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FRACTIONAL RELLICH-KONDRACHOV
COMPACTNESS THEOREM

YouNnc JA PARkK*

ABSTRACT. It is proved that the fractional Sobolev spaces W (R™),
0 < s < n, are compactly embedded into Lebesgue spaces L7(2)
for some bounded set 2.

1. The main result

It has been derived a fractional version of Rellich-Kondrachov com-
pactness theorem. The classical theorem says that some Sobolev spaces
I/Vp1 (R™) with regularity one are compactly embedded to some Lebesgue
spaces L4(Q2) for some bounded open set 2 (with smooth boundary).
This paper proves that one may still have the same kind of compactness
result with only small amount of regularity s, 0 < s < 1. The result is
stated as follows:

THEOREM 1.1. Let 0 < s <n, 1 <p<Zand1<q< nﬁz;p' Also,

let {un,} be a sequence in LY(R™) and Q be a bounded open set with
smooth boundary. Suppose that

/ ) VI = A up, (2)Pda:

are uniformly bounded, then {u,,} has a convergent subsequence in
L1(Q).

Among some equivalent definitions of the fractional Laplacian, we
employ it as
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and also /1T — A°¢ := F~ 1 ((1 + - |)*F(¢)), where @t = F(u) represents

the Fourier transform of u on R™ defined by

F&=FNE = [ fla)e ™ de

R

for f € L*(R™) N L2(R™).

2. The proof

Let ¢ be a smooth non-negative function with support in {z : |z| < 1}
and with f 2|<1 ¢(x)dx = 1, and define ¢'(x) := "¢(¢x). In this proof,
the notation X <Y means that X < CY for some fixed but unspecified
constant C.

By virtue of the fractional Sobolev inequality[3, 6], it can be observed
that

(D) lwmllzro = H\/I‘SumHLp(Rn) S HmsumHLP(R

with r = for any compact subset K of 2. Hence in the spirit of

n—ps
Frechet-Kolmogorov theorem, it suffices to show the following (see page
50 in [7]): for any £ > 0 and any compact subset K of Q, there is a

constant M > 0 such that for £ > M,
16 % w — ul| pag) < €,

for all u € S(R™) with ||v/1 — AsuHLp &y < 1. Then using the interpo-
lation inequality, we have

Z 0 129
16 % w = ull parey < 2 llull {107 * =l G

with 17%9 +60= % and r = 7;5. Consequently, (1) implies that

6 % u —ullpagry S 16" # u — UH?;l(K)

Now we define g := /1 — A’u to have u = G, * g and ||g|z» < 1,
where G is the Bessel kernel of order s. Therefore we obtain

16 s u—ull 1) S 10 % Gs — Gs) # gl Lorny S 1|6 % Gs — G|l i (rny — 0

as ¢ — oo. This completes the proof. O
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