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MODULE-THEORETIC CHARACTERIZATIONS OF
GENERALIZED GCD DOMAINS, III

Hwankoo Kim* and Seungkook Park**

Abstract. In terms of divisible-like modules, some equivalent con-
ditions for an integral domain R to be a generalized GCD domain
are given.

1. Introduction

Generalized GCD domains (for short, GGCD domains) were first in-
troduced in [5], further investigated in [6], and since then, have played
important roles in multiplicative ideal theory. Several ring- or ideal-
theoretic characterizations of GGCD domains were given in the litera-
ture ([1, 2, 3, 4, 7]). The purpose of this note is to give another module-
theoretic characterizations of GGCD domains, as a continuation of the
study of module-theoretic characterizations of certain integral domains
([9, 10, 11, 12]).

We first introduce some definitions and notations. Let R be an in-
tegral domain with quotient field K. Let I be a nonzero fractional
ideal of R. Then I−1 := {x ∈ K | xI ⊆ R}, Iv := (I−1)−1, and
It :=

⋃{Jv | J ⊆ I a nonzero finitely generated (f.g.) subideal of I}.
An ideal J of R is called a GV-ideal, denoted by J ∈ GV (R), if J is a
f.g. ideal of R with J−1 = R. A fractional ideal I of R is said to be
invertible (resp., t-invertible) if II−1 = R (resp., (II−1)t = R).

For a torsion-free R-module M , Wang and McCasland defined the
w-envelope of M as Mw := {x ∈ M ⊗R K | Jx ⊆ M for some J ∈
GV (R)} ([17], cf., [9]). A torsion-free R-module is called a w-module (or
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semidivisorial) if Mw = M . We say that a torsion-free R-module M is
w-finite if M = Nw, for some f.g. submodule N of M .

Following [5], an integral domain R is called a generalized GCD do-
main (GGCD domain) if the intersection of two (integral) invertible
ideals is invertible. It is well known that R is a GGCD domain if and
only if Iv (equivalently I−1) is invertible for every nonzero f.g. ideal I of
R ([6, Theorem 1]). Recall that an integral domain R is called a Prüfer
v-multiplication domain (for short, PvMD) if Iv (equivalently I−1) is
t-invertible for every nonzero f.g. ideal I of R. Thus the class of GGCD
domains is contained in the class of PvMDs. It is also well known that
in a PvMD, t = w. Therefore, R is a GGCD domain if and only if every
w-finite w-ideal is invertible. For any undefined terminologies, we refer
to [8] or [16].

2. Main results

Let F be a set of ideals of the integral domain R. An R-module M is
said to be F -injective if for every ideal I ∈ F , every R-homomorphism
from I into M can be extended to an R-homomorphism from R into M .
Denote by Fw(R) (resp., Fw,f (R)) the set of all w-ideals (resp., w-finite
w-ideals) of R.

In [14], Matlis introduced the notion of h-divisible modules. Recall
that an R-module is said to be h-divisible if it is a homomorphic image of
an injective R-module. In [13], Lee defined the notion of weak-injective
modules: An R-module M is called weak-injective if Ext1R(N, M) = 0 for
all R-modules N of weak dimension ≤ 1. In [15], Nikandish introduced
the concept of hw-divisible modules. Recall that an R-module is hw-
divisible if it is a homomorphic image of a weak-injective R-module. In
[18, Theorem 4], it was shown that an integral domain R is Prüfer if
and only if for any divisible R-module M and any f.g. ideal I of R,
Ext1R(R/I, M) = 0. We generalize this result to GGCD domains using
the technique in the proof of [18, Theorem 4] in the following:

Theorem 2.1. Let R be an integral domain. Then the following are
equivalent:

(1) R is a GGCD domain;
(2) every divisible R-module is Fw,f (R)-injective;
(3) every h-divisible R-module is Fw,f (R)-injective;
(4) every hw-divisible R-module is Fw,f (R)-injective.
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Proof. (1) ⇒ (2). If R is a GGCD domain, M a divisible R-module
and I a w-finite type ideal of R, then I is invertible. Thus there exist
q1, . . . , qn ∈ K, the quotient field of R, and a1, . . . , an ∈ I such that∑n

i=1 qiai = 1 and qiI ⊆ R for i = 1, . . . , n. For any f ∈ Hom(I, M),
since M is a divisible R-module, there exist xi ∈ M (i = 1, . . . , n)
such that aixi = f(ai). Thus for any β ∈ I, β =

∑n
i=1 βqiai. Hence

f(β) =
∑n

i=1 βqif(ai) = β
∑n

i=1 qiaixi. Set x =
∑n

i=1 qiaixi. Define
g : R → M to be g(r) = rx for every r ∈ R. Then g ∈ HomR(R,M)
and g|I = f . Thus, Ext1R(R/I, M) = 0.

(2) ⇒ (3) ⇒ (4). These are clear.
(4) ⇒ (1). Let M be any R-module and E its injective hull. For a

w-finite type ideal I of R, the exact sequence 0 → M → E → C →
0 induces the exact sequence 0 = Ext1R(R/I,C) → Ext2R(R/I, M) →
Ext2R(R/I, E) = 0, where the first Ext term vanishes by assumption.
Hence Ext2R(R/I, M) = 0. Since M was arbitrary, we conclude pd(R/I)
≤ 1. Hence pd(I) ≤ 1, that is, I is projective. Therefore R is a GGCD
domain.

Recall that an integral domain R is a pseudo-Dedekind domain if every
v-ideal of R is invertible, equivalently every w-ideal of R is invertible.
With a similar proof as in that of Theorem 2.1, we have the following:

Theorem 2.2. Let R be an integral domain. Then the following are
equivalent:

(1) R is a pseudo-Dedekind domain;
(2) every divisible R-module is Fw(R)-injective;
(3) every h-divisible R-module is Fw(R)-injective;
(4) every hw-divisible R-module is Fw(R)-injective.

Finally we provide an example of an Fw(R)-injective (and hence
Fw,f (R)-injective) module but not an injective module in the following:

Example 2.3. Let R := k[x, y] be the polynomial ring in two vari-
ables over a field k and let Q := k(x, y) be its field of quotients. We
consider the module M := Q/R. It is easy to see that M is a divisible
R-module. Note that R is a factorial domain, and hence a pseudo-
Dedekind domain. Thus by Theorem 2.2, M is Fw(R)-injective. Now
we show that M is not an injective R-module as follows: Consider the
ideal I = {f(x, y) ∈ R | f(0, 0) = 0} and the homomorphism ϕ : I → M

defined by ϕ(f(x, y)) = f(x, 0)/xy. Since there is no extension of ϕ to
a homomorphism ϕ̄ : R → M , M is not an injective R-module.
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