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FRACTIONAL RELLICH-KONDRACHOV
COMPACTNESS THEOREM

Young Ja Park*

Abstract. It is proved that the fractional Sobolev spaces W s
p (Rn),

0 < s < n, are compactly embedded into Lebesgue spaces Lq(Ω)
for some bounded set Ω.

1. The main result

It has been derived a fractional version of Rellich-Kondrachov com-
pactness theorem. The classical theorem says that some Sobolev spaces
W 1

p (Rn) with regularity one are compactly embedded to some Lebesgue
spaces Lq(Ω) for some bounded open set Ω (with smooth boundary).
This paper proves that one may still have the same kind of compactness
result with only small amount of regularity s, 0 < s < 1. The result is
stated as follows:

Theorem 1.1. Let 0 < s < n, 1 < p < n
s and 1 ≤ q ≤ np

n−sp . Also,

let {um} be a sequence in Lq(Rn) and Ω be a bounded open set with
smooth boundary. Suppose that∫

Rn

|
√

1−∆
s
um(x)|pdx

are uniformly bounded, then {um} has a convergent subsequence in
Lq(Ω).

Among some equivalent definitions of the fractional Laplacian, we
employ it as √

−∆
s
φ := F−1(| · |sF(φ))
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and also
√

1−∆ s
φ := F−1 ((1 + | · |)sF(φ)), where û = F(u) represents

the Fourier transform of u on Rn defined by

f̂(ξ) = F(f)(ξ) =
∫

Rn

f(x)e−ix·ξ dx

for f ∈ L1(Rn) ∩ L2(Rn).

2. The proof

Let φ be a smooth non-negative function with support in {x : |x| ≤ 1}
and with

∫
|x|≤1 φ(x)dx = 1, and define φ`(x) := `nφ(`x). In this proof,

the notation X . Y means that X ≤ CY for some fixed but unspecified
constant C.

By virtue of the fractional Sobolev inequality[3, 6], it can be observed
that

‖um‖Lr(K) .
∥∥∥
√
−∆

s
um

∥∥∥
Lp(Rn)

.
∥∥∥
√

1−∆
s
um

∥∥∥
Lp(Rn)

. 1(1)

with r = np
n−ps for any compact subset K of Ω. Hence in the spirit of

Frechet-Kolmogorov theorem, it suffices to show the following (see page
50 in [7]): for any ε > 0 and any compact subset K of Ω, there is a
constant M > 0 such that for ` ≥ M ,

‖φ` ∗ u− u‖Lq(K) < ε,

for all u ∈ S(Rn) with ‖√1−∆ s
u‖Lp(Rn) . 1. Then using the interpo-

lation inequality, we have

‖φ` ∗ u− u‖Lq(K) ≤ 21−θ‖u‖1−θ
Lr(K)‖φ` ∗ u− u‖θ

L1(K),

with 1−θ
r + θ = 1

q and r = np
n−ps . Consequently, (1) implies that

‖φ` ∗ u− u‖Lq(K) . ‖φ` ∗ u− u‖θ
L1(K).

Now we define g :=
√

1−∆ s
u to have u = Gs ∗ g and ‖g‖Lp . 1,

where Gs is the Bessel kernel of order s. Therefore we obtain

‖φ` ∗u−u‖L1(K) . ‖(φ` ∗Gs−Gs)∗g‖Lp(Rn) . ‖φ` ∗Gs−Gs‖L1(Rn) → 0

as ` →∞. This completes the proof. 2
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