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Abstract. An operator T ∈ B(H) is said to be k-quasi-paranormal

operator if ‖T k+1x‖2 ≤ ‖T k+2x‖‖T kx‖ for every x ∈ H, k is a natu-
ral number. This class of operators contains the class of paranormal
operators and the class of quasi - class A operators. In this paper,
using the operator matrix representation of k-quasi-paranormal op-
erators which is related to the paranormal operators, we show that
every algebraically k-quasi-paranormal operator has Bishop’s prop-
erty (β), which is an extension of the result proved for paranormal
operators in [32]. Also we prove that (i) generalized Weyl’s theorem
holds for f(T ) for every f ∈ H(σ(T )); (ii) generalized a - Browder’s
theorem holds for f(S) for every S ≺ T and f ∈ H(σ(S)); (iii) the
spectral mapping theorem holds for the B - Weyl spectrum of T .

1. Introduction

Let B(H) and B0(H) denotes the algebra of all bounded linear opera-
tors and the ideal of compact operaors acting on an infinite dimensional
separable Hilbert space H. An operator T ∈ B(H) is positive, T ≥ 0,
if (Tx, x) ≥ 0 for all x ∈ H, and posinormal if there exists a positive
λ ∈ B(H) such that TT ∗ = T ∗λT . Here λ is called interrupter of T . In
other words, an operator T is called posinormal if TT ∗ ≤ c2T ∗T , where
T ∗ is the adjoint of T and c > 0 [15]. An operator T is said to be hemi-
normal if T is hyponormal and T ∗T commutes with TT ∗. An operator
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T is said to be p-hyponormal, for p ∈ (0, 1), if (T ∗T )p ≥ (TT ∗)p. An
1-hyponormal operator is hyponormal which has been studied by many
authors and it is known that hyponormal operators have many inter-
esting properties similar to those of normal operators [34]. Furuta et
al [19], have characterized class A operator as follows. An operator T

belongs to class A if and only if (T ∗|T |T )
1
2 ≥ T ∗T .

An operator T is said to be p-posinormal if (TT ∗)p ≤ c2(T ∗T )p for
some c > 0. An operator T is called normal if T ∗T = TT ∗ and (p, k)-
quasihyponormal if T ∗k

((T ∗T )p− (TT ∗)p)T k ≥ 0 (0 < p ≤ 1, k ∈ N). A.
Aluthge [3], B.C. Gupta [12], S.C. Arora and P. Arora [5] introduced p-
hyponormal, p-quasihyponormal and k-quasihyponormal operators, re-
spectively.

p-hyponormal ⊂ p-posinormal ⊂ (p, k)-quasiposinormal,

p-hyponormal ⊂ p-quasihyponormal ⊂
(p, k)-quasihyponormal ⊂ (p, k)-quasiposinormal

and

hyponormal ⊂ k-quasihyponormal ⊂ (p, k)-quasihyponormal
⊂ (p, k)-quasiposinormal

for a positive integer k and a positive number 0 < p ≤ 1.

In [31], the class of log-hyponormal operators is defined as follows: T
is called log - hyponormal if it is invertible and satisfies log (T ∗T )p ≥ log
(TT ∗)p. Class of p-hyponormal operators and class of log hyponormal
operators were defined as extension class of hyponormal operators, i.e.,
T ∗T ≥ TT ∗. It is well known that every p-hyponormal operator is a
q - hyponormal operator for p ≥ q > 0, by the Löwner-Heinz theorem
”A ≥ B ≥ 0 ensures Aα ≥ Bα for any α ∈ [0, 1]”, and every invertible
p - hyponormal operator is a log-hyponormal operator since log(·) is
an operator monotone function. An operator T is called paranormal if
||Tx||2 ≤ ||T 2x||||x|| for all x ∈ H. It is also well known that there exists
a hyponormal operator T such that T 2 is not hyponormal (see [23]).

Furuta, Ito and Yamazaki [21] introduced class A(k) and absolute-k-
paranormal operators for k > 0 as generalizations of class A and para-
normal operators, respectively. An operator T belongs to class A(k) if
(T ∗|T |2kT )

1
k+1 ≥ |T |2 and T is said to be absolute-k-paranormal oper-

ator if ‖|T |kTx‖ ≥ ‖Tx‖k+1 for every unit vector x. An operator T is
called quasi class A if T ∗|T |2T ≥ T ∗|T |2T . Fuji, Izumino and Nakamoto
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[19] introduced p-paranormal operators for p > 0 as a generalization of
paranormal operators.

Fujii, Jung, S. H. Lee, M. Y. Lee and Nakamoto [22] introduced
class A(p, r) as a further generalization of class A(k). An operator
T ∈ classA(p, r) for p > 0 and r > 0 if (|T ∗|r|T |2p|T ∗|r) r

p+r ≥ |T ∗|2r

and class AI(p, r) is class of all invertible operators which belong to
class A(p, r). Yamazaki and Yanagida [35] introduced absolute-(p, r)-
paranormal operator. It is a further generalization of the classes of both
absolute-k-paranormal operators and p - paranormal operators as a par-
allel concept of class A(p, r). An operator T is said to be paranormal
operator if ‖T 2x‖ ≥ ‖Tx‖2 for every unit vector x. Paranormal opera-
tors have been studied by many authors [4], [20] and [26]

In [4], Ando showed that T is paranormal if and only if
T ∗2T 2 − 2λT ∗T + λ2 ≥ 0 for all λ > 0.

In order to extend the class of paranormal operators and class of
quasi-class A operators, Mecheri [29] introduced a new class of operators
called k-quasi-paranormal operators. An operator T is called k-quasi-
paranormal if ‖T k+1x‖2 ≤ ‖T k+2x‖‖T kx‖ for all x ∈ H where k is a
natural number. A 1-quasi-paranormal operator is quasi paranormal.
The following implication gives us relations among the classes of opera-
tors.

Hyponormal ⇒ p-hyponormal ⇒ class A ⇒ paranormal
⇒ quasi-paranormal ⇒ k-quasi-paranormal

Hyponormal ⇒ class A ⇒ quasi-class A ⇒ quasi-paranormal
⇒ k-quasi-paranormal

An operator T is called algebraically k-quasi-paranormal if there ex-
ists a nonconstant complex polynomial s such that s(T ) belongs to k-
quasi-paranormal.

The following facts follows from some well known facts about para-
normal operators.
(i) If T is paranormal and M ⊆ H is invariant under T then T |M is
paranormal.
(ii) Every quasinilpotent paranormal operator is a zero operator.
(iii) T is paranormal if and only if T 2∗T 2−2λT ∗T +λ2 ≥ 0 for all λ > 0.
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(iv) If T is paranormal and invertible, then T−1 is paranormal.

If T ∈ B(H), we shall write N(T ) and R(T ) for the null space and the
range of T , respectively. Also, let σ(T ) and σa(T ) denote the spectrum
and the approximate point spectrum of T , respectively. An operator T
is called Fredholm if R(T ) is closed, α(T ) = dim N(T ) < ∞ and β(T )
= dim H/R(T ) < ∞. Moreover if i(T ) = α(T ) − β(T ) = 0, then T
is called Weyl. The essential spectrum σe(T ) and the Weyl σW (T ) are
defined by

σe(T ) = {λ ∈ C : T − λis not Fredholm}
and

σW (T ) = {λ ∈ C : T − λis not Weyl},
respectively. It is known that σe(T ) ⊂ σW (T ) ⊂ σe(T )∪ acc σ(T ) where
we write acc K for the set of all accumulation points of K ⊂ C. If we
write iso K = K\ acc K, then we let

π00(T ) = {λ ∈ iso σ(T ) : 0 < α(T − λ) < ∞}.
We say that Weyl’s theorem holds for T if

σ(T )\σW (T ) = π00(T ).
Let σp(T ), π(T ), E(T ) denotes the point spectrum of T , the set of

poles of the resolvent of T , the set of all eigenvalues of T which are
isolated in σ(T ), respectively. An operator T ∈ B(H) is called upper
semi-Fredholm if it has closed range and finite dimensional null space
and is called lower semi - Fredholm if it has closed range and its range
has finite co-dimension. If T ∈ B(H) is either upper or lower semi -
Fredholm, then T is called semi-Fredholm. For T ∈ B(H) and a non
negative integer n define Tn to be the restriction of T to R(Tn) viewed
as a map from R(Tn) to R(Tn) (in particular T0 = T ). If for some
integer n the range R(Tn) is closed and Tn is upper (resp. lower) semi-
Fredholm, then T is called upper (resp. lower) semi-B-Fredholm.

Moreover, if Tn is Fredholm, then T is called B - Fredholm. An
operator T is called semi-B-Fredholm if it is upper or lower semi-B-
Fredholm. Let T be semi-B-Fredholm and let d be the degree of stable
iteration of T . It follows from [10, Proposition 2.1] that Tm is semi-
Fredholm and i(Tm) = i(Td) for each m ≥ d. This enables us to define
the index of semi-B-Fredholm T as the index of semi-Fredholm Td. Let
BF (H) be the class of all B-Fredholm operators. In [6], they studied
this class of operators and they proved [6, Theorem 2.7] that an operator
T ∈ B(H) is B-Fredholm if and only if T = T1⊕T2, where T1 is Fredholm
and T2 is nilpotent. It appears that the concept of Drazin invertibility
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plays an important role for the class of B-Fredholm operators. Let A be
a unital algebra. We say that an element x ∈ A is Drazin invertible of
degree k if there exists an element a ∈ A such that

xkax = xk, axa = a, and xa = ax
Let a ∈ A. Then the Drazin spectrum is defined by

σD(a) = {λ ∈ C : a− λ is not Drazin invertible}.
For T ∈ B(H), the smallest nonnegative integer p such that N(T p) =

N(T p+1) is called the ascent of T and denoted by p(T ). If no such
integer exists, we set p(T ) = 1. The smallest nonnegative integer q such
that R(T q) = R(T q+1) is called the descent of T and denoted by q(T ).
If no such integer exists, we set q(T ) = 1. It is well known that T is
Drazin invertible if and only if it has finite ascent and descent, which is
also equivalent to the fact that

T = T1 ⊕ T2, where T1 is invertible and T2 is nilpotent.
An operator T ∈ B(H) is called B - Weyl if it is B-Fredholm of index

0. The B-Fredholm spectrum σBF (T ) and B-Weyl spectrum σBW (T ) of
T are defined by

σBF (T ) = {λ ∈ C : T − λ is not B-Fredholm },
and

σBW (T ) = {λ ∈ C : T − λ is not B-Weyl }.
Now, we consider the following sets:

BF+(H) = {T ∈ B(H) : T is upper semi-B-Fredholm},
BF−

+ (H) = {T ∈ B(H) : T ∈ BF+(H) and i(T ) ≤ 0},
LD(H) = {T ∈ B(H) : p(T ) < ∞ and R(T p(T )+1) is closed }.

By definition,
σBea(T ) = {λ ∈ C : T − λ /∈ BF−

+ (H)},
is the upper semi-B-essential approximate point spectrum and

σLD(T ) = {λ ∈ C : T − λ /∈ LD(H)}
is the left Drazin spectrum. It is well known that

σBea(T ) = σLD(T ) = σBea(T ) ∪ acc σa(T ) ⊆ σD(T ),
where we write acc K for the accumulation points of K ⊆ C. If we write
iso K = K\ acc K then we let

pa
0(T ) = {λ ∈ σa(T ) : T − λ ∈ LD(H)},

πa
0(T ) = {λ ∈ iso σa(T ) : λ ∈ σp(T )}.

We say that an operator T has the single valued extension property
at λ (abbreviated SVEP atλ) if for every open set U containing λ the
only analytic function f : U → H which satisfies the equation

(T − λ)f(λ) = 0
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is the constant function f ≡ 0 on U . An operator T has SVEP if T has
SVEP at every point λ ∈ C.

We say that Generalized Weyl’s theorem holds for T if (in symbols,
T ∈ gW) if

σ(T )\σBW (T ) = E(T ).
We say that Generalized Browder’s theorem holds for T if (in symbols,

T ∈ gB) if
σ(T )\σBW (T ) = π(T ).

We say that Generalized a - Weyl’s theorem holds for T if (in symbols,
T ∈ gaW) if

σa(T )\σBea(T ) = πa
0(T ).

We say that Generalized a - Browder’s theorem holds for T if (in
symbols, T ∈ gaB) if

σa(T )\σBea(T ) = pa
0(T ).

In local spectral theory, the quasi-nilpotent part H0(T ) of an operator
T is defined by

H0(T ) = {x ∈ H : limn→∞ ‖Tnx‖ 1
n = 0}

and the analytic core K(T ) is defined as

K(T ) = {x ∈ H: there exists a sequence {xn} ⊂ H
and δ > 0 for which x = x0, T (xn+1) = xn

and ‖xn‖ ≤ δn‖x‖ for all n = 1, 2, 3, ...}
Let P(H) denotes the class of all operators for which there exists

p = p(λ) ∈ N for which
H0(T − λ) = N(T − λ)p for all λ ∈ E(T ).

Evidently, P(H) ⊆ P1(H). Now we give a characterization of P1(H).

Theorem 1.1. T ∈ P1(H) if and only if π(T ) = E(T ).

Proof. Suppose T ∈ P1(H) and let λ ∈ E(T ). Then there exists
p ∈ N such that H0(T − λ) = N(T − λ)p. Since λ is an isolated point of
σ(T ), it follows from [1, Theorem 3.74] that

H = H0(T − λ)⊕K(T − λ) = N(T − λ)p ⊕K(T − λ).
Therefore, we have

(T − λ)p(H) = (T − λ)p(K(T − λ)) = K(T − λ),
and hence H = N(T −λ)p⊕ (T −λ)p(H), which implies, by [1, theorem
3.6], that p(T − λ) = q(T − λ) ≤ p. But α(T − λ) > 0, hence λ ∈ π(T ).
Therefore E(T ) ⊆ π(T ). Since the opposite inclusion holds for every
operator T , we then conclude that π(T ) = E(T ).
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Conversely, suppose π(T ) = E(T ). Let λ ∈ E(T ). Then p = p(T −
λ) = q(T − λ) < ∞. By [1, Theorem 3.74], H0(T − λ) = N(T − λ)p.
Therefore T ∈ P1(H).

In [33], H. Weyl proved that Weyl’s theorem holds for hermitian op-
erators. Weyl’s theorem has been extended from hermitian operators
to hyponormal operators [14], algebraically hyponormal operators [24],
p-hyponormal operators [13] and algebraically p-hyponormal operators
[18]. More generally, M. Berkani investigated generalized Weyl’s theo-
rem which extends Weyl’s theorem, and proved that generalized Weyl’s
theorem holds for hyponormal operators [[8, 9, 10]]. In a recent paper
[28] the author showed that generalized Weyl’s theorem holds for (p, k)-
quasihyponormal operators. Recently, X. Cao, M. Guo and B. Meng
[11] proved Weyl type theorems for p - hyponormal operators.

In this paper, we prove some basic structural properties of k-quasi-
paranormal operators and also using the operator matrix representation
of k-quasi-paranormal operators which is related to the paranormal op-
erators, we show that every algebraically k-quasi-paranormal operator
has Bishop’s property (β), which is an extension of the result proved
for paranormal operators in [32]. We also prove that (i) generalized
Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )); (ii) generalized
a-Browder’s theorem holds for f(S) for every S ≺ T and f ∈ H(σ(S));
(iii) the spectral mapping theorem holds for the B-Weyl spectrum of T .

2. On k - quasi - paranormal operators

Salah Mecheri [29] has introduced k-quasi-paranormal operators and
has proved many interesting properties of it.

Lemma 2.1. ([29]) (1) Let T ∈ B(H) be a k-quasi-paranormal, the
range of T k be not dense and

T =
(

T1 T2

0 T3

)

on H = ran(T k) ⊕ ker(T ∗k). Then T1 is paranormal, T k
3 = 0 and

σ(T ) = σ(T1) ∪ {0}.
(2) Let M be a closed T -invariant subspace of H. Then the restriction
T |M of a k-quasi-paranormal operator T to M is a k-quasi-paranormal.

Lemma 2.2. ([29]) Let T ∈ B(H) be a k-quasi-paranormal operator.
Then T has Bishop’s property (β), i.e., if fn(z) is analytic on D and
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(T−z)fn(z) → 0 uniformly on each compact subset of D, then fn(z) → 0
uniformly on each compact subset of D. Hence T has the single valued
extension property.

Corollary 2.3. Suppose that T ∈ k-quasi-paranormal has dense
range. Then T is paranormal.

Proof. Since T has dense range, T (H) = H. Let y ∈ H. Then
there exists a sequence {xk}∞k=1 in H such that T (xk) → y as k → ∞.
Since T is k-quasi-paranormal,〈(T ∗2T 2 − 2λT ∗T + λ2)T kxk, T

kxk〉 ≥ 0
for all k ∈ N and all λ > 0. By the continuity of the inner product,
we have 〈(T ∗2T 2 − 2λT ∗T + λ2)y, y〉 ≥ 0 for all λ > 0, and hence
T ∗2T 2 − 2λT ∗T + λ2 ≥ 0 for all λ > 0. Therefore T is paranormal.

Corollary 2.4. Suppose that T is an invertible k-quasi-paranormal.
Then T and T−1 are paranormal.

Proof. Suppose that T ∈ k-quasi-paranormal is invertible. Then it
has dense range, and so it is paranormal by Corollary 2.3. Hence T−1

is also paranormal.

Corollary 2.5. Suppose that T ∈ k-quasi-paranormal is not para-
normal. Then T is not invertible..

Corollary 2.6. Suppose that T ∈ k-quasi-paranormal is nonzero
and suppose that T has no nontrivial T -invariant subspace. Then T is
paranormal.

Proof. Suppose that T ∈ k-quasi-paranormal. If an operator has no
nontrivial invariant subspace, then it is injective and has dense range.
It follows from Corollary 2.3 that T is paranormal.

3. Generalized Weyl’s Theorem for algebraically k-quasi-
paranormal operators

The following facts follows from the definition and some well known
facts about k-quasi-paranormal operators [30, 29]:
(i) If T ∈ B(H) is algebraically k-quasi-paranormal, then so is T −λ for
each λ ∈ C.
(ii) If T ∈ B(H) is algebraically k-quasi-paranormal and M is a closed T -
invariant subspace of H, then T |M is algebraically k-quasi-paranormal.
(iii) If T is algebraically k-quasi-paranormal, then T has SVEP.
(iv) Suppose T does not have dense range. Then we have:
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T is k-quasi-paranormal ⇔ T =
(

T1 T2

0 T3

)

on H = ran(T k)⊕ ker(T ∗k) where T1 is paranormal operator.
In general, the following implications hold:

paranormal ⇒ k-quasi-paranormal ⇒ algebraically k-quasi-paranormal.

Proposition 3.1. Suppose that T is algebraically k-quasi-paranormal.
Then T has Bishop’s property (β).

Proof. We first suppose that T ∈ k-quasi-paranormal. We consider
two cases:
Case I: Suppose T has dense range. Then T is paranormal by Corollary
2.3, and so it has Bishop’s property (β) by [32, Corollary 3.6].
Case II: Suppose T does not have dense range. It follows from Lemma
2.1 that

T =
(

T1 T2

0 T3

)

on H = ran(T k)⊕ ker(T ∗k) where T1 is paranormal operator. Since T1

is paranormal, it follows from [36, Theorem 2.12] that T has Bishop’s
property (β).

Now suppose that T is algebraically k-quasi-paranormal. Then s(T ) ∈
k-quasi-paranormal for some nonconstant polynomial s, and so it follows
from the first part of the proof that s(T ) has Bishop’s property (β).
Therefore T has Bishop’s property (β) [27, Theorem 3.3.9].

Corollary 3.2. Suppose T is algebraically k-quasi-paranormal. Then
T has SVEP.

Lemma 3.3. Let T ∈ B(H) be a quasinilpotent algebraically k-quasi-
paranormal operator. Then T is nilpotent.

Proof. We first assume that T is k-quasi-paranormal. We consider
two cases:
Case I: Suppose T has dense range. Then clearly, it is paranormal.
Therefore T is nilpotent by [16, Lemma 2.2].
Case II: Suppose T does not have dense range. Then we can represent
T as the upper triangular matrix

T =
(

T1 T2

0 T3

)

on H = ran(T k)⊕ker(T ∗k) where T1 is paranormal operator. Since T is
quasinilpotent, σ(T ) = {0}. But σ(T ) = σ(T1)∪{0}, hence σ(T1) = {0}:
Since T1 is paranormal, T1 = 0 and therefore T is nilpotent. Thus if T is
a quasinilpotent k-quasi-paranormal operator, then it is nilpotent. Now,
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we suppose T is algebraically k-quasi-paranormal. Then there exists
a nonconstant polynomial s such that s(T ) is k-quasi-paranormal. If
s(T ) has dense range, then s(T ) is paranormal. So T is algebraically
paranormal, and hence T is nilpotent by [16, Lemma 2.2]. If s(T ) does
not have dense range, we can represent s(T ) as the upper triangular
matrix

s(T ) =
(

T1 T2

0 T3

)

on H = ran(s(T k))⊕ker(s(T ∗k)) where T1 = s(T )|
s(T )(H)

is paranormal
operator. Since T is quasinilpotent, σ(s(T )) = s(σ(T )) = {s(0)}. But
σ(s(T )) = σ(T1)∪ {0} by [25, Corollary 8], hence σ(T1)∪ {0} = {s(0)}.
So s(0) = 0, and hence s(T ) is quasinilpotent. Since s(T ) is k-quasi-
paranormal, by the previous argument s(T ) is nilpotent. On the other
hand, since s(0) = 0, s(z) = czm(z − λ1)(z − λ2)....(z − λn) for some
natural number m. Therefore s(T ) = cTm(T − λ1)(T − λ2)....(T − λn).
Since s(T ) is nilpotent and T − λi is invertible for every λi 6= 0, T is
nilpotent. Hence the proof.

Theorem 3.4. Let T ∈ B(H) be algebraically k-quasi-paranormal.
Then T ∈ P1(H).

Proof. Suppose T is algebraically k-quasi-paranormal. Then s(T ) is a
k-quasi-paranormal operator for some nonconstant complex polynomial
s. Let λ ∈ E(T ). Then λ is an isolated point of σ(T ) and α(T −λ) > 0.
Using the spectral projection P = 1

2πi

∫
∂D(µ − T )−1dµ, where D is a

closed disk of center λ which contains no other points of σ(T ), we can
represent T as the direct sum

T =
(

T1 0
0 T2

)
,

where σ(T1) = {λ} and σ(T2) = σ(T )\{λ}.
Since T1 is algebraically k-quasi-paranormal, so is T1−λ. But σ(T1−

λ) = {0}, it follows from Lemma 3.3 that T1−λ is nilpotent. Therefore
T1 − λ has finite ascent and descent. On the other hand, since T2 − λ
is invertible, clearly it has finite ascent and descent. Therefore λ is a
pole of the resolvent of T , and hence λ ∈ π(T ). Hence E(T ) ⊆ π(T ).
Since π(T ) ⊆ E(T ) holds for any operator T , we have π(T ) = E(T ). It
follows from Theorem 1.1 that T ∈ P1(H).

We now show that generalized Weyl’s theorem holds for algebraically
k-quasi-paranormal operators. In the following theorem, recall that
H(σ(T )) is the space of functions analytic in an open neighborhood
of σ(T ).
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Theorem 3.5. Suppose that T or T ∗ is an algebraically k-quasi-
paranormal operator. Then f(T ) ∈ gW for each f ∈ H(σ(T )).

Proof. Suppose T is algebraically k-quasi-paranormal. We first show
that T ∈ gW. Suppose that λ ∈ σ(T )\σBW (T ). Then T − λ is B-Weyl
but not invertible. It follows from [7, Lemma 4.1] that we can represent
T − λ as the direct sum

T − λ =
(

T1 0
0 T2

)
,

where T1 is Weyl and T2 is nilpotent.
Since T is algebraically k-quasi-paranormal, it has SVEP. So T1 and

T2 have both finite ascent. But T1 is Weyl, hence T1 has finite de-
scent. Therefore T − λ has finite ascent and descent, and so λ ∈ E(T ).
Conversely, suppose that λ ∈ E(T ). Since T is algebraically k-quasi-
paranormal, it follows from Theorem 3.4 that T ∈ P1(H). Since π(T ) =
E(T ) by Theorem 1.1, λ ∈ π(T ). Therefore T − λ has finite ascent and
descent, and so we can represent T − λ as the direct sum

T − λ =
(

T1 0
0 T2

)
,

where T1 is invertible and T2 is nilpotent.
Therefore T − λ is B - Weyl, and so λ ∈ σ(T )\σBW (T ). Thus

σ(T )\σBW (T ) = E(T ), and hence T ∈ gW.
Next, we claim that σBW (f(T )) = f(σBW (T )) for each f ∈ H(σ(T )).

Since T ∈ gW, T ∈ gB. It follows from [17, Theorem 2.1] that σBW (T ) =
σD(T ). Since T is algebraically k-quasi-paranormal, f(T ) has SVEP for
each f ∈ H(σ(T )). Hence f(T ) ∈ gB by [17, Theorem 2.9], and so
σBW (f(T )) = σD(f(T )). Therefore we have

σBW (f(T )) = σD(f(T )) = f(σD(T )) = f(σBW (T )).
Since T is algebraically k-quasi-paranormal, it follows from the proof

of Theorem 3.4 that it is isoloid. Hence for any f ∈ H(σ(T )) we have
σ(f(T ))\E(f(T )) = f(σ(T )\E(T )).

Since T ∈ gW, we have
σ(f(T ))\E(f(T )) = f(σ(T )\E(T )) = f(σBW (T )) = σBW (f(T )).

which implies that f(T ) ∈ gW.
Now suppose that T ∗ is algebraically k-quasi-paranormal. We first

show that T ∈ gW. Let λ ∈ σ(T )\σBW (T ). Observe that σ(T ∗) =
σ(T ) and σBW (T ∗) = σBW (T ). So λ ∈ σ(T ∗)\σBW (T ∗), and so λ ∈
E(T ∗) because T ∗ ∈ gW. Since T ∗ is algebraically k-quasi-paranormal,
it follows from Theorem 3.4 that λ ∈ π(T ∗). Hence T − λ has finite
ascent and descent, and so λ ∈ E(T ).
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Conversely, suppose λ ∈ E(T ). Then λ is an isolated point of σ(T )
and α(T − λ) > 0. Since σ(T ∗) = σ(T ), λ is an isolated point of σ(T ∗).
Since T ∗ is isoloid, λ ∈ E(T ∗). But E(T ∗) = π(T ∗) by Theorem 3.4,
hence we have T − λ has finite ascent and descent. Therefore we can
represent T − λ as the direct sum

T − λ =
(

T1 0
0 T2

)
,

where T1 is invertible and T2 is nilpotent.
Therefore T − λ is B - Weyl, and so λ ∈ σ(T )\σBW (T ). Thus

σ(T )\σBW (T ) = E(T ), and hence T ∈ gW. If T ∗ is algebraically k-
quasi-paranormal then T is isoloid. It follows from the first part of the
proof that f(T ) ∈ gW. This completes the proof.

Corollary 3.6. Suppose T or T ∗ is algebraically k-quasi-paranormal.
Then

σBW (f(T )) = f(σBW (T )) for every f ∈ H(σ(T )).

An operator X ∈ B(H) is called a quasiaffinity if it has trivial kernel
and dense range. An operator S2 ∈ B(H) is said to be a quasiaffine
transform of T ∈ B(H) (notation: S ≺ T ) if there is a quasiaffinity
X ∈ B(H) such that XS = TX. If both S ≺ T and T ≺ S, then we say
that S and T are quasisimilar.

Corollary 3.7. Suppose T is algebraically k-quasi-paranormal and
S ≺ T . Thenf(S) ∈ gaB for each f ∈ H(σ(S)).

Proof. Suppose T is algebraically k-quasi-paranormal. Then T has
SVEP. Since S ≺ T , f(S) has SVEP by [16, Lemma 3.1]. It follows from
[27, Theorem 3.3.6] that f(S) has SVEP. Therefore f(S) ∈ gaB by [2,
Corollary 2.5].
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