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ABSTRACT. An operator T € B(H) is said to be k-quasi-paranormal
operator if |75 x||? < ||T*+2z||||T% || for every = € H, k is a natu-
ral number. This class of operators contains the class of paranormal
operators and the class of quasi - class A operators. In this paper,
using the operator matrix representation of k-quasi-paranormal op-
erators which is related to the paranormal operators, we show that
every algebraically k-quasi-paranormal operator has Bishop’s prop-
erty (3), which is an extension of the result proved for paranormal
operators in [32]. Also we prove that (i) generalized Weyl’s theorem
holds for f(T') for every f € H(o(T)); (ii) generalized a - Browder’s
theorem holds for f(.S) for every S < T and f € H(o(S)); (iii) the
spectral mapping theorem holds for the B - Weyl spectrum of T'.

1. Introduction

Let B(H) and By(H) denotes the algebra of all bounded linear opera-
tors and the ideal of compact operaors acting on an infinite dimensional
separable Hilbert space H. An operator T' € B(H) is positive, T" > 0,
if (Tx,z) > 0 for all x € H, and posinormal if there exists a positive
A € B(H) such that TT* = T*XT. Here A is called interrupter of 7. In
other words, an operator 7T is called posinormal if TT* < ¢*T*T, where
T* is the adjoint of T and ¢ > 0 [15]. An operator T is said to be hemi-
normal if T" is hyponormal and T*T commutes with TT*. An operator
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T is said to be p-hyponormal, for p € (0,1), if (T*T)? > (T'T*)?. An
1-hyponormal operator is hyponormal which has been studied by many
authors and it is known that hyponormal operators have many inter-
esting properties similar to those of normal operators [34]. Furuta et
al [19], have characterized class A operator as follows. An operator T
belongs to class A if and only if (T*]T|T)% > T*T.

An operator T is said to be p-posinormal if (TT*)P < ¢*(T*T)P for
some ¢ > 0. An operator T is called normal if T*T = TT* and (p, k)-
quasihyponormal if T ((T*T)P — (TT*)?)T* >0 (0 < p < 1,k € N). A.
Aluthge [3], B.C. Gupta [12], S.C. Arora and P. Arora [5] introduced p-
hyponormal, p-quasihyponormal and k-quasihyponormal operators, re-
spectively.

p-hyponormal C p-posinormal C (p, k)-quasiposinormal,

p-hyponormal C p-quasihyponormal C
(p, k)-quasihyponormal C (p, k)-quasiposinormal
and

hyponormal C k-quasihyponormal C (p, k)-quasihyponormal
C (p, k)-quasiposinormal
for a positive integer k and a positive number 0 < p < 1.

In [31], the class of log-hyponormal operators is defined as follows: T
is called log - hyponormal if it is invertible and satisfies log (T*T")? > log
(TT*)P. Class of p-hyponormal operators and class of log hyponormal
operators were defined as extension class of hyponormal operators, i.e.,
T*T > TT*. It is well known that every p-hyponormal operator is a
q - hyponormal operator for p > ¢ > 0, by the Lowner-Heinz theorem
"A > B > 0 ensures A > B for any « € [0,1]”, and every invertible
p - hyponormal operator is a log-hyponormal operator since log(-) is
an operator monotone function. An operator T is called paranormal if
||Tx||? < ||T2z]||||x|| for all x € H. Tt is also well known that there exists
a hyponormal operator T' such that 72 is not hyponormal (see [23]).

Furuta, Ito and Yamazaki [21] introduced class A(k) and absolute-k-
paranormal operators for k£ > 0 as generalizations of class A and para-
normal operators, respectively. An operator T' belongs to class A(k) if
(T*]T|2kT)%+1 > |T|* and T is said to be absolute-k-paranormal oper-
ator if |||T|*Tx|| > ||Txz|/*+! for every unit vector x. An operator T is
called quasi class A if T*|T|?T > T*|T|*T. Fuji, Izumino and Nakamoto
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[19] introduced p-paranormal operators for p > 0 as a generalization of
paranormal operators.

Fujii, Jung, S. H. Lee, M. Y. Lee and Nakamoto [22] introduced
class A(p,r) as a further generalization of class A(k). An operator
T € classA(p,r) for p > 0 and r > 0 if (|T*|"|T)%|T*|")vér > |T*2
and class AI(p,r) is class of all invertible operators which belong to
class A(p,r). Yamazaki and Yanagida [35] introduced absolute-(p,r)-
paranormal operator. It is a further generalization of the classes of both
absolute-k-paranormal operators and p - paranormal operators as a par-
allel concept of class A(p,r). An operator T is said to be paranormal
operator if ||T2z| > ||Tz||? for every unit vector x. Paranormal opera-
tors have been studied by many authors [4], [20] and [26]

In [4], Ando showed that 7' is paranormal if and only if
T**T? — 2\T*T + \* > 0 for all A > 0.

In order to extend the class of paranormal operators and class of
quasi-class A operators, Mecheri [29] introduced a new class of operators
called k-quasi-paranormal operators. An operator T is called k-quasi-
paranormal if ||[TFz||? < || T%F2z|||T*z| for all € H where k is a
natural number. A 1l-quasi-paranormal operator is quasi paranormal.
The following implication gives us relations among the classes of opera-
tors.

Hyponormal = p-hyponormal = class A = paranormal
= quasi-paranormal = k-quasi-paranormal

Hyponormal = class A = quasi-class A = quasi-paranormal
= k-quasi-paranormal

An operator T is called algebraically k-quasi-paranormal if there ex-
ists a nonconstant complex polynomial s such that s(T") belongs to k-
quasi-paranormal.

The following facts follows from some well known facts about para-
normal operators.
(i) If T is paranormal and M C 'H is invariant under 7" then T'|ys is
paranormal.
(ii) Every quasinilpotent paranormal operator is a zero operator.
(iii) T is paranormal if and only if 7% T2 — 2XT*T + A2 > 0 for all A > 0.
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(iv) If T is paranormal and invertible, then T~ is paranormal.

If T € B(H), we shall write N(T') and R(T") for the null space and the
range of T, respectively. Also, let o(T') and 0,(T) denote the spectrum
and the approximate point spectrum of T, respectively. An operator T’
is called Fredholm if R(T) is closed, a(T) = dim N(T') < oo and S(7T)
= dim H/R(T) < oo. Moreover if i(T) = o(T) — B(T) = 0, then T
is called Weyl. The essential spectrum o.(7") and the Weyl oy (T) are
defined by

0e(T) = {\ € C: T — Ais not Fredholm}
and
ow(T) = {\ € C: T — \is not Weyl},
respectively. It is known that o.(T') C ow (T') C 0.(T)U acc o(T') where
we write acc K for the set of all accumulation points of K C C. If we
write iso K = K\ acc K, then we let
mo0(T) = {A €iso o(T): 0 < (T — \) < o0}
We say that Weyl’s theorem holds for 1" if
o(T)\ow (T) = moo(T).

Let op(T),n(T), E(T) denotes the point spectrum of T, the set of
poles of the resolvent of T, the set of all eigenvalues of T" which are
isolated in o(T'), respectively. An operator T' € B(H) is called upper
semi-Fredholm if it has closed range and finite dimensional null space
and is called lower semi - Fredholm if it has closed range and its range
has finite co-dimension. If 7' € B(H) is either upper or lower semi -
Fredholm, then T is called semi-Fredholm. For T' € B(H) and a non
negative integer n define T, to be the restriction of 7" to R(T™) viewed
as a map from R(T™) to R(T™) (in particular Tp = 7). If for some
integer n the range R(T™) is closed and T, is upper (resp. lower) semi-
Fredholm, then T is called upper (resp. lower) semi-B-Fredholm.

Moreover, if T, is Fredholm, then T is called B - Fredholm. An
operator T is called semi-B-Fredholm if it is upper or lower semi-B-
Fredholm. Let T' be semi-B-Fredholm and let d be the degree of stable
iteration of 7. It follows from [10, Proposition 2.1] that T, is semi-
Fredholm and i(T,) = i(Ty) for each m > d. This enables us to define
the index of semi-B-Fredholm T as the index of semi-Fredholm Ty. Let
BF(H) be the class of all B-Fredholm operators. In [6], they studied
this class of operators and they proved [6, Theorem 2.7] that an operator
T € B(H) is B-Fredholm if and only if T'= Ty &T5, where T} is Fredholm
and T3 is nilpotent. It appears that the concept of Drazin invertibility
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plays an important role for the class of B-Fredholm operators. Let A be
a unital algebra. We say that an element x € A is Drazin invertible of
degree k if there exists an element a € A such that
tFar = 2%, axa = a, and za = ax
Let a € A. Then the Drazin spectrum is defined by
op(a) = {X € C:a— X is not Drazin invertible}.

For T € B(H), the smallest nonnegative integer p such that N(7T?) =
N(TPH1) is called the ascent of T' and denoted by p(T). If no such
integer exists, we set p(7') = 1. The smallest nonnegative integer g such
that R(T7) = R(T9") is called the descent of 7" and denoted by ¢(T).
If no such integer exists, we set ¢(T)) = 1. It is well known that T is
Drazin invertible if and only if it has finite ascent and descent, which is
also equivalent to the fact that

T =T ® 15, where 11 is invertible and 75 is nilpotent.

An operator T € B(H) is called B - Weyl if it is B-Fredholm of index
0. The B-Fredholm spectrum opp(T") and B-Weyl spectrum oy (T') of
T are defined by

opr(T) = {A € C:T — X is not B-Fredholm },
and
opw(T) ={A € C:T — X is not B-Weyl }.
Now, we consider the following sets:
BF,(H) ={T € B(H) : T is upper semi-B-Fredholm},
BF (H)={T € B(H):T € BF{(H) and i(T)) < 0},
LD(H) ={T € B(H) : p(T) < oo and R(TP*1) is closed }.
By definition,
o5,.(T) = {A € C: T =\ ¢ BF; (H)},
is the upper semi-B-essential approximate point spectrum and
O‘LD(T) = {)\ eC:T—-\ ¢ LD(H)}
is the left Drazin spectrum. It is well known that
0Be.(T) = oLp(T) = 0B, (T) U acc 04(T) € op(T),
where we write acc K for the accumulation points of K C C. If we write
iso K = K\ acc K then we let
p3(T)={N€0o,(T): T—Xe LD(H)},
7o (T) ={A € iso 04(T) : X € 0,(T)}.

We say that an operator 7' has the single valued extension property

at A (abbreviated SVEP at)) if for every open set U containing A\ the

only analytic function f : U — H which satisfies the equation
(T=Xf(A) =0
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is the constant function f =0 on U. An operator T has SVEP if T has
SVEP at every point A\ € C.
We say that Generalized Weyl’s theorem holds for 7" if (in symbols,
T € gW) if
O'(T)\UBw(T) = E(T)
We say that Generalized Browder’s theorem holds for T if (in symbols,
T € gB) if
o(T\opw (T) = =(T).
We say that Generalized a - Weyl’s theorem holds for 7" if (in symbols,
T € gaW) if
6a(T)\o 3, (T) = 78(T).
We say that Generalized a - Browder’s theorem holds for T if (in
symbols, T' € gaB3) if
0a(T)\0 5., (T) = B4(T).
In local spectral theory, the quasi-nilpotent part Hy(7') of an operator
T is defined by
Ho(T) = {z € H : limy_oo | T"z||» = 0}
and the analytic core K(T') is defined as

K(T) = {x € H: there exists a sequence {z,} C H
and 6 > 0 for which z = z¢, T (zp+1) = 2
and ||z,| < 0"||z| for all n =1,2,3,...}

Let P(H) denotes the class of all operators for which there exists
p = p(A) € N for which
Ho(T — X)) = N(T — MNP for all A € E(T).
Evidently, P(H) C P1(H). Now we give a characterization of P;(H).

THEOREM 1.1. T' € P1(H) if and only if 7(T) = E(T).

Proof. Suppose T' € Pi(H) and let A\ € E(T). Then there exists
p € N such that Hyo(T — \) = N(T'— \)P. Since A is an isolated point of
o(T), it follows from [1, Theorem 3.74] that

H=Hy(T-N®K(T—-\N)=NT-\NPdK(T-N).
Therefore, we have
(T = \P(H) = (T = NP(K(T - ) = K(T - ),

and hence H = N(T — AP @ (T — M\)P(H), which implies, by [1, theorem
3.6], that p(T' — A) = ¢(T' — ) < p. But (T — A) > 0, hence X € (7).
Therefore E(T) C (7). Since the opposite inclusion holds for every
operator T', we then conclude that 7(T') = E(T).
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Conversely, suppose 7(T) = E(T). Let A € E(T'). Then p = p(T —
A) = q(T — \) < oco. By [1, Theorem 3.74], Ho(T — \) = N(T — \)P.
Therefore T' € P1(H). O

In [33], H. Weyl proved that Weyl’s theorem holds for hermitian op-
erators. Weyl’s theorem has been extended from hermitian operators
to hyponormal operators [14], algebraically hyponormal operators [24],
p-hyponormal operators [13] and algebraically p-hyponormal operators
[18]. More generally, M. Berkani investigated generalized Weyl’s theo-
rem which extends Weyl’s theorem, and proved that generalized Weyl’s
theorem holds for hyponormal operators [[8, 9, 10]]. In a recent paper
[28] the author showed that generalized Weyl’s theorem holds for (p, k)-
quasihyponormal operators. Recently, X. Cao, M. Guo and B. Meng
[11] proved Weyl type theorems for p - hyponormal operators.

In this paper, we prove some basic structural properties of k-quasi-
paranormal operators and also using the operator matrix representation
of k-quasi-paranormal operators which is related to the paranormal op-
erators, we show that every algebraically k-quasi-paranormal operator
has Bishop’s property (/3), which is an extension of the result proved
for paranormal operators in [32]. We also prove that (i) generalized
Weyl’s theorem holds for f(T') for every f € H(o(T)); (ii) generalized
a-Browder’s theorem holds for f(S) for every S < T and f € H(o(S));
(iii) the spectral mapping theorem holds for the B-Weyl spectrum of 7.

2. On k - quasi - paranormal operators

Salah Mecheri [29] has introduced k-quasi-paranormal operators and
has proved many interesting properties of it.

LEMMA 2.1. ([29]) (1) Let T € B(H) be a k-quasi-paranormal, the

range of T* be not dense and
_(Th Ty
(o 1)

on H = ran(T*) ® ker(T**). Then T is paranormal, T% = 0 and
o(T) =o(T1) U{0}.
(2) Let M be a closed T-invariant subspace of H. Then the restriction
T|nr of a k-quasi-paranormal operator T to M is a k-quasi-paranormal.

LEMMA 2.2. ([29]) Let T € B(H) be a k-quasi-paranormal operator.
Then T has Bishop’s property (3), i.e., if f,(z) is analytic on D and
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(T'—2) fn(z) — 0 uniformly on each compact subset of D, then f(z) — 0
uniformly on each compact subset of D. Hence T has the single valued
extension property.

COROLLARY 2.3. Suppose that 1" € k-quasi-paranormal has dense
range. Then T is paranormal.

Proof. Since T has dense range, T(H) = H. Let y € H. Then
there exists a sequence {z;}72, in H such that T'(x) — y as k — oo.
Since T is /-c—quasi—paranormal,((T*QT2 — 20NT*T 4+ N2)T*xy,, TFxy) > 0
for all k € N and all A > 0. By the continuity of the inner product,
we have ((T*'T% — 2\T*T + A2)y,y) > 0 for all A > 0, and hence
TT2 — 2XT*T + \2 > 0 for all A > 0. Therefore T is paranormal. [J

COROLLARY 2.4. Suppose that T is an invertible k-quasi-paranormal.
Then T and T~ are paranormal.

Proof. Suppose that T € k-quasi-paranormal is invertible. Then it
has dense range, and so it is paranormal by Corollary 2.3. Hence 7!
is also paranormal. ]

COROLLARY 2.5. Suppose that T' € k-quasi-paranormal is not para-
normal. Then T is not invertible..

COROLLARY 2.6. Suppose that T € k-quasi-paranormal is nonzero
and suppose that T has no nontrivial T-invariant subspace. Then T is
paranormal.

Proof. Suppose that T' € k-quasi-paranormal. If an operator has no
nontrivial invariant subspace, then it is injective and has dense range.
It follows from Corollary 2.3 that T is paranormal. 0

3. Generalized Weyl’s Theorem for algebraically k-quasi-
paranormal operators

The following facts follows from the definition and some well known
facts about k-quasi-paranormal operators [30, 29]:
(i) If T € B(H) is algebraically k-quasi-paranormal, then so is T'— X for
each \ € C.
(ii) f T € B(H) is algebraically k-quasi-paranormal and M is a closed T-
invariant subspace of H, then 7|,/ is algebraically k-quasi-paranormal.
(iii) If T is algebraically k-quasi-paranormal, then 7" has SVEP.
(iv) Suppose T does not have dense range. Then we have:
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T is k-quasi-paranormal < T = < h T )

0 13

on ‘H = ran(T*) @ ker(T**) where T} is paranormal operator.
In general, the following implications hold:
paranormal = k-quasi-paranormal = algebraically k-quasi-paranormal.

PRrOPOSITION 3.1. Suppose that T is algebraically k-quasi-paranormal.
Then T has Bishop’s property (3).

Proof. We first suppose that T' € k-quasi-paranormal. We consider
two cases:
Case I: Suppose T has dense range. Then T is paranormal by Corollary
2.3, and so it has Bishop’s property () by [32, Corollary 3.6].
Case II: Suppose T" does not have dense range. It follows from Lemma

2.1 that
([ TY T
(0 %)

on ‘H = ran(T*) @ ker(T**) where T} is paranormal operator. Since T}
is paranormal, it follows from [36, Theorem 2.12] that 7" has Bishop’s
property ().

Now suppose that T is algebraically k-quasi-paranormal. Then s(T') €
k-quasi-paranormal for some nonconstant polynomial s, and so it follows
from the first part of the proof that s(7') has Bishop’s property (3).
Therefore T" has Bishop’s property (3) [27, Theorem 3.3.9]. O

COROLLARY 3.2. SupposeT is algebraically k-quasi-paranormal. Then
T has SVEP.

LEMMA 3.3. Let T € B(H) be a quasinilpotent algebraically k-quasi-
paranormal operator. Then T is nilpotent.

Proof. We first assume that T is k-quasi-paranormal. We consider
two cases:
Case I: Suppose T' has dense range. Then clearly, it is paranormal.
Therefore T is nilpotent by [16, Lemma 2.2].
Case II: Suppose T' does not have dense range. Then we can represent
T as the upper triangular matrix

([ TT Ty
= < 0 1Tj >
on H = ran(T*) @ ker(T**) where T} is paranormal operator. Since T is
quasinilpotent, o(T") = {0}. But o(T") = o(71)U{0}, hence o(T1) = {0}:

Since 17 is paranormal, 77 = 0 and therefore T is nilpotent. Thus if T is
a quasinilpotent k-quasi-paranormal operator, then it is nilpotent. Now,
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we suppose 1T’ is algebraically k-quasi-paranormal. Then there exists
a nonconstant polynomial s such that s(7) is k-quasi-paranormal. If
s(T) has dense range, then s(7") is paranormal. So T is algebraically
paranormal, and hence T is nilpotent by [16, Lemma 2.2]. If s(7) does
not have dense range, we can represent s(T') as the upper triangular

matrix
([ Th Ty
s(T) = < 0 Tj >

on H = ran(s(T*)) @ ker(s(T**)) where Ty = S(T”W is paranormal
operator. Since T is quasinilpotent, o(s(T")) = s(o(T)) = {s(0)}. But
o(s(T)) = o(T1) U {0} by [25, Corollary 8], hence o(77) U{0} = {s(0)}.
So s(0) = 0, and hence s(7T') is quasinilpotent. Since s(T") is k-quasi-
paranormal, by the previous argument s(7°) is nilpotent. On the other
hand, since s(0) = 0, s(z) = cz™(z — A\1)(z — A2)....(z — A,) for some
natural number m. Therefore s(T') = ¢TI (T — A1)(T — A2)....(T — \p).
Since s(T') is nilpotent and T — ); is invertible for every \; # 0, T' is
nilpotent. Hence the proof. O

THEOREM 3.4. Let T € B(H) be algebraically k-quasi-paranormal.
Then T € P1(H).

Proof. Suppose T is algebraically k-quasi-paranormal. Then s(7T) is a
k-quasi-paranormal operator for some nonconstant complex polynomial
s. Let A € E(T). Then \ is an isolated point of o(T") and (T — A) > 0.
Using the spectral projection P = ﬁ faD(u — T)~'du, where D is a
closed disk of center A which contains no other points of o(7"), we can
represent 1" as the direct sum

where o(T1) = {A\} and o(T2) = o(T)\{\}.

Since T is algebraically k-quasi-paranormal, so is 77 — \. But o (77 —
A) = {0}, it follows from Lemma 3.3 that 77 — X is nilpotent. Therefore
T1 — X has finite ascent and descent. On the other hand, since T — A
is invertible, clearly it has finite ascent and descent. Therefore A is a
pole of the resolvent of T, and hence A\ € 7(T"). Hence E(T) C «n(T).
Since m(T') € E(T) holds for any operator T', we have 7n(T) = E(T). It
follows from Theorem 1.1 that T' € Pi(H). O

We now show that generalized Weyl’s theorem holds for algebraically
k-quasi-paranormal operators. In the following theorem, recall that
H(o(T)) is the space of functions analytic in an open neighborhood
of o(T).
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THEOREM 3.5. Suppose that T or T* is an algebraically k-quasi-
paranormal operator. Then f(T') € gW for each f € H(o(T)).

Proof. Suppose T is algebraically k-quasi-paranormal. We first show
that T' € gWV. Suppose that X\ € o(T)\opw (7). Then T — X is B-Weyl
but not invertible. It follows from [7, Lemma 4.1] that we can represent
T — A as the direct sum

0
e < b )
where T is Weyl and 75 is nilpotent.

Since T is algebraically k-quasi-paranormal, it has SVEP. So T7 and
T5 have both finite ascent. But 77 is Weyl, hence 77 has finite de-
scent. Therefore T'— X has finite ascent and descent, and so A € E(T).
Conversely, suppose that A € E(T). Since T is algebraically k-quasi-
paranormal, it follows from Theorem 3.4 that T' € P (H). Since n(T) =
E(T) by Theorem 1.1, A € w(T). Therefore T' — X has finite ascent and
descent, and so we can represent 1" — \ as the direct sum

7 0
s (5
where T} is invertible and 75 is nilpotent.

Therefore T — X is B - Weyl, and so A\ € o(T)\opw(T). Thus
o(T)\opw(T') = E(T), and hence T € gWV.

Next, we claim that ogw (f(T)) = f(opw(T)) for each f € H(o(T)).
Since T € gW, T € gB. It follows from [17, Theorem 2.1] that opw (T') =
op(T). Since T is algebraically k-quasi-paranormal, f(7') has SVEP for
each f € H(o(T)). Hence f(T) € gB by [17, Theorem 2.9], and so
opw (f(T)) = op(f(T)). Therefore we have

oo (/1)) = op(f(T)) = flon(T)) = flomw(T)).

Since T is algebraically k-quasi-paranormal, it follows from the proof
of Theorem 3.4 that it is isoloid. Hence for any f € H(o(T')) we have

o(f(T)\E(f(T)) = f(e(T)\E(T)).

Since T € gW, we have

o(JTNE(S(T)) = F(a(T\E(T)) = f(opw(T)) = cpw(f(T)).
which implies that f(T") € gW.

Now suppose that 7™ is algebraically k-quasi-paranormal. We first
show that T € gW. Let A € o(T)\opw(T). Observe that o(T*) =
o(T) and opw (T*) = opw(T). So A € o(T*)\opw(T*), and so X €
E(T*) because T* € gW. Since T* is algebraically k-quasi-paranormal,
it follows from Theorem 3.4 that A € m(T*). Hence T — X has finite
ascent and descent, and so A € E(T).
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Conversely, suppose A € E(T'). Then X is an isolated point of o(7")
and a(T — \) > 0. Since o(T*) = o(T), X is an isolated point of o (T*).
Since T* is isoloid, A € E(T*). But E(T*) = n(T*) by Theorem 3.4,
hence we have T — A has finite ascent and descent. Therefore we can
represent 7' — A as the direct sum

A
T—A:<0 n)’
where T} is invertible and 75 is nilpotent.

Therefore T — X is B - Weyl, and so A € o(T)\opw(T). Thus
o(T)\opw(T) = E(T), and hence T' € gW. If T* is algebraically k-
quasi-paranormal then 7' is isoloid. It follows from the first part of the
proof that f(T) € gW. This completes the proof. O

COROLLARY 3.6. Suppose T or T is algebraically k-quasi-paranormal.
Then

osw (F(T)) = f(opw(T)) for every f € H(o(T)).

An operator X € B(H) is called a quasiaffinity if it has trivial kernel
and dense range. An operator S2 € B(H) is said to be a quasiaffine
transform of T € B(H) (notation: S < T') if there is a quasiaffinity
X € B(H) such that XS = TX. If both S < T and T' < S, then we say
that S and T are quasisimilar.

COROLLARY 3.7. Suppose T is algebraically k-quasi-paranormal and
S <T. Thenf(S) € gaB for each f € H(c(5)).

Proof. Suppose T is algebraically k-quasi-paranormal. Then 7' has
SVEP. Since S < T', f(S) has SVEP by [16, Lemma 3.1]. It follows from
[27, Theorem 3.3.6] that f(S) has SVEP. Therefore f(S) € galBB by [2,
Corollary 2.5]. O
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