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q-EXTENSION OF A GENERALIZATION OF GOTTLIEB
POLYNOMIALS IN TWO VARIABLES

Junesang Choi*

Abstract. Gottlieb polynomials were introduced and investigated
in 1938, and then have been cited in several articles. Very recently
Khan and Akhlaq introduced and investigated Gottlieb polynomials
in two and three variables to give their generating functions. Subse-
quently, Khan and Asif investigated the generating functions for the
q-analogue of Gottlieb polynomials. Also, by modifying Khan and
Akhlaq’s method, Choi presented a generalization of the Gottlieb
polynomials in m variables to give two generating functions of the
generalized Gottlieb polynomials ϕm

n (·). Here, we aim at defining
a q-extension of the generalized two variable Gottlieb polynomials
ϕ2

n(·) and presenting their several generating functions.

1. Introduction and preliminaries

Generating functions play an important role in the investigation of
various useful properties of the sequences which they generate. They
are used in finding certain properties and formulas for numbers and
polynomials in a wide variety of research subjects, indeed, in modern
combinatorics. For a systematic introduction to, and several interesting
(and useful) applications of the various methods of obtaining linear,
bilinear, bilateral or mixed multilateral generating functions for a fairly
wide variety of sequences of special functions (and polynomials) in one,
two and more variables, among much abundant literature, we refer to the
extensive work by Srivastava and Manocha [10]. While concerning some
orthogonal polynomials on a finite or enumerable set of points, Gottlieb

Received January 12, 2012; Accepted April 17, 2012.
2010 Mathematics Subject Classification: Primary 33C65, 33C99; Secondary

33C05, 33C20.
Key words and phrases: Pochhammer symbol, generating functions, generalized

hypergeometric function pFq, (generalized) Gottlieb polynomials, Lauricella series,
a q-analogue of Gottlieb polynomials, q-shifted factorial, q-binomial theorem, Basic
(q-) hypergeometric series.



254 Junesang Choi

[4] developed the following interesting polynomials (see also [2]; [5]; [6];
[8, p. 303]; [10, pp. 185–186]):

(1.1)
ϕn(x;λ) : = e−nλ

n∑

k=0

(
n

k

)(
x

k

) (
1− eλ

)k

= e−nλ
2F1

(
−n, −x ; 1 ; 1− eλ

)
,

where 2F1 denotes Gauss’s hypergeometric series whose natural gen-
eralization of an arbitrary number of p numerator and q denominator
parameters (p, q ∈ N0 := N ∪ {0}, and N the set of positive integers) is
called and denoted by the generalized hypergeometric series pFq defined
by

(1.2)
pFq

[
α1, . . . , αp ;
β1, . . . , βq ;

z

]
=

∞∑

n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z).

Here (λ)n is the Pochhammer symbol defined (for λ ∈ C) by

(1.3)
(λ)n : =

{
1 (n = 0)

λ(λ + 1) . . . (λ + n− 1) (n ∈ N)

=
Γ(λ + n)

Γ(λ)
(λ ∈ C \ Z−0 )

and C and Z−0 denotes the set of nonpositive integers and the set of com-
plex numbers, respectively, and Γ(λ) is the familiar Gamma function.

Gottlieb [4] presented many interesting identities for his polynomials
ϕn(x;λ), which is denoted by ln(x) in [4], including the following two
generating functions (see also [5]; [6]; [8, p. 303]; [10, pp. 185–186]):

(1.4)
∞∑

n=0

ϕn(x; λ) tn = (1− t)x
(
1− t e−λ

)−x−1
(|t| < 1);

∞∑

n=0

(µ)n

n!
ϕn(x; λ) tn

=
(
1− t e−λ

)−µ

2F1

[
µ, −x ;

1 ;

(
1− e−λ

)
t

1− t e−λ

]
.

(1.5)

Recently Khan and Akhlaq [5] introduced and investigated Gottlieb
polynomials in two and three variables to give their generating functions.
Subsequently, Khan and Asif [6] investigated the generating functions
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for a q-analogue of Gottlieb polynomials. Also, by modifying Khan and
Akhlaq’s method [5], Choi [2] presented a generalization of the Got-
tlieb polynomials in m variables to give two generating functions of the
generalized Gottlieb polynomials ϕm

n (·).
Basic (or q-) hypergeometric series are useful in a wide variety of fields

including, for example, theory of partitions, number theory, combinato-
rial analysis, finite vector space, Lie theory, particle physics, non-linear
electric circuit theory, mechanical engineering, theory of heat conduc-
tion, quantum mechanics, cosmology, and statistics (see [9, 346–351] and
also see the cited references therein).

Here, we aim at defining a q-extension of the generalized two vari-
able Gottlieb polynomials ϕ2

n(·) and presenting their three generating
functions.

For our purpose we recall here the following definitions and notations
in the q-theory (see, for example, [3]). The q-shifted factorial (a; q)n is
defined by

(1.6) (a; q)n :=





1 (n = 0)
n−1∏

k=0

(
1− a qk

)
(n ∈ N),

where a, q ∈ C and it is assumed that a 6= q−m (m ∈ N0). It is noted that
some other notations that have been used in the literature for the prod-
uct (a; q)n in (1.6) are (a)q,n, [a]n, and even (a)n when the Pochhammer
symbol (1.3) is not used and the base q is understood.

The q-shifted factorial for negative subscript is defined by

(1.7) (a; q)−n :=
1

(1− a q−1) (1− a q−2) · · · (1− a q−n)
(n ∈ N0) ,

which yields

(1.8) (a; q)−n =
1

(a q−n; q)n

=
(−q/a)n q(

n
2)

(q/a; q)n

(n ∈ N0) .

We also write

(1.9) (a; q)∞ :=
∞∏

k=0

(
1− a qk

)
(a, q ∈ C; |q| < 1).

It is noted that, when a 6= 0 and |q| = 1, the infinite product in (1.9)
diverges. So, whenever (a; q)∞ is involved in a given formula, the con-
straint |q| < 1 will be tacitly assumed.
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It follows from (1.6), (1.7) and (1.9) that

(1.10) (a; q)n =
(a; q)∞

(a qn; q)∞
(n ∈ Z),

Z being the set of integers, which can be extended to n = α ∈ C as
follows:

(1.11) (a; q)α =
(a; q)∞

(a qα; q)∞
(α ∈ C; |q| < 1),

where the principal value of qα is taken.
Two easily-verified required identities are given:

(1.12)
(
q−n; q

)
k

=
(q; q)n

(q; q)n−k
(−1)k q(

k
2)−n k (n, k ∈ Z)

and

(1.13) (a; q)n+k = (a; q)n (a qn; q)k (n, k ∈ Z).

The notation [z]q is defined by

(1.14) [z]q :=
1− qz

1− q
=

qz − 1
q − 1

(z ∈ C; q ∈ C \ {1}; qz 6= 1).

A special case of (1.14) when z ∈ N is

(1.15) [n]q =
qn − 1
q − 1

= 1 + q + · · ·+ qn−1 (n ∈ N),

which is called the q-analogue (or q-extension) of n ∈ N, since

lim
q→1

[n]q = lim
q→1

(
1 + q + · · ·+ qn−1

)
= n.

The q-analogue of n! is then defined by

(1.16) [n]q! :=

{
1 if n = 0,

[n]q [n− 1]q · · · [2]q [1]q if n ∈ N,

from which the q-binomial coefficient (or the Gaussian polynomial) anal-
ogous to

(
n
k

)
is defined by

(1.17)
[
n

k

]

q

:=
[n]q!

[n− k]q! [k]q!
(n, k ∈ N0; 0 5 k 5 n) .

It is easily seen from (1.6) and (1.17) that

(1.18) (q; q)n = (1− q)n [n]q! (n ∈ N0) .
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The q-binomial coefficient in (1.17) can be generalized as follows:

(1.19)
[
α

k

]

q

:=
[α]q;k
[k]q!

(α ∈ C; k ∈ N0) ,

where [α]q;k is defined by

(1.20) [α]q;k := [α]q [α− 1]q · · · [α− k + 1]q (α ∈ C; k ∈ N0) .

The generalized q-binomial coefficient in (1.19) can be expressed in the
following form:

(1.21)
[
α

k

]

q

=
(q−α; q)k

(q; q)k
(−qα)k q−(k

2) (α ∈ C; k ∈ N0) .

The following notations are also frequently used:

(1.22) (a1, a2, · · · , am; q)n := (a1; q)n (a2; q)n · · · (am; q)n

and

(1.23) (a1, a2, · · · , am; q)∞ := (a1; q)∞ (a2; q)∞ · · · (am; q)∞ .

In order to introduce q-binomial theorem, we begin by recalling the
well-known Ramanujan’s 1Ψ1-sum:
(1.24)

1Ψ1(a; b; q, z) :=
∞∑

k=−∞

(a; q)k

(b; q)k
zk =

(az; q)∞
( q

az ; q
)
∞ (q; q)∞

(
b
a ; q

)
∞

(z; q)∞
(

b
az ; q

)
∞ (b; q)∞

( q
a ; q

)
∞

(|q| < 1; |a| > |q|; |b| < 1; |b/a| < |z| < 1) .

A special case of (1.24) when b = q yields the q-binomial theorem:

(1.25) 1Φ0(a;−; q, z) :=
∞∑

k=0

(a; q)k

(q; q)k
zk =

(az; q)∞
(z; q)∞

(|q| < 1; |z| < 1) .

Two special cases of (1.25) when a = 0 and when z is replaced by
z a−1 and a →∞ yield Euler’s formulas:

(1.26)
∞∑

k=0

zk

(q; q)k
=

1
(z; q)∞

(|q| < 1; |z| < 1)

and

(1.27)
∞∑

k=0

(−1)k q(
k
2)

(q; q)k
zk = (z; q)∞ (|q| < 1; |z| < 1) ,

respectively.
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It is observed that

(1.28) lim
q↓1

(qaz; q)∞
(z; q)∞

= lim
q↓1 1Φ0 (qa;−; q, z) = 1F0 (a;−; z) = (1− z)−a

(|z| < 1; a ∈ C),

which, by the principle of analytic continuation, holds true for z ∈ C cut
along the positive real axis from 1 to ∞, with (1− z)−a positive when z
is real and less than 1.

A q-analogue of the classical exponential function ez is defined by

(1.29) eq(z) :=
∞∑

k=0

zk

[k]q!

and another q-analogue of the classical exponential function ez is defined
by

(1.30) Eq(z) :=
∞∑

k=0

qk(k−1)/2 zk

[k]q!
.

It is easily seen by applying (1.29) and (1.30) that

(1.31) eq(z) Eq(−z) = 1.

We conclude this section by giving a widely-investigated generaliza-
tion rΦs of the function 1Φ0(a;−; q, z) in (1.25), which is defined by

(1.32)

rΦs




a1, · · · , ar;

b1, · · · , bs;
q, z


 = rΦs(a1, · · · , ar; b1, · · · , bs; q, z)

:=
∞∑

k=0

(−1)(1−r+s)k q(1−r+s)(k
2) (a1; q)k · · · (ar; q)k

(b1; q)k · · · (bs; q)k

zk

(q; q)k
,

provided that the generalized basic (or q-) hypergeometric series in (1.32)
converges.

2. Definitions of q-Extensions of Gottlieb and two variable
Gottlieb polynomials

We begin by recalling the definition of a several variable analogue of
the Gottlieb polynomials ϕn(x; λ) and one of their generating functions
in [2].
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Definition 1.1. An extension of the Gottlieb polynomials ϕn(x;λ)
in m variables is defined by

(2.1)

ϕm
n (x1, x2, . . . , xm; λ1, λ2, . . . , λm)

= exp (−nσm)
n∑

r1=0

n−r1∑

r2=0

n−r1−r2∑

r3=0

· · ·
n−r1−r2−···−rm−1∑

rm=0

· (−n)δm ·
∏m

j=1 (−xj)rj ·
∏m

j=1

(
1− eλj

)rj

∏m
j=1 rj ! · δm!

(n, m ∈ N),

where, for convenience,

(2.2) σm :=
m∑

j=1

λj and δm :=
m∑

j=1

rj .

It is noted that the special case m = 1 of (2.1) reduces immediately
to the second one of the Gottlieb polynomials ϕn(x; λ) in (1.1) and the
cases of (2.1) when m = 2 and m = 3 correspond with those in [5, 6].

The following generating function for ϕm
n (x1, x2, . . . , xm;λ1, λ2, . . . ,

λm) holds true:
(2.3)
∞∑

n=0

(µ)n ϕm
n (x1, x2, . . . , xm; λ1, λ2, . . . , λm)

tn

n!
=

(
1− t e−σm

)−µ

· F (m)
D

[
µ, −x1, . . . , −xm; 1 ;

t
(
eλ1 − 1

)
e−σm

1− t e−σm
, . . . ,

t
(
eλm − 1

)
e−σm

1− t e−σm

]
,

where F
(m)
D [·] denotes one of the Lauricella series in m variables (see [9,

p. 33, Eq. (4)]; see also [7]) defined by

(2.4)

F
(m)
D [a, b1, . . . , bm; c ; x1, . . . , xm]

=
∞∑

r1=0,...,rm=0

(a)δm (b1)r1 · · · (bm)rm

(c)δm

xr1
1

r1!
· · · x

rm
m

rm!

(max {|x1|, . . . , |xm|} < 1) ,

and σm, δm are given in (2.2).

Khan and Asif [6] defined a q-analogue of Gottlieb polynomials in
(1.1) given below.
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Definition 1.2. A q-extension of the Gottlieb polynomials ϕn(x;λ)
is given as follows:

(2.5) ϕn;q(x; λ) = {Eq(−λ)}n
n∑

k=0

[
n

k

]

q

[
x

k

]

q

· qk(k−1)−xk · (1− eq(λ))k .

By using (1.12), (1.17) and (1.19), Khan and Asif [6] gave another
expression of the q-extension of the Gottlieb polynomials ϕn(x; λ) in
(2.5):

(2.6) ϕn;q(x;λ) = {Eq(−λ)}n
2Φ1

[
q−n, q−x ;

q ; q, qn (1− eq(λ))
]

.

Khan and Asif [6] used some of the identities given in Section 1 to
present the following three generating functions for q-Gottlieb polyno-
mials in (2.5):

(2.7)

∞∑

n=0

ϕn;q(x; λ) tn

= (1− t Eq(−λ))−1
1Φ1

[
q−x ;

qt Eq(−λ); q, − (1−Eq(−λ)) t

]
;

(2.8)

∞∑

n=0

ϕn;q(x; λ)
tn

(q; q)n

= eq (t Eq(−λ)) 1Φ1

[
q−x ;

q ; q, − (1− Eq(−λ)) t

]
;

(2.9)
∞∑

n=0

(qc; q)n

(q; q)n
ϕn;q(x; λ) tn

=
(t qc Eq(−λ); q)∞
(t Eq(−λ); q)∞

2Φ2

[
qc, q−x ;
q, t qc Eq(−λ) ; q, − (1− Eq(−λ)) t

]
.

We find from Definition 1 that the two variable Gottlieb polynomials
ϕ2

n (x1, x2; λ1, λ2) is given by
(2.10)
ϕ2

n(x1, x2; λ1, λ2) = exp (−n (λ1 + λ2))

·
n∑

k=0

n−k∑

j=0

(−n)k+j (−x1)k (−x2)j

(
1− eλ1

)k (
1− eλ2

)j

k! j! (k + j)!
(n ∈ N),
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which is easily rewritten as follows:
(2.11)

ϕ2
n(x1, x2; λ1, λ2) = exp (−n (λ1 + λ2))

·
n∑

k=0

n−k∑

j=0

(
n

k + j

)(
x1

k

)(
x2

j

) (
1− eλ1

)k (
1− eλ2

)j
(n ∈ N).

We define a q-extension of ϕ2
n (x1, x2; λ1, λ2).

Definition 1.3. A q-extension of the two variable Gottlieb polyno-
mials ϕ2

n (x1, x2; λ1, λ2) is defined as follows:

(2.12)

ϕ2
n;q(x1, x2;λ1, λ2)

:= {Eq (−λ1)}n {Eq (−λ2)}n
n∑

k=0

n−k∑

j=0

[
n

k + j

]

q

[
x1

k

]

q

[
x2

j

]

q

· q(k+j
2 )+(k

2)+(j
2)−x1 k−x2 j · (1− eq (λ1))

k (1− eq (λ2))
j ,

which, upon making use of Equations (1.12), (1.17) and (1.21), can be
expressed in the following form:

(2.13)

ϕ2
n;q(x1, x2; λ1, λ2) = {Eq (−λ1)}n {Eq (−λ2)}n

·
n∑

k=0

n−k∑

j=0

(q−n; q)k+j (q−x1 ; q)k (q−x2 ; q)j

(q; q)k+j (q; q)k (q; q)j

· {qn (1− eq (λ1))}k {qn (1− eq (λ2))}j .

Remark 1.4. In the definitions (1.32) and (3.4) of the q-hypergeometric
series and a generalized basic double series, the complementary inserting
factors

(−1)(1−r+s)k q(1−r+s)(k
2) and q

1
2
ir(r−1)+ 1

2
js(s−1)+krs

play an important role to deduce certain identities corresponding to
those in the generalized hypergeometric series. Likewise, in Definitions
2 and 3, the inserting factors

qk(k−1)−xk and q(
k+j
2 )+(k

2)+(j
2)−x1 k−x2 j

also play a smooth role to present their respective generating functions.
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2. Generating functions for ϕ2
n;q(x1, x2; λ1, λ2)

Here, we aim at presenting three generating functions for ϕ2
n;q(x1, x2;

λ1, λ2) asserted by Theorem below.

Theorem 2.1. Each of the following generating functions for the
ϕ2

n;q(x1, x2; λ1, λ2) holds true:
(3.1)

∞∑

n=0

ϕ2
n;q(x1, x2; λ1, λ2) tn = {1− t Eq (−λ1) Eq (−λ2)}−1

· Φ0:1;1
1:0;0

[ −− : q−x1 ; q−x2 ; q;
t q Eq (−λ1) Eq (−λ2) ; −−; −−;

t Eq (−λ2) (1−Eq (−λ1)) , t Eq (−λ1) (1− Eq (−λ2))
1, 1, 2

]
;

(3.2)
∞∑

n=0

ϕ2
n;q(x1, x2; λ1, λ2)

tn

(q; q)n
= eq {t Eq (−λ1) Eq (−λ2)}

· Φ0:1;1
1:0;0

[ −− : q−x1 ; q−x2 ; q; t (1−Eq (−λ1)) , t (1−Eq (−λ2))
q : −−; −−; 1, 1, 2

]
;

(3.3)
∞∑

n=0

(qc; q)n

(q; q)n
ϕ2

n;q(x1, x2; λ1, λ2) tn =
(t qc Eq (−λ1) Eq (−λ2) ; q)∞
(t Eq (−λ1) Eq (−λ2) ; q)∞

· Φ1:1;1
2:0;0

[
qc : q−x1 ; q−x2 ; q;

q, t qc Eq (−λ1) Eq (−λ2) : −−; −−;

t Eq (−λ2) (1−Eq (−λ1)) , t Eq (−λ1) (1− Eq (−λ2))
1, 1, 2

]
,

where Φp:h;u
l:m;n[·] is a generalized basic double series (see [9, p. 349, Eq.

(282)]) defined by

(3.4)

Φp:h;u
l:m;n

[
α1, . . . , αp : β1, . . . , βh; γ1, . . . , γu; q; x, y
λ1, . . . , λl : µ1, . . . , µm; ν1, . . . , νn; i, j, k

]

=
∞∑

r, s=0

q
1
2
ir(r−1)+ 1

2
js(s−1)+krs

·
∏p

τ=1 (ατ ; q)r+s

∏h
τ=1 (βτ ; q)r

∏u
τ=1 (γτ ; q)s∏l

τ=1 (λτ ; q)r+s

∏m
τ=1 (µτ ; q)r

∏n
τ=1 (ντ ; q)s

· xr

(q : q)r

ys

(q : q)s
.
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Proof. We will prove Equation (3.3) only. The other two Equations
(3.1) and (3.2) will be verified in a similar way. For convenience, let
the left hand side of (3.3) be denoted by Lc;q (x1, x2; λ1, λ2). By using
Equation (2.13) and then Equation (1.12), we obtain

Lc;q (x1, x2; λ1, λ2) =
∞∑

n=0

(qc; q)n {t Eq (−λ1) Eq (−λ2)}n

·
n∑

k=0

n−k∑

j=0

(−1)k+j q(
k+j
2 ) (q−x1 ; q)k (q−x2 ; q)j

(q; q)n−k−j (q; q)k+j (q; q)k (q; q)j

· {1− eq (λ1)}k {1− eq (λ2)}j .

Employing a formal manipulation of double series (see [1]):

(3.5)
∞∑

n=0

n∑

l=0

A(l, n) =
∞∑

n=0

∞∑

l=0

A(l, n + l),

we have

Lc;q (x1, x2; λ1, λ2)

=
∞∑

n=0

∞∑

k=0

n∑

j=0

(qc; q)n+k {t Eq (−λ1) Eq (−λ2)}n+k

· (−1)k+j q(
k+j
2 ) (q−x1 ; q)k (q−x2 ; q)j

(q; q)n−j (q; q)k+j (q; q)k (q; q)j
{1− eq (λ1)}k {1− eq (λ2)}j .

Using (3.5) again, we find

Lc;q (x1, x2; λ1, λ2)

=
∞∑

n=0

∞∑

k=0

∞∑

j=0

(qc; q)n+k+j {t Eq (−λ1) Eq (−λ2)}n+k+j

· (−1)k+j q(
k+j
2 ) (q−x1 ; q)k (q−x2 ; q)j

(q; q)n (q; q)k+j (q; q)k (q; q)j
{1− eq (λ1)}k {1− eq (λ2)}j .
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Applying (1.13) and (1.31), and rearranging the resulting triple series,
we get

Lc;q (x1, x2; λ1, λ2) =
∞∑

k=0

∞∑

j=0

(qc; q)k+j q(
k+j
2 ) (q−x1 ; q)k (q−x2 ; q)j

(q; q)k+j (q; q)k (q; q)j

· {t Eq (−λ2) (1−Eq (−λ1))}k {t Eq (−λ1) (1− Eq (−λ2))}j

·
∞∑

n=0

(
qc+k+j ; q

)
n

(q; q)n
{t Eq (−λ1) Eq (−λ2)}n .

By using the q-binomial theorem (1.25) for the most inner infinite series,
we obtain

Lc;q (x1, x2; λ1, λ2) =
∞∑

k=0

∞∑

j=0

(qc; q)k+j q(
k+j
2 ) (q−x1 ; q)k (q−x2 ; q)j

(q; q)k+j (q; q)k (q; q)j

· {t Eq (−λ2) (1−Eq (−λ1))}k {t Eq (−λ1) (1− Eq (−λ2))}j

·
(
qc+k+j t Eq (−λ1) Eq (−λ2) ; q

)
∞

(t Eq (−λ1) Eq (−λ2) ; q)∞
.

If we apply (1.10) to the last line, we find

Lc;q (x1, x2;λ1, λ2) =
(t qc Eq (−λ1) Eq (−λ2) ; q)∞
(t Eq (−λ1) Eq (−λ2) ; q)∞

·
∞∑

k=0

∞∑

j=0

(qc; q)k+j q(
k+j
2 ) (q−x1 ; q)k (q−x2 ; q)j

(q; q)k+j (t qc Eq (−λ1) Eq (−λ2) ; q)k+j

· {t Eq (−λ2) (1− Eq (−λ1))}k

(q; q)k

{t Eq (−λ1) (1− Eq (−λ2))}j

(q; q)j
.

Finally, by considering the generalized basic double series in (3.4), the
last resulting double series corresponds with Equation (3.3). The other
two Equations (3.1) and (3.3) will be proved by a similar argument. This
completes the proof of Theorem.
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