JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 25, No. 1, February 2012

GENERALIZED DUAL GOTTLIEB SETS AND COCATEGORIES

YEON SOO YOON* AND HAK DO KIM**

ABSTRACT. In this paper, we introduce the concepts of DC_k^p -spaces for maps which are the dual concepts of C_k^f -spaces for maps, and characterize DC_k^p -spaces for maps using the dual Gottlieb sets for maps and the LS cocategories.

1. Introduction

A space X is called a T-space [1] if the fibration $\Omega X \to X^{S^1} \to X$ is fibre homotopically trivial. It is well known that any H-space is a Tspace, but the converse does not hold. We introduced [5] the concepts of C_k -spaces as intermediate stages between H-spaces and T-spaces. The loop space ΩX of any space X has a homotopy type of an associative H-space. A 0-connected space X is filtered by the projective spaces of ΩX by a result of Milnor [8] and Stasheff [10];

$$\Sigma \Omega X = P^1(\Omega X) \hookrightarrow P^2(\Omega X) \hookrightarrow \cdots \hookrightarrow P^\infty(\Omega X) \simeq X.$$

For each k, let $e_k^X : P^k(\Omega X) \to P^\infty(\Omega X) \simeq X$ be the natural inclusion. We write $e^X = e_1^X : \Sigma \Omega X = P^1(\Omega X) \to X$. It is shown [1] that X is a T-space if and only if $e = e_1 : \Sigma \Omega X \to X$ is cyclic. We see that $e_\infty^X \sim 1_X : X \to X$. For a map $f : A \to X$, a based map $g : B \to X$ is called f-cyclic [9] if there exist a map $G : A \times B \to X$ such that $Gj \sim \nabla(f \lor g)$, where $j : A \lor B \to A \times B$ is the inclusion and $\nabla : X \lor X \to X$ is the folding map. The Gottlieb set for a map $f : A \to X$, $G^f(B,X)$, is the set of all homotopy classes of f-cyclic maps from B to X. For a map $f : A \to X$, a connected space X is called [5] a C_k^f -space if the inclusion $e_k^X : P^k(\Omega X) \to X$ is f-cyclic. In fact, a C_k -space is C_k^1 -space for the

- 2010 Mathematics Subject Classification: Primary 55P45, 55P35.
- Key words and phrases: p-cocyclic maps, cocategories of spaces.
- Correspondence should be addressed to Yeon Soo Yoon, yoon@hannam.ac.kr. The first author was supported by Hannam University Research Fund, 2011.

Received January 22, 2012; Accepted February 02, 2012.

identity map $1: X \to X$. We showed [5] that a space X is a C_k^f -space for a map $f: A \to X$ if and only if $G^f(Z, X) = [Z, X]$ for any space Z with $cat Z \leq k$. Let $f: A \to X$ and $g: B \to Y$ be maps. Then we also showed that $X \times Y$ is a $C_k^{f \times g}$ -space if and only if X is a C_k^f -space and Y is a C_k^g -space.

In this paper, we introduce the concepts of DC_k^p -spaces for maps which are generalizations of DC_k -spaces [16]. We show that a space Xis a DC_k^p -space for a map $p: X \to A$ if and only if $DG^p(X, Z) = [X, Z]$ for any space Z with $cocat Z \leq k$. Let $p: X \to A$ and $q: Y \to B$ be any maps. Then we show that the wedge space $X \vee Y$ is a $DC_k^{\nabla(p \vee q)}$ -space if and only if X is a DC_k^p -space and Y is a DC_k^q -space.

2. DC_k^p -spaces for a map $p: X \to A$

We now recall the following Ganea's theorem [3].

THEOREM 2.1. ([3],[4]) Let $k \ge 1$ be an integer or $k = \infty$ and assume that X is a 0-connected space. The category cat $X \le k$ if and only if $e_k^X : P^k(\Omega X) \to X$ has a right homotopy inverse.

In [3], Ganea introduced the concept of cocategory of a space as follows; Let X be a any space. Define a sequence of cofibrations

$$\mathcal{C}_k: X \xrightarrow{e'_k} F_k \xrightarrow{s'_k} B_k \ (k \ge 0)$$

as follows, let $C_0: X \xrightarrow{e'_0} cX \xrightarrow{s'_0} \Sigma X$ be the standard cofibration. Assuming C_k to be defined, let F'_{k+1} be the fibre of s'_k and e_{k+1} ": $X \to F'_{k+1}$ lift e'_k . Define F_{k+1} as the reduced mapping cylinder of e_{k+1} ", let $e'_{k+1}: X \to F_{k+1}$ is the obvious inclusion map, and let $B_{k+1} = F_{k+1}/e'_{k+1}(X)$ and $s'_{k+1}: F_{k+1} \to F_{k+1}/e_{k+1}(X)$ the quotient map.

DEFINITION 2.2. [3] The cocategory of X, cocat X, is the least integer $k \ge 0$ for which there is a map $r: F_k \to X$ such that $r \circ e'_k \sim 1$. If there is no such integer, cocat $X = \infty$.

The following remark can easily obtained from the above definition.

Remark 2.3.

- (1) cocat $X \leq k$ if and only if $e'_k : X \to F_k$ has a left homotopy inverse.
- (2) cocat X = 0 if and only if X is contractible.

136

For a map $p: X \to A$, a based map $g: X \to B$ is p-cocyclic [9] if there is a map $\theta: X \to A \lor B$ such that $j\theta \sim (p \times g)\Delta$, where $j: A \lor B \to A \times B$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. The dual Gottlieb set for a map $p: X \to A$, $DG^p(X, B)$, is the set of all homotopy classes of p-cocyclic maps from X to B. In fact, a 1-cocyclic map is a cocyclic map. A space X is called a co-T-space [12] if $e': X \to \Omega \Sigma X$ is cocyclic. Clearly, any co-H-space is a co-T-space. Let $p: X \to A$ be a map. A space X is called [15] a co-T^p-space if $e' = e'_1: X \to \Omega \Sigma X$ is p-cocyclic. Clearly, a co-T¹-space is a co-T-space.

DEFINITION 2.4. Let $p: X \to A$ be a map. A space X is called a DC_k^p -space if the inclusion $e'_k: X \to F_k$ is p-cocyclic.

Clearly, a DC_k^1 -space for the identity map $1: X \to X$ is a DC_k -space [16]. We can easily show that F_1 and $\Omega \Sigma X$ have the same homotopy type. Thus we know that a DC_1 -space is a co-T-space. Clearly, DC_1^p -spaces and co- T^p -spaces are equivalent. We showed [15] that X is a co- T^p -space if and only if $DG^p(X, \Omega B) = [X, \Omega B]$ for any space B. It is shown [2] that cocat $Z \leq 1$ if and only if Z can be dominated by a loop space. Thus we can generalize the above result as following theorem. It says also that DC_k^p -spaces are closely related by the dual Gottlieb sets for maps and cocategory of spaces.

THEOREM 2.5. Let $p: X \to A$ be a map. Then a space X is a DC_k^p -space if and only if $DG^p(X, Z) = [X, Z]$ for any space Z with cocat $Z \leq k$.

Proof. Suppose X is a DC_k^p -space for a map $p: X \to A$. Since $e'_k: X \to F_k$ is p-cocyclic, there is a map $\theta: X \to A \vee F_k$ such that $j\theta \sim (p \times e'_k)\Delta$, where $j: A \vee F_k \to A \times F_k$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. Let Z be a space with cocat $Z \leq k$. Let $g: X \to Z$ be any map. Since cocat $Z \leq k$, there is a map $s: F_k \to Z$ such that $s \circ e'_k \sim 1_Z$. Interpreting F_k as a functor, we have the following homotopy commutative diagram;

Also, we consider the following homotopy commutative diagram;

Yeon Soo Yoon and Hak Do Kim

$$\begin{array}{cccc} X \times X & \xrightarrow{(p \times e_k')} & A \times F_k(X) & \xrightarrow{(1 \times F_k(g))} & A \times F_k(Z) & \xrightarrow{(1 \times s)} & A \times Z \\ \Delta & \uparrow & & \uparrow & & \uparrow & & \uparrow \\ X & \xrightarrow{\theta} & A \vee F_k(X) & \xrightarrow{(1 \vee F_k(g))} & A \vee F_k(Z) & \xrightarrow{(1 \vee s)} & A \vee Z. \end{array}$$

Thus we have a map $\phi = (1 \lor s)(1 \lor F_k(g))\theta : X \to A \lor Z$ such that $j\phi \sim (p \times g)\Delta$, where $j : A \lor Z \to A \times Z$ is the inclusion. Thus $g : X \to Z$ is *p*-cocyclic. On the other hand, we assume that for any space Z with cocat $Z \leq k$, $DG^p(X,Z) = [X,Z]$. It is well known [2] that if $F \xrightarrow{i} E \xrightarrow{p} B$ is a fibration, then cocat $F \leq cocat E + 1$. From the fact that $F_k \simeq F'_k \to F_{k-1} \xrightarrow{s'_{k-1}} B_{k-1}$ is a fibration, we know that cocat $F_k \leq cocat F_{k-1} + 1$. Then we have, by induction, cocat $F_k \leq k$. Thus we know, by our assumption, that $e'_k : X \to F_k$ is *p*-cocyclic and X is a DC_k^p -space for a map $p : X \to A$.

If we take $p = 1 : X \to X$ in the above theorem, then we have the following corollary.

COROLLARY 2.6. [16] X is a DC_k -space if and only if DG(X, Z) = [X, Z] for any space Z with cocat $Z \leq k$.

It is well known fact [14] that a space X is a $\operatorname{co-}H^p$ -spaces if and only if $1: X \to X$ is *p*-cocyclic. Moreover, it is also known [9] that if $f: X \to Y$ is *p*-cocyclic and $g: Y \to Z$ is any map, then $gf: X \to Z$ is *p*-cocyclic. Any co-*H*-space X is a co- H^p -space and any co- H^p -space X is a co- T^p -space for any map $p: X \to A$. Thus we have the following corollary from the definition of cocategory and the above theorem.

COROLLARY 2.7. Let $p: X \to A$ be any map.

(1) X is a DC_1^p -space \Leftrightarrow X is a co- T_1^p -space \Leftrightarrow X is a co- T^p -space.

(2) If X is a $co^{-}T_{m}^{p}$ -space, then X is a $co^{-}T_{n}^{p}$ -space for any n < m.

(3) If X is a DC_m^p -space, then X is a DC_n^p -space for any n < m.

(4) If X is a DC_k^p -space and cocat $X \leq k$, then X is a co- H^p -space.

PROPOSITION 2.8. Let $p: X \to A$ and $q: Y \to A$ be any maps. Then the relation

$$DG^{\nabla(p \lor q)}(X \lor Y, B) \equiv DG^p(X, B) \times DG^q(Y, B)$$

holds for any space B.

Proof. Let $g: X \vee Y \to A \vee B$ be a $\nabla(p \vee q)$ -cocyclic map. Then there is a map $G: X \vee Y \to A \vee B$ such that $jG \sim (\nabla(p \vee q) \times g)\Delta$, where $j: A \vee B \to A \times B$ is the inclusion and $\Delta: X \vee Y \to (X \vee Y) \times (X \vee Y)$

138

is the diagonal. Consider the maps $G_1 = Gi_1 : X \to A \lor B$ and $G_2 = Gi_2 : Y \to A \lor B$, where $i_1 : X \to X \lor Y$, $i_2 : Y \to X \lor Y$ are natural inclusions. Then $jG_1 \sim (p \times gi_1)\Delta$, $jG_2 \sim (q \times gi_2)\Delta$, where $i_1 : X \to X \lor Y$, $i_2 : Y \to X \lor Y$ are the inclusions. Thus we have $(gi_1, gi_2) \in DG^p(X, B) \times DG^q(Y, B)$. On the other hand, let $(g_1, g_2) \in DG^p(X, B) \times DG^q(Y, B)$. Since $g_1 : X \to B$ is *p*-cocyclic and $g_2 : Y \to B$ is *q*-cocyclic, there are maps $G_1 : X \to A \lor B$ and $G_2 : Y \to A \lor B$ such that $jG_1 \sim (p \times g_1)\Delta$ and $jG_2 \sim (q \times g_2)\Delta$ respectively. Let $T : A \lor (B \lor A) \lor B \to A \lor (A \lor B) \lor B$ be the switching map. Then consider the map $G = (\nabla \lor \nabla)T(G_1 \lor G_2) : X \lor Y \to A \lor B$. Then $jG \sim ((\nabla(p \lor q) \times \nabla(g_1 \lor g_2))\Delta$, where $\Delta : X \lor Y \to (X \lor Y) \rtimes (X \lor Y)$ is the diagonal map. Thus we know $\nabla(g_1 \lor g_2) \in DG^{\nabla(p \lor q)}(X \lor Y, B)$. \Box

THEOREM 2.9. Let $p: X \to A$ and $q: Y \to A$ be any maps. Then the wedge space $X \lor Y$ is a $DC_k^{\nabla(p \lor q)}$ -space if and only if X is a DC_k^p -space and Y is a DC_k^q -space.

Proof. If $X \vee Y$ is a $DC^{\nabla(p\vee q)}$ -space for a map $\nabla(p\vee q) : X\vee Y \to A$, then we know, from Theorem 2.5 and Proposition 2.8, that $DG^p(X,Z) \times DG^q(Y,Z) \equiv DG^{\nabla(p\vee q)}(X\vee Y,Z) = [X\vee Y,Z] \equiv [X,Z] \times [Y,Z]$ for any space Z with cocat $Z \leq k$. Then we have $DG^p(X,Z) = [X,Z]$ and $DG^q(Y,Z) = [Y,Z]$. Thus we know that X is a DC_k^p -space for a map $p: X \to A$ and Y is a DC_k^q -space for a map $q: Y \to A$. On the other hand, suppose that X is a DC_k^p -space for a map $p: X \to A$ and Y is a DC_k^q -space for a map $q: Y \to A$. Then $DG^p(X,Z) = [X,Z]$, $DG^q(Y,Z) = [Y,Z]$ for any space Z with cocat $Z \leq k$. Thus we know $DG^{\nabla(p\vee q)}(X\vee Y,Z) \equiv DG^p(X,Z) \times DG^q(Y,Z) = [X,Z] \times [Y,Z] \equiv [X \vee Y,Z]$ for any space Z with cocat $Z \leq k$. Thus $X \vee Y$ is a $DC_k^{\nabla(p\vee q)}$ space for a map $\nabla(p \vee q) : X \vee Y \to A$.

References

- [1] J. Aguadé, Decomposable free loop spaces, Can. J. Math. 39 (1987), 938–955.
- [2] T. Ganea, Lusternik-Schnirelmann category and cocategory, Proc. London Math. Soc. (3)10 (1960), 623-639.
- [3] T. Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv. 39 (1965), 295-322.
- [4] N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. Lon. Math. Soc. 30 (1998), 623-634.
- [5] N. Iwase, M. Mimura, N. Oda and Y. S. Yoon, *The Milnor-Stasheff filtration* on spaces and generalized cyclic maps, to appear in Canad. Math. Bull.,
- [6] I. M. James, On category in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348.

Yeon Soo Yoon and Hak Do Kim

- [7] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), 63-71.
- [8] J. Milnor, Construction of universal bundles, I, II, Ann. Math. 63 (1956), 272–284, 430–436.
- [9] N. Oda, The homotopy of the axes of pairings, Canad. J. Math. 17 (1990), 856–868.
- [10] J. D. Stasheff, *Homotopy associativity of H-spaces I*, *II*, Trans. Amer. Math. Soc. **108** (1963), 275–292, 293–312.
- [11] K. Varadarajan, Genralized Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141–164.
- [12] M. H. Woo and Y. S. Yoon, *T-spaces by the Gottlieb groups and duality*, J. Austral. Math. Soc. (Series A) **59** (1995), 193–203.
- [13] Y. S. Yoon, The generalized dual Gottlieb sets, Top. Appl. 109 (2001), 173-181.
- [14] Y. S. Yoon, H^f-spaces for maps and their duals, J. Korea Soc. Math. Educ. Ser. B 14 (2007), no. 4, 289–306.
- [15] Y. S. Yoon, Lifting T-structures and their duals, J. Chungcheong Math. Soc. 20 (2007), no. 3, 245–259.
- [16] Y. S. Yoon, On cocyclic maps and cocategory, J. Chungcheong Math. Soc. 24 (2011), no. 1, 137–140.

*

Department of Mathematics Education Hannam University Daejeon 306-791, Republic of Korea *E-mail*: yoon@hannam.ac.kr

**

Department of Mathematics Hannam University Daejeon 306-791, Republic of Korea

140