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A FOURTH-ORDER FAMILY OF TRIPARAMETRIC
EXTENSIONS OF JARRATT’S METHOD

Young Ik Kiv*

ABSTRACT. A fourth-order family of triparametric extensions of
Jarratt’s method are proposed in this paper to find a simple root
of nonlinear algebraic equations. Convergence analysis including
numerical experiments for various test functions apparently verifies
the fourth-order convergence and asymptotic error constants.

1. Introduction

Fourth-order iterative methods have been introduced by many re-
searchers such as Argyros-Chen-Qian[1], Chun-Ham|2,3], Jarratt[4], King
[5], Kou-Li-Wang]6,7], Noor-Ahmad[8], and Traub[9]. Especially, clas-
sical Jarratt’s method[4] free from second derivatives has been widely
used to numerically find a simple root of a nonlinear algebraic equation
f(x) = 0. In this paper, a parametrically extended family of Jarratt’s
methods are proposed with their convergence results. Let f : C — C
have a simple root o and be analytic in a small region containing a. A
parametric family of two-step iterative methods are considered below:
forn=0,1,---,

o S
Yn = Tn =" Flz,) (1.1)
n+1 n PN E e )+ (=€) T (yn)

where

a4 b ) () + of ()
K@) = Gy + wf@n) Fum + 0= — o) fe. 2
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with @ = 5;{40(4€ + 7) + 10w + 26(4w 4+ 5) — 1},b = —3{3(£ — 1) +
20(4€ +5) + (4€ + 3w}, c = ﬁ{40(3 +4€) 4+ 2(1 + 48w + 2¢ — 3} by
means of three independent parameters £, 6 and w in C.

A special case with a triple of parameters (§,60,w) = (1,0,—1/2)
or (1,—1/2,3/2) yields classical Jarratt’s method. Other interesting
choices of pairs (£, 8, w) will be discussed in Section 2. Observe that (1.1)
has only three function evaluations per iteration and is free from second
derivatives. The main aim of this paper is to show iteration scheme (1.1)
has fourth-order convergence as well as to express the asymptotic error
constant in terms of f,a and a triple of parameters (£, 6, w).

2. Method development and convergence analysis

The convergence property of iterative method (1.1) is best illustrated
in Theorem 2.1 stated below:

THEOREM 2.1. Let f and o be described as in Section 1. Let ¢; =

) .
% for j = 2,3,---. Assume that all three values cy,c3 and ¢4 are
not vanishing simultaneously. Let xqg be an initial guess chosen in a
sufficiently small region containing «. Let (§,0,w) be a pair of indepen-
dent parameters to be freely chosen. Then iteration scheme (1.1) is of

fourth-order and its asymptotic error constant n is given by

1
=51 —816203+904+c§{329(7£+2)+8w(10§—1)—85—1—125}‘. (2.1)

Proof. Taylor series expansion of f(x,) about a up to fifth-order
terms yields with f(a) = 0:
f(an) = f'(a)(en + c2e) + csep, + caey +esep +0(en)), (2:2)

where e, = z, — a for n = 0,1,2,---. For ease of notation, e, will
be denoted by e (not to be confused with Napier’s base for natural
logarithms) for the time being. A lengthy algebraic computation induces
relations (2.3)-(2.6) below:

f'(zn) = f'(@)(1 + 2coe + 3eze? + 4eqe® + 5ese + O(e?)), (2.3)

7 = e — e +2(c3 — c3)e® + (—4c3 + Teaes — 3cd)e?

+(8¢3 — 20c3c3 4 6¢2 4 10cocy — 4es)e® + O(e9), (2.4)
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f(zn
; /( )
—2(c3 — e3)ve® + y(4c3 — Teaes + 3cd)e

=a+(1—7)e+ yee?

Yn = Tn —

+27(4c5 — 10c3¢3 + 3¢3 + Beacy — 2¢5)e® + O(e%),  (2.5)

Flyn) = f'(@)(1=2(y = Dese + (3(y — 1)?es + 2ye3)e” +2(—2(v — 1)°cy
Fyca(—2¢5 + e3(5 — 37)))e® + (5(y — 1)*es + v(8ch — 12(y — 1)c3
+(157 — 26)c3cs + 6(29% — 4y + 3)caca))et + O(e?)).  (2.6)
Let Ky(xy) in (1.2) be written in a more generalized form as
M @) 4 S ) I ) + iof ()
Bf (@n)? + pf'(xn) [ (yn) + o f'(yn)*’
where v, A, 6, i, B, p and o are constant parameters to be determined

later. Substituting relations (2.1) - (2.7) in (1.1) by the aid of symbolic
computation of Mathematica, x, 11 can be written as with S+ p+oc # 0O:

Kj(xa) (2.7)

Tnil =+ A A 2y A 3
" B+p+o)  (B+p+a)2 T (B+pto)3
0] 2.8
G, ot o), (2.8)

where A; = A; (&, N, 0, 1, B, p,0,7)(i = 1,2,3,4) are multivariate polyno-
mials in &, \, 0, i, 3, p,o and =, for instance, A1 = (v —1)(B+p+o0) +
A+ 9+ p. We impose conditions A; = Ay = A3 = 0 and Ay # 0 for
iteration scheme (1.1) to have fourth-order convergence. Solving A; =0
for p yields

p=-XA=0+1—-7y)(B+p+o0). (2.9)
Substituting this y into Ao = 0 after simplification with 8+ p+ 0 # 0
yields

o B(L+29(14+8) —29°(148)) + (1 + 296 — 27°€)p
+(1+29(=1+ &) = 29%(=1 + €))o — 4yA} = 0,
from which it follows that
BAY =4y =D+ p2 =2y -D+4A -0
2y

§=—

LY #0,  (210)
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being independent of ¢3. Substituting 4 and § found by (2.9) and (2.10)
into As = 0 after simplification with 8+ p 4+ o # 0 yields

0, 31 =2) 52108+ 272~ 29°0) + (1 = 7+ 78)p + Ko — 29°A
’ B+p+o0)

2
— 0, (2.11)
where £ = 1—2y4272—2v34+~(1-2v+272)¢. To determine &, 3,7, p, o, A
independently of ¢z and c3, we set (37 —2) = 0 and B(1 + & + 272%¢ —
2v36) + (1 — vy +~E)p + ko — 292X = 0 and get
1 2
A= ﬂ{ﬂ(%ﬁ +27)+9(1+28)p+ (10§ — 1)o}, v = 3 (2.12)

Substituting these A and v into (2.9) and (2.10) also yields
1
= g 09801 +26) + (10€ — 1)p+ (26 — 3)o},

5= —é{ﬂ(11§+7)+7€p+3(§— 1o, (2.13)

Substituting these u, o, A and v into A4 and restoring notation e back
to e, in (2.8) yields the asymptotic error constant 7 with convergence
order 4 as follows:

= lim Enti
e
27B(T + 8€) + 9(S€ + 13)p — (3¢ — 125)0
— -9 3 2.14
904 cacs + ¢ 95+ p+o) s ( )

where &, 3, p, o are free parameters, but only two of g, p, 0 can be chosen
independently of each other. To see this, welet 7 = 4+p+0 #0, 3 =70
and p = 7w. Then we have 0 = 7(1 — § — w) and
273(7 + 8¢) + 9(8¢ + 13)p — (8¢ — 125)0
B+p+o
=125 — 86 +320(2+ 7€) + 8(—1 + 108w (2.15)

as well as
A= iT{‘lQ(‘l& +7) + 10w + 26 (4w + 5) — 1},
§ = — ST IB(E 1) + 26(4€ + 5) + (46 + 3w},

s 57{49(3 +4€) + 2(1 + 46)w + 26 — 3. (2.16)

Substituting A, d, 4, 3, p, o expressed by 6 and w into (2.7) finally yields
(1.2) after simplifications. Combining (2.15) with (2.14) immediately
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gives the desired asymptotic error constant (2.1). This completes the
proof. ]

REMARK 2.2. (1) Although a parameter 7 # 0 was introduced,
relations (1.2) and (2.1) are free of 7, acting only as a scale factor
of originally given parameters &, \, 6, u, 5, p and o.

(2) As mentioned in Section 1, a choice of (§,0,w) = (1,0,—1/2) or
(1,-1/2,3/2) leads to an expression of Kf(xy) in the form:
R 7f(xn) — 31 (yn)

6 f'(wn) = 3f"(yn) ’

which is identical with that of classical Jarratt’s method.

K () = (2.17)

(3) Other interesting choices of (§,0,w) are (1,0,0) and (1,0,1), in-
cluding a vairety of choices displayed in Table 1. Such choices de-
fine many new iterative methods of order 4, among which cases
1, 2 and 7 are paid attention to the numerical experiments to
be shown in Section 3. Notaional convenience Vi (vy,) = Kf(xy)
with v, = f'(yn)/f'(zy) plays a role in coding numerical Algo-
rithm 3.1.

TABLE 1. Various choices of (§,0,w) for Kf(xy) or Vi(vy,)

Case (&, 0,w) Ky(xn) Vi (vn)*
1 13 1, 7f (zn)=3f" (yn) 1(7—3vp
0 || @W0=3)or(t=3,3) RN A= TH TS —1(E)
1,9 (@)= F"(yn) 3 1
' (1,0,0) R (A Sor ~ 1
3f (yn) _ 9f'(=zn) _ 7 3 9 7
2 (1;07 1) 8f/(1n2) T 8 (yn) 6 an “ Bu, 6
9f (yn) 3f (yn) , 53 992 3v, , 53
3 (1,1,0) 87 (en)? 8 (xn) T 24 R S 71
4 (1 _9 0) _f/('yn) . 81f/(xn)*37f/<yn) l(37_81/1’i)
» T a4 3 9F ()2 —53f (yn)2 3\9/02 53
5 (1,0, %) 1, ) | 27 (@) =T (yn) ;(27/11”—7)
77710 6 flyn)  f(@n)+9f (yn) 6\ 1+9v,
6 (1,0, 1) f'(@n) | 37f (2n)=9f (yn) 1(37=0u,)
128 3 I (@n)2 4271 (yn)? 3112702
7 1 7 @) 1 27f/(yn)2*115f/(xn)2 1 271)%_115
( » T 110 11 24f(zp)  TF (xn)—18F (yn) 24( 7—18v,, )
S (1,27, 53) _ 1. fyn) | 115f (@n)—63f (yn) _;(115763%)
726726 6 f'(xzn) 27f(xn)—53f"(yn) 6\27/vy, —53
9 (1 27 _ﬂ) 16 | f/(xn)f/(yn) 16
7167 8 3 27f/(xn)2—T4f (zn) [/ (yn)+63f/ (yn)? 3(27/vn —T4+63vy)
10 (1,2, -2) 16 "(@n)? 16
’16° 8 3 T (xn)2—18f (zn) f/ (yn)+27Ff (zn)? 3(7—18v,+270v2)
11 (1 63 Q) 16 | ' (yn)? 16
» 160 8 3 63f (£n)2—162f(xn) f (yn)+115f (yn)? 3(63/v2 —162/v,+115)

* Vi(vn) = K¢ (@n), vn = f'(yn)/f'(@n), yn = xn — f(zn)/ [ (2n).
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3. Algorithm, numerical results and discussions

The analysis described in Section 2 allows us to develop a zero-finding
algorithm to be implemented with Mathematica[10]:

Algorithm 3.1 (Zero-Finding Algorithm)

Step 1. Construct iteration scheme (1.1) with the given function f hav-
ing a simple zero « for n € NU {0} as mentioned in Section 1.

Step 2. Set the minimum number of precision digits. With exact zero
« or most accurate zero, supply the asymptotic error constant 7, order
of convergence p as well as ¢, c3,cq,0 and w stated in Section 2. Set
the error bound €, the maximum iteration number n,,4, and the initial
guess 9. Compute |f(zo)| and |xg — « |.

Step 3. Tabulate the computed values of n, x,, |f(x,)|, |en] = |zn—al,
‘€n+1/enp| and 7).

Throughout the numerical experiments, the minimum number of pre-
cision digits was chosen as 256, being large enough to minimize round-off
errors as well as to clearly observe the computed asymptotic error con-
stant requiring small-number divisions. The error bound € = 0.5x 107192
was used for moderately accurate computation. The values of initial
guess xg were selected closely to a to guarantee convergence of itera-
tive methods. The computed asymptotic error constant agrees up to 10
significant digits with the theoretical one. The computed zero is actu-
ally rounded to be accurate up to the 192 significant digits, although
displayed only up to 15 significant digits.

Iteration scheme (1.1) applied to test functions f(z) = sin®? z — 22 +1
and e~ % sin x +log[1 + (x —7)?] clearly shows successful asymptotic error
constants with fourth-order convergence for suitable initial values cho-
sen near «. Tables 2 and 3 list iteration indexes n, approximate zeros
Zn, residual errors |f(x,)|, errors |e,| = |z, — | and computational as-
ymptotic error constants |e,+1/e,*| as well as the theoretical asymptotic
error constant 7.

Convergence behavior was confirmed for further test functions that
are listed below:

fi(z) = cos(%E) + log(a? 4+ 22+ 2), a = —1, 2o = —0.8

fo(z) = 23 + 422 — 10,

a=—3+ (71 — 3v105)/3 + 1(71 + 3v/105)Y/3, 20 = 0.8

f3(z) = ze™ —sin x+3cosz+5, o = —1.207647827130918, 29 = —2

fa(z) = e®sinx + log(1 + 2?), a = 0,79 = 0.1

fs(x) = (&% + 1)sin(]) + rpgy + 370 @ = ~2,20 = —1.2
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TABLE 2. Asymptotic error constant for f(z) = sin®x —

22 + 1 with a ~ 1.40449164821534
n Zn [f ()] len] = [zn —a] | lenti/en’] |7
0 0.8 0.874600 0.604492
1 || 1.72313078087797 0.992207 0.318639 2.386370609
2 || 1.40723164558655 0.00681658 0.00274 0.2657992194
3 || 1.40449164824959 | 8.50264x10~11 | 3.42507 x 10~ | 0.6076716039 | 0.6121130898
4 || 1.40449164821534 | 2.09119x10~42 | 8.42383 x 10~43 | 0.6121130898
5 || 1.40449164821534 | 7.65165x10~169 | 3.08227 x 10—169 | 0.6121130898
6 || 1.40449164821534 0.x10—256 0. x 10255

TABLE 3. Convergence for f(z) = e *sinx+log[l+ (z—

7)?] with o = 7
n T [ (@n)] len] = [n — o] | lenti/en] | 0
0 2.0 0.957374 1.14159
1 || 2.94096965534875 0.0499855 0.200623 0.1181234316
2 || 3.10197254278276 0.00334939 0.0396201 24.45641638
3 || 3.13862854247199 | 0.000137257 0.00296411 1202.906127 | 20311.89896
4 || 3.14159149745019 | 4.99627x10~8 | 1.15614 x 10~6 | 14977.25958
5 || 3.14159265358979 | 1.56806x 1021 | 3.62859 x 10720 | 20309.40092
6 || 3.14159265358979 | 1.52169x10~ 75 | 3.52130 x 10~74 | 20311.89896
7 || 3.14159265358979 0.x10—256 0. x 10—255

TABLE 4. Comparison of (v, N¢) for various iterative methods
(v,Ny)

f(=x) xo NM JM ™ KM | KLW CH YK1 YK2 | YK7
fi —0.8 | (8,16) | (4,12) | (4,12) | (4,12) | (4,12) | (4,12) | (4,12) | (4,12) | (4,12)
f2 0.8 | (9,18) | (5,15) | (5,15) | (7,21) | (5,15) | (5,15) | (5,15) | ((5,15) | (5,15)
f3 =2 | (12,24) | (6,18) | (6,18) | (7,21) | (6,18) | (7,21) | (6,18) | (6,18) | (5,15)
fa 0.1 (8,16) | (4,12) | (4,12) | (5,15) | (5,15) | (5,15) | (5,15) | (5,15) | (4,12)
fs =12 | (9,18) | (5,15) | (5,15) | (5,15) | (5,15) | (5,15) | (4,12) | (4,12)) | (5,15)
fe 1.5 | (9,18) | (5,15) | (5,15) | (6,18) | (5,15) | (5,15) | (5,15) | (5,15) | (4,12)
fr 0.9 | (8,16) | (5,15) | (5,15) | (5,15) | (5,15) | (5,15)) | (5,15) | (5,15) | (5,15)

f
f

7(x) =2t +sin(%) -5, a= V2,20 =0.9

6(z) = 22+ m—sin2? +log(x? +7+1), a = iy/7, o = 1.5i, i = /—1

Table 4 lists pairs of iteration number v and number of function eval-
uations Ny within the prescribed error bound for various fourth-order
methods with the same efficiency index|[9] plus classical Newton’s method.
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The listed method names are abbreviated by the following:
NM: classical Newton’s method:

f(an)

Tntl = Tp — f’((l? )
n

JM: Jarratt’s method:

Trpl = (1_§ f(@n) — f(yn) ) f(@n)
2 fl(@n) = 3f'(yn)” ['(2n)

TM: Traub-Ostrowski’s method:

f(@n) = f(yn) ) f(zn)

, with y, = x, —

Tt = flan) =2f(yn)  f'(zn)’ Wt Yo = f'(@n)
KM: King’s method with 5 = 3:

, With Yn, = T, —

= G D) Pl J(an)
KLW: Kou-Li-Wang’s method|[7]:
@R 1 )
T ) — fn)) Pl T i)
CH: Chun-Ham’s method[3]:
o f(@n) + f(yn) 2_ f(yn) wi — f(zn)
Tn+1 = Yn ( f(xn) ) fl(xn)7 th y, = oy f/(fnn) .

YKi: proposed method (1.1) that is identified by case number i(1,2,7)
in Table 1.

The comparison in Table 4 suggests that proposed method (1.1) can
compete with classical Jarratt’s method. In particular, YK7 shows
slightly better performance than other listed methods. The efficiency
index[9] defined by *EFF = p'/¢ with p as the order of convergence
and d the number of new evaluations of f(z) or its derivatives per itera-
tion, is found to be 41/3 ~ 1.5874 which is better than /2, the efficiency
index of Newton’s method.
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