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ON CONVERGENCE THEOREMS FOR THE MCSHANE
INTEGRAL ON TIME SCALES

XUEXIAO YOU* AND DAFANG ZHAO**

ABSTRACT. In this paper, we study the process of McShane delta
integrals on time scales and discuss the relation between McShane
delta integral and Henstock delta integral. We also prove the mono-
tone convergence theorem, Fatou’s Lemma and the dominated con-
vergence theorems for the McShane delta integral.

1. Introduction

The calculus on time scales was introduced for the first time in 1988
by Hilger [1] to unify the theory of difference equations and the theory of
differential equations. It has been extensively studied on various aspects
by several authors [2-8]. Surprisingly enough, the McShane integral has
not received attention in the literature of time scales. In this paper, a
treatment of the McShane integral on time scales is given. We prove
the monotone convergence theorem and the dominated convergence the-
orems for the McShane delta integral. The McShane nabla integral may
be treated in a similar way.

2. Definitions and basic properties

A time scale T is a nonempty closed subset of real numbers R with the
subspace topology inherited from the standard topology of R. For ¢t € T
we define the forward jump operator o(t) by o(t) = inf{s >t :s € T}
where inf () = sup{T}, while the backward jump operator p(t) is defined
by p(t) = sup{s < t : s € T} where sup@) = inf{T}. If o(t) > ¢, we say
that ¢ is right-scattered, while if p(t) < t, we say that ¢ is left-scattered.
If o(t) = t, we say that ¢ is right-dense, while if p(¢) = t, we say that
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t is left-dense. The forward graininess function u(t) of ¢ € T is defined
by u(t) = o(t) — t, while the backward graininess function v(t) of t € T
is defined by v(t) =t — p(t). For a,b € T we define the closed interval
[a,b]T by [a,br ={t € T:a <t <b}.

Throughout this paper, all considered intervals will be intervals in
T. A partition D of [a,b]r is a finite collection of interval-point pairs
{([ti—lyti]’ﬂ‘;gi)}?:p where {a =t < t1 <+ < ipo1 <ty = b} and
& € la, by for i = 1,2,--- ,n. By At; = t; — t;_1 we denote the length
of the ith subinterval in the partition D. §(&) = (6.(£),0r(§)) is a
A—gauge for [a, b]t provided d1,(£) > 0 on (a,b], r(£) > 0 on [a,b)T,
dr(a) > 0,0r(b) > 0 and 0r(§) > w() for all £ € [a,b)r. We say that
D = {([ti-1, tilr, &)}y 18

(1) ¢ - fine McShane partition of [a, bt if [t;—1,t:]T C (& —0r(&), &+
0r(&))r and & € [a, b for all i=1,2,--- n,

(2) 6 - fine Henstock partition of |a,b|r if it is a 0 - fine McShane
partition of [a, bl and satisfying &; € [t;—1,t;]T.

Given a ¢ - fine McShane partition D = {([ti—1, t;]T, &) iy we write

S(f,D) = f&)(ti —tin)
i=1

for McShane A—sums over D, whenever f : [a, by — R.

DEFINITION 2.1. A function f : [a,b]r — R is McShane delta inte-
grable (McShane A—integrable) on [a, b]r if there is a number A such
that for each € > 0 there is a A—gauge, 4, for [a, b such that

1S(f,D) - Al <€

for each é- fine McShane partition D = {([ti—1,ti|T, &)}y of [a,b]r.
A is called the McShane A—integral of f on [a,b]r, and we write A =

1P r6)At or A= (M) [P F(D)AL.

Replacing the term McShane partition by Henstock partition in the
definition above we obtain Henstock A—integrability and the definition
of the Henstock A—integral (H) f; f(t)At.

The basic properties of the McShane A—integral, for example, linear-
ity and additivity with respect to intervals are similar to the Henstock
A—integral case. We do not present them here. The reader is referred
to [4] for the details.

By the definitions of Henstock A—integral and McShane A—integral
and the fact that each d—fine Henstock partition is also d—fine McShane
partition, we get immediately the following theorem.
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THEOREM 2.2. If f is McShane A—integrable on [a,b|T, then f is
Henstock A—integrable on [a, b]T.

REMARK 2.3. The following example shows that the converse of The-
orem 2.2 is not true. In other words, there exists a function which is
Henstock A—integrable but is not McShane A—integrable.

EXAMPLE 2.4. Let T = {t = 1 : n € N}|J{0} and define a function
f:T— R by

(=1)"n ift= %,

(2.1) 1) = {C ift =0

where C' is any constant. In [4], Allan Peterson and Bevan Thompson
proved that f is Henstock A—integrable on [0, 1|7 but is not absolutely
Henstock A—integrable(i.e. both f and |f| are Henstock A—integrable).
In fact, if f is McShane A—integrable on [0, 1]t then so is | f|. Further,
we also can prove the equivalence of McShane A—integrl and absolutely
Henstock A—integrl. Since the proof is similar to the proof of Theorems
3.12.5 in [9] and hence be omitted. So we have that f is Henstock
A—integrable but is not McShane A—integrable.

LEMMA 2.5. (Saks-Henstock) Let f : [a,b]r — R is McShane A—
integrable on [a,b]y. Then for each € there is a A—gauge, ¢, for [a,b]T
such that

b
(/D) - / (DAL < ¢

for each d—fine McShane partition D of [a,b]y. Particularly, if D' =
{([ti=1,ti]T, &) }i2y is an arbitrary 0- fine partial McShane partition of
[a, b]T, we have

S0 -3 [ roar<e
i=1Jti-1

Proof. The proof is similar to the case for Henstock integrable func-
tions and the reader is referred to [9, Theorem 3.2.1.] for details. O

3. Convergence theorems

LEMMA 3.1. Let f,, f : [a,b]r — R. Assume that each f, is McShane
A—integrable on [a,blt, f(t) = >, fn(t) pointwise on [a,b]r, and

S0 2 fa(8)| At < 00, Let sy(t) = XK, fult), then
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(1) f is McShane A—integrable on [a,b|y with

b b o b
/a f(#)At = Jim i sk(t)At:;/a Fu(t)At

b

lim |sk(t) — f(t)|At = hm/\ Z fa(t)|At = 0.

k—oo J, o I

Proof. Let € > 0 and A = Y 7, f fn(t)At. Since A is finite, then
we can choose N € N such that

Z ]fn )AL < e.

n=N"%

For each k, s is McShane A—integrable and there is a A—gauge, g,
on [a, b]T such that

b
S, D0) ~ [ (0 <

for each dp—fine partition Dy, of [a, b]T.
Define a function g : Rt — R by g(t) = ; Zn 127" X {tn—1<|t|<n}-
Then ¢(t) is McShane A—integrable on Ry [ J{—o00, 400} and

1
/ g(t)At = —.
Ry {00,400} 2
Let 64 be a A—gauge such that [S(g,D fR (tH)At] < 2 for each

g ﬁne partition D4 of Ry. Further, we have

1
0<5(9,Dy) < / gt)At + - =
Ry 2

whenever Dy is a d;—fine partition of [a, b]r.
Since sy converges pointwise to f, for each & € [a, b]t, we can choose
an k(§) € N such that k() > N and [s(§) — f(§)| < eg(§) for k > k(§).
Define a A—gauge on [a, b|t by setting §(§) = (d1(€), dr(&)) such that

51.(€) = min{82(€), 559 (&)}, 0r(€) = min{6%(€), 657 ()}

for all € € [a, b]r.
Let D = {([ti—1, ti]T, &) }"q be a d—fine partition of [a, bl and

M= max{k(£1)>k(§2)a T ak(‘sm)} > N.
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Then we have

IS(f, D) — A
m oo 00 t;
—\ZEM@M—Z/ﬁMM
i=1 n=1 n=1"ti-1
m k(&) RED)
DS WADIVED S QFACIY
i=1 n=1 n=17ti—1
m () m () t;
i=1 n=k(&)+1 i=1 n=k(g)+1 " ti-1
m t;
< ‘Z[Sk(éi)(fz‘)Ati_/ Sp(e) (DAL
i=1 ti-1
m 00 m 00 t;
15D SEFAGIES SED SR RRTAGI
i=1 n=k(&)+1 i=1 n=k(g;)+1 7 ti-1
<Y Y @t - [ s
n=N k(&;)=n tiz1
m oo b
DT CEFGIEED i MIAGI
i=1 n=N"%
M t m
< > [Sk(e,) (&) At —/ suie) (DAL + ) eg(&)At; + €
=N k(&)=n ti-1 i=1
M €
< 227+65(9,D)+6
n=1
< 3e.

It follows that f is McShane A—integrable on [a, bl with

b b 0 b
/ fOAt= lim [ sp(t)At = Z/ Fa(®)AL.
@ n=17¢

k—oo J,

Finally, for kK > N, we have that

b b b
1/%@m-—/fwM§/wMPﬂmm
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/\ Z falt |At<Z/!fn )AL < e

n=k+1

then f fAt = hmk_wof sk(t)At and f |sk(t) — f(t)|At — 0, com-
pleting the proof. O

REMARK 3.2. The Lemma 3.1 also holds if the interval [a, b]T is un-
bounded.

THEOREM 3.3. (Monotone Convergence Theorem). Let f,, f : [a,blT —
R and assume that

(1) Jn < fnt1 on [a b]'[[‘;
(ii) f, is McShane A—integrable and sup,, f frn(t)At <00, n e N;

(iii) f, — f in [a,b]T.
Then f is McShane A—integrable on [a,b]T and

/abf(t)At:/lenllq:ofn(t)At:nllr{:O/CLbfn(t)At

Proof. Set fo =0 and g, = f, — fn_1 for n > 1. Then g, > 0 and

n
Jam 2 on = i fu=f

So we have that
o0 b n b
S [amtoar = tim Y [ (R0 - fae)ar
n=1"4 k=179

b b
= lim fn( VAt = sup/ fn(t)At < 0.

n—oo

Consequently, from Lemma 3.1 we have

/abf(t)At:/a lim fu(t)At = Z/ gn(t At_nlggo fn()

O]

LEMMA 3.4. (Fatou’s Lemma) Let f,,g : [a,blr — Rt be McShane
A—integrable for n = 1,2---. Assume that f, > g and

n—oo

b
liminf [ f,(t)At < .
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Then f = liminf,, . f, is McShane A—integrable on [a,b]T and

b b
/ f(t)At:/ liminf f, (¢ At<hm1nf/ fn(t)

n—oo
Proof. Let g, = infy>, fi for n = 1,2,---, then g, is McShane
A—integrable on [a,blyr and g, increases monotonically to f. Since
gn < f, for all n, we have

b b b
/ g1(t)At < lim gn(t)At < liminf fn(t)At

n—oo a n—oo

From Theorem 3.3 we have that f is McShane A—integrable on [a, b]T
and

b b
/f(t)At: lim [ gn(t)At.

—
n—oo a

O]

THEOREM 3.5. (Dominated Convergence Theorem) Let f,, g : [a, b]t
— R be McShane A—integrable and suppose that |f,| < g for n =
1,2+ . If f =limp—oo fn, then f is McShane A—integrable and

b b b
/ FOAL = / Tim_ f()Af = lim / (D) At

Proof. From Lemma 3.4 we have that f is McShane A—integrable on
[a, b]T. Applying Fatou’s Lemma to the sequences {f,} and {—f,}, we
have that

b b
/f(t)At = /hH_l}nffn( )At<hm1nf/ fn(t)

b
hmsup/ fnlt At</ hmsupfn(t)At:/ f(t)At

and the result follows.

COROLLARY 3.6. Let f,,g : [a,blr — R be McShane A—integrable
and suppose that |f,(t)| < g(t) a.e. fort € [a,b]y. If f,, — f a.e. in
[a,b]T, then f is McShane A—integrable and

IN

b
lim |fn( ) — F)|AL=0.

n—oo

Acknowledgement

The authors are grateful to the referee for his or her careful reading
of the manuscript and for valuable and helpful suggestions.



400

(1]
2]
3]
(4]

(5]

[10]
(11]
(12]
(13]

(14]

*

Xuexiao You and Dafang Zhao

References

S. Hilger, Fin Makettenkalkl mit Anwendung auf Zentrumsmannigfaltigkeiten,
Ph. D. Thesis, Universtat Wurzburg, 1988.

S. Hilger, Analysis on measure chainsA unified approach to continuous and
discrete calculus, Results Math. 18 (1990), 18-56.

M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales,
Birkhauser, Boston, 2004.

A. Peterson, B. Thompson, HenstockCKurzweil Delta and Nabla Integrals, J.
Math. Anal. Appl. 323 (2006), 162-178.

G. Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl. 285 (2003),
107-127.

G. Sh. Guseinov, B. Kaymakcalan, Basics of Riemann delta and nabla integra-
tion on time scales, J. Difference Equations Appl. 8 (2002), 1001-1027.

S. Avsec, B. Bannish, B. Johnson, and S. Meckler, The Henstock-Kurzweil
delta integral on unbounded time scales, PanAmerican Math. J. 16 (2006), no.
3, 77-98.

B. S. Thomson, Henstock-Kurzweil integrals on time scales, PanAmerican
Math. J. 18 (2008), no. 1, 1-19.

L. P. Yee and R. Vyborny, The integral, An Fasy Approach after Kurzweil
and Henstock, Australian Mathematical Society Lecture Series 14, Cambridge
University Press, 2000.

C. W. Swartz, Douglas S Kurtz, Theories of Integration: The Integrals of
Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane, World Scientific, 2004.
D. Zhao and G. Ye, C-integral and Denjoy-C integral, Comm. Korean. Math.
Soc. 22 (2007), no. 1, 27-39.

D. Zhao and G. Ye, On AP-Henstock-Stieltjes integral, J. Chungcheong Math.
Soc. 19 (2006), no. 2, 177-188.

D. Zhao and G. Ye, On strong C-integral of Banach-valued functions, J.
Chungcheong Math. Soc. 20 (2007), no. 1, 1-10.

J. M. Park, The Denjoy extension of the McShane integral, Bull. Korean Math.
Soc. 33 (1996), no. 3, 411-416.

School of Mathematics and Statistics

Hubei Normal University

Huangshi, 435002, People’s Republic of China
E-mail: youxuexiao®126.com

kk

School of Mathematics and Statistics

Hubei Normal University

Huangshi, 435002, People’s Republic of China
E-mail: zhaodafang@yahoo.com



