ' C Q
and let P be a minimal gr-prime of R such that P C (). By Lemma 2.9
(iii), T+ P C @ implies that 7' C P and hence M = PM. O

THEOREM 2.13. Let R be a graded ring and let M be a gr-multiplication
R-module. If R = I 4+ ann(M) for every graded ideal I of R with
M = IM, then M is a finitely generated.
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Proof. Let M = @, M; and let h(M) = ;e Mi = {my | X € A}
Then M =} ., Rmy. Since M is a gr-multiplication module, for each
Rmy, there exists a graded ideal I, of R such that Rmy = I, M. Let
I'=3\caIxn Then

M=) Rmy=Y LM =IM.
AEA AEA

By assumption, we have R = I 4+ ann(M) and hence 1 € I + ann(M).
Then there exists a finite subset {I,,..., Iy, } of the set {I)} ca such
that 1 € 30 I, + ann(M). Then

M=1-MC( I+am(M)M=> I, M=> Rm,,.
j=1 j=1 j=1

Therefore M is finitely generated. O
LEMMA 2.14. Let R be a graded ring and let M be a graded R-

module. If X and Y are two graded submodules of M such that X +Y
is a gr-multiplication R-module, then

X+Y)NZ=(XNnZ2)+(YNnZ)
for any graded submodule Z of M.
Proof. Since (X +Y)NZ is a graded submodule of a gr-multiplication

module X + Y, there exists a graded ideal I such that (X +Y)NZ =
I(X+Y). Since IX CXNZand IY CYNZ, we have

(X+Y)NZ=I(X+Y)=IX+1Y
C(XNZ)+(YNZ)C(X+Y)NnZ
O
THEOREM 2.15. Let R be a graded ring and let M be a graded R-

module. If X and Y are two graded submodules of M such that X +Y
is a finitely generated gr-multiplication R-module, then

R=(X:Y)+(Y:X).

Proof. Since X +Y is finitely generated, there exist a positive integer
n and elements z; € h(X), y; € h(Y) (1 <i < n) such that X +Y =
S R(xi +yi). Let y € Y. By Lemma 2.14, for any 1 < i < n, we
have

R(zi+y)=R(x;+y) N (X +Y)=(R(z; +y) N X) + (R(z; +y) NY).
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Thus, there exist elements r € R and z € Y such that
(zi+y)=r(zi+y)+zandr(z;+y) € X.

Thus, (1—7)z; = (r—1)y+z €Y and ry € X. Then (1—7) € (Y : Ray)
and r € (X : Ry). It follows that

l=r+(1-r)e(X:Ry)+ (Y :Rzx;) (1<i<n)

i henee R=(X:Ry)+(Y:Rx;) 1<i<n).
Thus
R=(X:Ry)+((Y:Rzx1)N---N(Y : Rxy)) = (X : Ry) + (Y : X).
In particular,

R=(X:Ry)+(Y:X)(1<i<n).
Therefore,

R=(X:Ry1)N---N(X:Ryy))=(X:Y)+ (Y :X).
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