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Abstract. In this paper, we show how to construct the first layer
ka
1 of anti-cyclotomic Z3-extension of imaginary quadratic fields

k(= Q(
√−d)) when the Sylow subgroup of class group of k is 3-

elementary, and give an example. This example is different from the
one we obtained before in the sense that when we write ka

1 = k(η),

η is obtained from non-units of Q(
√

3d).

1. Introduction

Let k be an imaginary quadratic field, and L an abelian extension of
k. L is called an anti-cyclotomic extension of k if it is Galois over Q, and
Gal(k/Q) acts on Gal(L/k) by −1. For each prime number p, the com-
positum K of all Zp-extensions over k becomes a Zp

2-extension, and K is
the compositum of the cyclotomic Zp-extension and the anti-cyclotomic
Zp-extension of k. The layers kc

n of cyclotomic Zp-extension are well un-
derstood by definition. However, little is known in the anti-cyclotomic
case. In the paper[4],using Kummer theory and class field theory, we
constructed the first layer ka

1 of the anti-cyclotomic Z3-extension of an
imaginary quadratic field whose class number is not divisible by 3. In the
paper [6], we applied the same method as in [4] to construct 3-Hilbert
class fields of certain imaginary quadratic fields k which also become the
first layers ka

1 of anti-cyclotomic Z3-extension of k. In this paper, we give
a method to construct ka

1 for imaginary quadratic number fields k whose
3-part of ideal class group is 3-elementary. In the examples of papers [4]
and [6], the class number of k is 1 or 3. We briefly explain our method to

Received November 03, 2011; Accepted January 20, 2012.
2010 Mathematics Subject Classification: Primary 11R23.
Key words and phrases: Hilbert class field, anti-cyclotomic extension, Kummer

extension.
This research was supported by Basic Science Research Program through the

National Research Foundation of Korea(NRF) funded by the Ministry of Education,
Science and Technology(2010-0007244).



92 Jangheon Oh

compute η. Note that k(ζ3)ka
1 = k(ζ3)( 3

√
β) for some β ∈ k(ζ3) by Kum-

mer theory . By Lemma 1 of this paper, we see that β is a combination
of the fundamental unit and generators of ideals of Q(

√
3d). Then, by

Lemma 2 and Theorem 3 of this paper, β can be determined. Hence,
by Kummer theory again, we can determine η such that ka

1 = k(η). To
illustrate the method, we give an example at the end of this paper.

2. Proof of theorems

Throughout this section, we denote by Hk, hk, Ak,Mk the p-part of
Hilbert class field, the p-class number, and p-part of ideal class group
of k, the maximal abelian p-extension of k unramified outside above p,
respectively. Let k be an imaginary quadratic field and ζp a primitive p-
th root of unity. We denote F = k(ζp). The first layer of anti-cyclotomic
Zp-extension of an imaginary quadratic field k may be or may not be
contained in the p-Hilbert class field of k. The following Theorem gives
an answer for this question when p = 3.

Theorem 2.1. (See [5, Theorem 2] ) Let d 6≡ 3 mod 9 be a squarefree
positive integer, k = Q(

√−d) an imaginary quadratic field and K the
compositum of all Z3-extensions over k. Assume that AQ(

√−d) is 3-

elementary.Then

Hk ∩K = k ⇐⇒
rankZ/3AQ(

√
3d) = rankZ/3AQ(

√−d).

Remark 2.2. It is well-known that

rankZ/3AQ(
√

3d) ≤ rankZ/3AQ(
√−d)

≤ rankZ/3AQ(
√

3d) + 1.

Next we describe the k(ζ3)ka
1 by Kummer Theory.

Lemma 2.3. Let k = Q(
√−d) be an imaginary quadratic field, and

χ be a nontrivial character of Gal(k/Q). Assume that both AQ(
√

3d) and

AQ(
√−d) are 3-elementary. Denote F = k(ζ3). Then the compositum

Fka
1 of F and ka

1 is contained in F ( 3
√

ε, 3
√

α1, · · · , 3
√

αt) where ε is the

fundamental unit of Q(
√

3d) and αi such that p3 = (αi) for ideals p of

Q(
√

3d).
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Proof. Let XF := Gal(MF /F )/3Gal(MF /F ) and XF,χ be the χ-
component of XF for the nontrivial character χ of Gal(k/Q). Let S
be a subset of F×/(F×)3 corresponding to the XF . Then, by Kummer
theory, we have a perfect pairing Sχω×XF,χ −→ µ3, where ω is the non-
trivial character of Gal(Q(

√−3)/Q) and Sχω is the χω-component of S.
Note that S ' EF /EF

3 × AF /AF
3× < 3 > / < 3 >3, where EF is the

group of units of F and AF is the 3-part of the ideal class group of F.(See
[3] for example). Therefore Lemma 1 follows since the χω-component
EF,χω of the group of units EF is the group of the units of the real qua-
dratic subfield F+(= Q(

√
3d)) of F, and the χω-component EF,χω of the

group of units EF and the χω-component AF,χω of AF is the idea class
group of the real quadratic field Q(

√
3d). Note that XF,χ ' Xk,χ.

In this paper, we are assuming that the first layer of anti-cyclotomic
Z3-extension of k is a part of Hilbert class field. We wiil describe a cri-
terion for telling ka

1 from the rest of Hilber class field of k. The following
statement is used in [2] to give an example with the Iwasawa invariants
µ = λ = 0 without proof. Here we give a proof of it.

Lemma 2.4. Let p be an odd prime, k = Q(
√−d) an imaginary

quadratic field such that AQ(
√−d) is p-elementary, p is unramified in k/Q,

and ζ3 6∈ k. Assume that ka∞∩Hk = ka
1 . Then the image of Gal(Xk,χ/ka∞)

in Gal(Hk/k) corresponds to a subgroup Bk of the ideal class group Ak

of k consisting of classes c with the following property: If a ∈ c, then
ap = (α), where α is an L-adic p-th power for every prime L of k lying
above p.

Proof. Denote the ray class field of k of conductor p2 by R(p2). Then,
by class field theory, we see that R(p2) = kc

1k
a
2HkR for some abelian

extension R of k of degree m prime to p. By assumption, pp = (α)
for some α ∈ k, and if p corresponds to a class in Bk, then p splits in
ka

1/k. Hence (p,R(p2)/k)pm is the identity map. Hence αm ≡ 1 mod p2,
which implies that αm is a L-adic p-th power for every prime L above p.
Since m is prime to p, α is also a L-adic p-th power. Now assume that
p corresponds to a class in Ak but not in Bk. Then (p, R(p2)/k)p is not
the identity map. Hence α 6≡ 1 mod p2., which implies that α is not a
L-adic cubic for some L lying above p.

Now we state the main theorem of this paper, and give an example.
Choose prime ideals pi’s which represents the classes of Bk and does not
lie above 3.
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Theorem 2.5. Let k = Q(
√−d) be an imaginary quadratic field such

that Gal(Hk/k) is 3-elementary and ζ3 6∈ k. Assume that ka∞ ∩ Hk =
ka

1 . Then there exists a unique extension M3 of F in MF,χ such that
every prime ideal of F above pi(1 ≤ i ≤ t) split completely in M3/F .
Moreover, M3 = F ( 3

√
β), and hence ka

1 = k(η), where β ∈ Sχω and
η = TrM3/ka

1
( 3
√

β).

Proof. Since the rank of XF,χ is the same as that of Ak by Theorem 1
and Lemma 1, the extension field N3 of degree 3 of F in MF,χ is always
equal to the compositum FL of F and L, where L is an extension of
degree 3 of k in Hk. Moreover L is uniquely determined when N3 is given
because Gal(F/k) is cyclic group of order 6. Let M3 be the extension of
F satisfying properties in Theorem 3. Then the primes of F above Bk

splits completely in M3/F and M3 = FL. Hence the prime of k in Bk

splits completely in L/k, which shows that L = ka
1 . The last statement

of Theorem 3 comes from Theorem 5.3.5 in [1].

Now we give an example.
Let k = Q(

√−4027) be an imaginary quadratic field and p2 is a prime
ideal of Q(

√
12081) above 2. Then

ka
1 = k( 3

√
ε2α− 2 3

√
ε−2α−1)

where ε is the fundamental unit of Q(
√

12081) and p3
2 = (α).

We can take α = 81((−1+
√

12081)/2)+4492 and ε = (17288113122+
157288204

√
12081)2/12. By Lemma 1 and Theorem 2, β is one of the

followings; ε, εα, ε2α, α. We choose a prime ideal p19,k of k lying above
19. We see that p19,k is actually in Bk since p19,k

3 = (γ) and γ is a L-adic
3-rd power.(See [2]) Hence, by Lemma 2, β shoud be a cubuc modulo
p19,Q(

√
12081), where p19,Q(

√
12081) is a prime ideal of Q(

√
12081) lying

above 19. We can easily check, by Maple, only ε2α is a cubic modulo
p19,Q(

√
12081). Since σ ∈ Gal(M3/ka

1) satisfies σ2 = 1, we have 3
√

ε2α
σ

=

−2 3
√

ε−2α−1 and therefore η = TrM3/ka
1
( 3
√

β) = 3
√

ε2α− 2 3
√

ε−2α−1.
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