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THE ITÔ INTEGRAL WITH RESPECT TO ANALOGUE
OF WIENER PROCESS

Kun Sik Ryu*

Abstract. In this note, we define the Itô integral with respect to
analogue of Wiener process and investigate its various properties
and examples.

1. Introduction

The stochastic integral was first defined by Itô [3]. It was based
on the standard Brownian motion or the Wiener process. Later, it was
extended to arbitrary local martingales and semimartingales by the work
of Doob, Motoo, Watanabe and Meyer, among others. Many physics,
genetics and economics models take the form of stochastic differential
equations associated with the Itô integral. In 2002, the author and Dr.
Im presented the definition of analogue of Wiener space, a kind of the
generalization of the concrete Wiener space, and its properties [6].
In this note, we will give the definition of the Itô integral with respect
to analogue of Wiener process, associated with probability measure φ
and will search various properties of it.

2. Analogue of Wiener process and martingales of analogue
of Wiener process

In this section, we introduce the definition of the analogue of Wiener
process and investigate the martingale properties of it.
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Throughout this note, let T be a positive real number, let C[0, T ] be
the space of all continuous functions on a closed interval [0, T ] with the
supremum norm ‖x‖∞ = supt∈[0,T ]|x(t)|, let φ be a probability Borel
measure on R and let mφ be the analogue of Wiener measure on C[0, T ]
[6].

Remark 2.1. When φ is a Dirac measure δ0 at the origin in R, mφ

is the concrete Wiener measure, this measure is denoted by mw.

Definition 2.2. The analogue of Wiener process AWφ with respect
to a probability Borel measure φ is the stochastic process on (C[0, T ],B(
C[0, T ]),mφ) and [0, T ] defined by AWφ(t, x) = x(t) for (t, x) ∈ [0, T ]×
C[0, T ].

Remark 2.3. (1) When φ is a Dirac measure δ0 at the origin in R,
AWδ0 = W is a Wiener process. When φ is a Dirac measure δp at the
point p in R, AWδp is a Brownian motion started at p.
(2)(Normal increments) For 0 ≤ s < t ≤ T , AWφ(t) − AWφ(s) has a
normal distribution with mean 0 and variance t− s.
(3)(Independence of increments) For 0 ≤ u < v ≤ s < t ≤ T , AWφ(t)−
AWφ(s) and AWφ(v) − AWφ(u) are independent. In Wiener process
case, for 0 ≤ s < t ≤ T , W (t) −W (s) is independent of the past, that
is, W (u), 0 ≤ u ≤ s, but in the analogue of Wiener process, we can not
say that for 0 ≤ u ≤ s < t ≤ T , AWφ(t) − AWφ(s) and AWφ(u) are
independent.
(4) From the definition of analogue of Wiener measure, E((AWφ(t) −
AWφ(s))2) = t−s, E((AWφ(t)−AWφ(s))3) = 0, E((AWφ(t)−AWφ(s))4)
= 3(t− s)2 for 0 ≤ s ≤ t ≤ T .
(5) (Continuity of paths) AWφ(t), 0 ≤ t ≤ T are continuous functions
of t.
(6) The covariance function Cov(AWφ(t), AWφ(s)) of AWφ(t) is min{s, t}
+

∫
R u2dφ(u)− [

∫
R udφ(u)]2 if

∫
R u2dφ(u) is finite.

Theorem 2.4. The quadratic variation [AWφ, AWφ](t) of analogue
of Wiener process is t mφ-a.s. for 0 ≤ t ≤ T .

Proof. It suffices to show that [AWφ, AWφ](t) = lim
n→∞

∑2n

i=1(AWφ(tni )

−AWφ (tni−1))
2 = t mφ-a.s. where for each n, tni = it

2n . Let Tn =∑2n

i=1(AWφ(tni )−AWφ(tni−1))
2 for each n. By Remark 2.3 (4) in above,
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E(Tn) =
∑2n

i=1(t
n
i − tni−1) = t and

E(T 2
n)

= E(
2n∑

i=1

(AWφ(tni )−AWφ(tni−1))
4)

+2E(
2n∑

i,j=1(i6=j)

(AWφ(tni )−AWφ(tni−1))
2(AWφ(tnj )−AWφ(tnj−1))

2)

= 3
2n∑

i=1

(tni − tni−1)
2 +

2n∑

i,j=1(i6=j)

(tni − tni−1)(t
n
j − tnj−1)

= 2
2n∑

i=1

(tni − tni−1)
2 +

2n∑

i=1

2n∑

j=1

(tni − tni−1)(t
n
j − tnj−1)

=
t2

2n−1
+ t2,

so V ar(Tn) = t2

2n−1 . Hence
∑∞

n=1 V ar(Tn) = 2t2 < ∞. Using the
monotonic convergence theorem, we have E(

∑∞
n=1(Tn −E(Tn))2) < ∞.

Hence, Tn − t → 0 mφ-a.s. as n →∞, as desired.

Theorem 2.5. If
∫
R |u|dφ(u) is finite then AWφ(t) is a martingale, if∫

R u2dφ (u) is finite then AWφ(t)2− t is a martingale and if
∫
R erudφ(u)

is finite then erAWφ(t)− r2t
2 is a martingale.

Proof. Let Ft be the information about the process AWφ up to time
t, that is, Ft is the smallest σ-algebra that contains sets of the form
{x|α ≤ AWφ(s, x) ≤ β} for 0 ≤ s ≤ t and α, β ∈ R. By the definition,
E(|AWφ(t)|) ≤ 2

√
2π +

∫
R |u|dφ(u) < ∞. We claim that E(AWφ(p +

t) − AWφ(t)|Ft) = 0 for any p ≥ 0. For ~t = (t0, t1, t2, · · · , tn) with
0 = t0 < t1 < t2 < · · · < tn = t, let J~t : C[0, T ] −→ Rn+1 be a function
with J~t(x) = (x(t0), x(t1), x(t2), · · · , x(tn)) and let Bj(j = 0, 1, 2, · · · , n)
be in B(R). Then letting Γ = J−1

~t
(
∏n

j=0 Bj) and let tn = t + s,
∫

Γ
(AWφ(s + t, x)−AWφ(t, x))dmφ(x)

=
∫

B0

∫

B1

· · ·
∫

Bn

∫

R
(

n∏

j=1

1√
2π(tj − tj−1)

)
un+1 − un√

2πs
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· exp{−1
2

n+1∑

j=1

(uj − uj−1)2

tj − tj−1
}dun+1dun · · · du1dφ(u0)

= 0

=
∫

Γ
0dmφ(x),

so putting M = {Γ|Γ is in Ft and
∫
Γ(AWφ(s+ t, x)−AWφ(t, x))dmφ(x)

= 0 =
∫
Γ 0dmφ(x)}, M is a σ-algebra contains all subsets of the form

J−1
~t

(
∏n

j=0 Bj). Hence, E(AWφ(s + t) − AWφ(t)|Ft) = 0 for any s ≥ 0.
Therefore, we have E(AWφ(s + t)|Ft) = E(AWφ(t)|Ft) + E(AWφ(s +
t) − AWφ(t)|Ft) = AWφ(t). Thus, we obtain AWφ(t) is a martingale.
Since E(|AWφ(t)2−t|) ≤ E(AWφ(t)2) +t = 2t+

∫
R u2dφ(u) < ∞ because∫

R u2dφ(u) is finite, it remains to show that E(AWφ(s+t)2−(s+t)|Ft) =
AWφ(t)2 − t. By the essentially same method as in the proof of a mar-
tingale of AWφ(t), we have E((AWφ(s + t)−AWφ(t))2|Ft) = s. So

E(AWφ(s + t)2|Ft)

= E(AWφ(t)2|Ft) + 2E(AWφ(t)(AWφ(s + t)−AWφ(t))|Ft)

+E((AWφ(s + t)−AWφ(t))2|Ft)

= AWφ(t)2 + 2AWφ(t)E(AWφ(s + t)−AWφ(t)|Ft) + s

= AWφ(t)2 + s.

By subtracting t+s from both sides in above, we obtain E(AWφ(s+t)2−
t|Ft) = AWφ(t)2− t. Lastly, we prove that erAWφ(t)− r2t

2 is a martingale.

From the elementary calculus, E(erAWφ(t)− r2t
2 ) =

∫
R erudφ(u) < ∞ and

for Γ = J−1
~t

(
∏n

j=0 Bj),

∫

Γ
er(AWφ(s+t)−AWφ(t))dmφ(t)

=
∫

B0

∫

B1

· · ·
∫

Bn

∫

R
(

n∏

j=1

1√
2π(tj − tj−1)

)
1√
2πs

er(un+1−un)

· exp{−1
2

n+1∑

j=1

(uj − uj−1)2

tj − tj−1
}dun+1dun · · · du1dφ(u0)
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=
∫

B0

∫

B1

· · ·
∫

Bn

(
n∏

j=1

1√
2π(tj − tj−1)

)e
sr2

2

· exp{−1
2

n∑

j=1

(uj − uj−1)2

tj − tj−1
}dun · · · du1dφ(u0)

=
∫

Γ
e

sr2

2 dmφ(x),

we have E(er(AWφ(t+s)−AWφ(t))|Ft) = e
sr2

2 . Hence

E(er(AWφ(t+s)− (t+s)r2

2
)|Ft)

= E(er AWφ(t+s)|Ft)e−
(t+s)r2

2

= er AWφ(t)E(er(AWφ(t+s)−AWφ(t))|Ft)e−
(t+s)r2

2

= er AWφ(t)− tr2

2 ,

as desired.

Theorem 2.6. The analogue of Wiener process AWφ with respect to

a probability Borel measure φ possesses Markov property if
∫
R eTudφ(u)

is finite.

Proof. Let Ft be the information about the process AWφ up to time
t. For Γ = J−1

~t
(
∏n

j=0 Bj),
∫

Γ
eu(AWφ(s+t)−AWφ(t))dmφ(t)

=
∫

B0

∫

B1

· · ·
∫

Bn

∫

R
(

n∏

j=1

1√
2π(tj − tj−1)

)
1√
2πs

eu(un+1−un)

· exp{−1
2

n+1∑

j=1

(uj − uj−1)2

tj − tj−1
}dun+1dun · · · du1dφ(u0)

=
∫

B0

∫

B1

· · ·
∫

Bn

(
n∏

j=1

1√
2π(tj − tj−1)

)e
su2

2

· exp{−1
2

n∑

j=1

(uj − uj−1)2

tj − tj−1
}dun · · · du1dφ(u0)

=
∫

Γ
e

su2

2 dmφ(x),
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we have E(eu(AWφ(t+s)−AWφ(t))|Ft) = e
su2

2 . Since AWφ(t + s)−AWφ(t)
has a normal distribution with mean 0 and variance s, that is, the mo-

ment generating function of AWφ(t+ s)−AWφ(t) given AWφ(t) is e
su2

2 .
So

E(euAWφ(t+s)|Ft)

= euAWφ(t)E(eu(AWφ(t+s)−AWφ(t))|Ft)

= eu AWφ(t)E(eu(AWφ(t+s)−AWφ(t))|AWφ(t))

= E(euAWφ(t+s)|AWφ(t)),

which is what had to show.

3. The Itô Integral on the Analogue of Wiener Space

In this section, we present the definition of the Itô integral with re-
spect to analogue of Wiener process and establish the existence theorem
for this integral.

Firstly, we consider the Itô integral with deterministic simple process
X(t), which is a function of t and does not depend on AWφ(t).

Definition 3.1. We say that a stochastic process X(t) is a de-
terministic simple process provided that there exists a partition 0 =
t0 < t1 < t2 < · · · < tn = T and constants c0, c1, c2, · · · , cn−1 such
that X(t) = c0χ[t0,t1](t) +

∑n−1
i=1 ciχ(ti,ti+1](t) where χA is the char-

acteristic function associated with A. The Itô integral with respect
to analogue of Wiener process

∫ T
0 X(t)dAWφ(t) is defined as a sum∫ T

0 X(t)dAWφ(t) =
∑n−1

i=0 ci(AWφ(ti+1)−AWφ(ti)).

Example 3.2. 1) In the definition in above, E(
∫ T
0 X(t)dAWφ(t)) = 0

and V ar(
∫ T
0 X(t)dAWφ(t)) =

∑n−1
i=0 c2

i (ti+1 − ti).
2) Let φ have the standard normal distribution. Then AWφ(t) has
the normal distribution with mean 0 and variance 1 + t. Let X(t) =


−2 , 0 ≤ t ≤ 1
0 , 1 < t ≤ 2
1 , 2 < t ≤ 3

. Then
∫ T
0 X(t)dAWφ(t) has the normal distribu-

tion with mean 0 and variance 5.

Definition 3.3. We say that a stochastic process X(t) is a sim-
ple process provided that there exist a partition 0 = t0 < t1 < t2 <
· · · < tn = T and random variables ξ0, ξ1, ξ2, · · · , ξn−1 such that X(t) =
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ξ0χ[t0,t1](t) +
∑n−1

i=1 ξiχ(ti,ti+1](t) where for all i (0 ≤ i ≤ n − 1), E(ξ2
i )

is finite. The Itô integral with respect to analogue of Wiener process∫ T
0 X(t)dAWφ(t) is defined as a sum

∫ T
0 X(t)dAWφ(t) =

∑n−1
i=0 ξi(AWφ

(ti+1)−AWφ(ti)).

Using essentially the same method as in the theory in Brownian mo-
tion calculus and the proof of theorems in above, we obtain the following
theorem.

Theorem 3.4. Under the definition in above, E(
∫ T
0 X(t)dAWφ(t)) =

0 and E([
∫ T
0 X(t)dAWφ(t)]2) =

∫ T
0 E(X(t)2)dt.

Definition 3.5. Let 〈Xn〉 be a sequence of simple processes con-
vergent in the probability measure mφ to the process X(t). If the se-
quence 〈∫ T

0 Xn(t)dAWφ(t) 〉 converges in the probability measure mφ

then we say that the Itô integral with respect to analogue of Wiener
process associated with φ exists and that limit is taken to be the inte-
gral

∫ T
0 X(t)dAWφ(t).

Example 3.6. We want to calculate
∫ T
0 AWφ(t)dAWφ(t). For 0 =

tn0 < tn1 < tn2 < · · · < tnn = T , let Xn(t) = AWφ(0)χ[tn0 ,tn1 ](t) +∑n−1
i=1 AWφ(t)χ(tni ,tni+1]

(t). Then for n, Xn(t) is a simple predictable
process. By the continuity of analogue of Wiener paths, for fixed t,
lim

n→∞Xn(t) = AWφ(t) mφ-a.s. as max{tni − tni−1|1 ≤ i ≤ n} → 0. Then

the Itô integral of Xn(t) with respect to AWφ(t) is given by
∫ T

0
Xn(t)dAWφ(t)

=
n−1∑

i=0

AWφ(tni )(AWφ(tni+1)−AWφ(tni ))

=
1
2
(AWφ(T )2 −AWφ(0)2) +

1
2

n−1∑

i=0

(AWφ(tni+1)−AWφ(tni ))2.

From Theorem 2.4, we obtain
∫ T

0
AWφ(t)dAWφ(t)

= lim
n→∞

∫ T

0
Xn(t)dAWφ(t)

=
1
2
(AWφ(T )2 −AWφ(0)2 − T ).
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Here, if we take φ = δp then we have
∫ T
0 AWφ(t)dAWφ(t) = 1

2(AWφ(T )2

−p2 − T ).

Definition 3.7. Let L2
φ[0, T ] be the space of all stochastic processes

X(t, x) on [0, T ]× C[0, T ] with
∫
C[0,T ]{

∫ T
0 X(t, x)2dt}dmφ(x) < ∞.

From the essentially same method as in the theory in Brownian mo-
tion calculus, we obtain the following existence theorem for Itô integral
with respect to analogue of Wiener process.

Theorem 3.8. (Existence theorem for Itô integral) If X is predictable

in L2
φ[0, T ] then the Itô integral

∫ T
0 X(t)dAWφ(t) with respect to ana-

logue of Wiener process associated with φ, exists.

The following theorem results from Theorem 2.4.

Theorem 3.9. Suppose X is predictable in L2
φ[0, T ]. Then E(

∫ T
0 X(t)

dAWφ(t)) = 0 (Zero mean property) and

E([
∫ T

0
X(t)dAWφ(t)]2) =

∫ T

0
E(X(t)2)dt

(Isometry property).

Example 3.10. In Example 3.6, AWφ is predictable and if
∫
R u2dφ(u)

is finite then AWφ is in L2
φ[0, T ]. And E(

∫ T
0 AWφ(t)dAWφ(t)) = 1

2E(AWφ

(T )2−AWφ(0)2−T ) = 1
2 [E(AWφ(T )2)−E(AWφ(0)2)−E(T )] = 1

2 [(
∫
R u2

dφ(u) + T ) − ∫
R u2dφ(u) − T ] = 0 and E([

∫ T
0 AWφ(t)dAWφ(t)]2) =∫ T

0 E(AWφ(t)2)dt = 1
2T 2 + T

∫
R u2dφ(u) if

∫
R u2dφ(u) is finite. Remark

that from the definition of mφ, E([
∫ T
0 AWφ(t)dAWφ(t)]2) = 1

4 [(
∫
R u4

dφ(u)+6T
∫
R u2dφ(u)+3T 2)+

∫
R u4dφ(u)+T 2−2T

∫
R u2dφ(u)−2T 2−

2T
∫
R u2dφ(u)− 2

∫
R u4dφ(u) + 2T

∫
R u2dφ(u)] = 1

2T 2 + T
∫
R u2dφ(u) if∫

R u4dφ(u) is finite.

Theorem 3.11. Let X be predictable in L2
φ[0, T ] and for 0 ≤ t ≤

T , let Y (t) =





0 , t = 0
lim
s↓t

∫ s
0 X(u)dAWφ(u) , 0 < t < T

∫ T
0 X(u)dAWφ(u) , t = T

. Then Y (t) is

a continuous zero mean square integrable martingale and [Y, Y ](t) =∫ t
0 X(s)2ds. Here, Y (t) is called the Itô integral process with respect to

analogue of Wiener space, associated with φ.



Itô Integral 699

Proof. Since X is in L2
φ[0, T ], from Hölder’s inequality, Fubini’s the-

orem and the isometry property, we have E(|Y (t)|) ≤
√

E(Y (t)2) =√∫ t
0 E(X(u)2)du =

√∫
C[0,T ](

∫ t
0 X(s, x)2ds)dmφ(x) < ∞. Let Ft be

the information about the process AWφ up to time t. By the zero mean
property, E(

∫ t
s X(u)dAWφ(u)|Fs) = 0 for s < t, so for s < t, E(Y (t)|Fs)

= E(
∫ s
0 X(u)dAWφ(u) +

∫ t
s X(u)dAWφ(u)|Fs) =

∫ s
0 X(u)dAWφ(u) =

Y (s) which implies that Y (t) is a continuous zero mean square integrable
martingale. Moreover, [Y, Y ](t) = E(Y (t)2) − [E(Y (t))]2 =

∫ t
0 X(s)2ds

from the zero mean property and the isometry property.

4. Itô formula for the Analogue of Wiener Process

In this section, we will drive the Itô’s formula for the analogue of
Wiener space.

From essentially the same method as in the theory in Brownian mo-
tion calculus and Remark 2.3, we obtain the following lemma.

Lemma 4.1. Suppose g is bounded continuous and 〈{tni }n
i=0〉 is a

sequence of partitions of [0, t] for 0 < t with lim
n→∞max{tni − tni−1|i =

1, 2, · · · , n} = 0. Then for any θn
i in between AWφ(tni−1) and AWφ(tni ),

lim
n→∞

∑n−1
i=0 g(θn

i )[AWφ(tni+1)−AWφ(tni )] =
∫ t
0 g(AWφ(s))ds in probabil-

ity measure mφ.

Theorem 4.2. ( Itô’s formula for the Analogue of Wiener Space) If
f is twice continuously differentiable, then for 0 < t ≤ T , f(AWφ(t))
= f(AWφ(0))+

∫ t
0 f ′(AWφ(s))dAWφ(s)+ 1

2

∫ t
0 f ′′(AWφ(s))ds.

Proof. Let {tni }n
i=0 is a partition of [0, t] with lim

n→∞max{tni − tni−1|i =

1, 2, · · · , n}= 0. Then f(AWφ(t)) = f(AWφ(0))+
∑n−1

i=0 [f(AWφ(tni+1))−
f(AWφ(tni ))] and by Taylor’s formula, for n and i there is θn

i in be-
tween AWφ(tni−1) and AWφ(tni ) such that f(AWφ(tni+1))−f(AWφ(tni )) =
f ′(AWφ(tni ))[f(AWφ(tni+1))− f(AWφ (tni ))] +1

2f ′′(θn
i )[AWφ(tni+1)−AWφ

(tni )]2. So f(AWφ(t)) = f(AWφ(0))+
∑n−1

i=0 f ′(AWφ(tni ))[f(AWφ(tni+1))−
f(AWφ(tni ))] +1

2

∑n−1
i=0 f ′′(θn

i )[AWφ(tni+1)−AWφ (tni )]2. Taking n →∞,
by Lemma 4.1, we have f(AWφ(t)) = f(AWφ(0))+

∫ t
0 f ′(AWφ(s))dAWφ

(s)+ 1
2

∫ t
0 f ′′(AWφ(s))ds.

Definition 4.3. Stochastic process Y (t) is called the Itô process with
respect to analogue of Wiener space, associated with φ provided that
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for any 0 ≤ t ≤ T , it can be represented as Y (t) = Y (0) +
∫ t
0 µ(s)ds +∫ t

0 σ(s)dAWφ(s), where the stochastic process µ and σ satisfy conditions:
1. µ(t) is adopted and

∫ T
0 |µ(t)|dt < ∞ mφ-a.s.

2. σ(t) is predictable and
∫ T
0 |σ(t)|dt < ∞ mφ-a.s.

Example 4.4. 1) By taking T = t in Example 3.6, we obtain
∫ t
0 AWφ(s)

dAWφ(s) = 1
2(AWφ(t)2−AWφ(0)2−t) so AWφ(t)2 = AWφ(0)2 +

∫ t
0 ds+

2
∫ t
0 AWφ(s) dAWφ(s). Hence, putting Y (t) = AWφ(t)2, µ(s) = 1 and

σ(s) = 2AWφ(s), Y (t) = Y (0) +
∫ t
0 µ(s)ds +

∫ t
0 σ(s)dAWφ(s).

2). If
∫
R eudφ(u) is finite then

∫
C[0,T ](

∫ T
0 eAWφ(t)dt)dmφ(x) = 2(e

T
2 −

1)
∫
R eu dφ(u) < ∞, so

∫ T
0 eAWφ(t)dt is finite mφ-a.s. Letting Y (t) =

eAWφ(t), by Itô formula for the analogue of Wiener space, we have
eAWφ(t) = eAWφ(0) + 1

2

∫ t
0 eAWφ(s)ds +

∫ t
0 eAWφ(s)dAWφ(s).

Remark 4.5. Along the parallel method as in the proof of the exis-
tence and uniqueness theorem for solutions of Y (t) = Y (0)+

∫ t
0 µ(s, Y (s))

ds +
∫ t
0 σ(s, Y (s)) dAWφ(s) in [2] we can prove easily the following fact

: Suppose that
1. The functions µ(t, u) and σ(t, u) are measurable for t in [0, T ] and u
in R,
2. There exists a constant K such that for all t in [0, T ] and u, v in R,
|µ(t, u)−µ(t, v)|+ |σ(t, u)−σ(t, v)| ≤ K|u− v| and µ(t, u)2 + σ(t, u)2 ≤
K2(1− u2), and
3. Y (0) is independent of AWφ(t), for t > 0 and E(Y (0)2) < ∞. Then
there is a solution Y (t) of Y (t) = Y (0) +

∫ t
0 µ(s)ds +

∫ t
0 σ(s)dAWφ(s),

defined on [0, T ] which is continuous with probability 1, and such that
supt∈[0,T ] E(Y (t)2) < ∞. Furthermore, a solution with these proper-
ties is pathwise unique, that is, if X and Y are two such solutions,
P (supt∈[0,T ] |X(t)− Y (t)| = 0) = 1.
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