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AN EXTENDED THEOREM FOR GRADIENTS AND
SUBGRADIENTS

Hyang Joo Rhee*

Abstract. In this paper, we introduce certain concepts which we
will provide us with a perspective and insight into the problem of
calculating best approximations. The material of this paper will
be mainly, but not only, used in developing algorithms for the one-
sided and two-sided sided approximation problem.

1. Introduction

We first fix some notation. For a set B, Σ a σ-field of subsets of B,
and ν a positive measure defined on Σ, i.e., ν(E) ≥ 0 for all E ∈ Σ. By
Lp(B, ν), 1 ≤ p ≤ ∞, we denote the set of all real-valued ν-measurable
functions f defined on B for which |f |p is ν-integrable over B. We
consider two functions of Lp(B, ν) as equivalent if they are equal ν a.e..
Under this convention Lp(B, ν) with norm

||f ||p = (
∫

B
|f(x)|pdν(x))

1
p

= (
∫

B
|f |pdν)

1
p

is a normed linear space and in fact a Bancch space.
Let L∞(B, ν) is defined analogously with norm

||f ||∞ = ess supx∈B|f(x)|
where the ess sup is the infimum of all real constants c for which |f(x)| ≤
c, ν a.e.. Then L∞(B, ν) is also a Banach space. We are interested in
the case p = 1. If p = 1, the dual space is not always given by this
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equality. However we shall assume that ν is σ-finite, in which case we
necessarily have

L1(B, ν)∗ = L∞(B, ν).

Let S be a n-dimensional subspace of L1(B, ν) and we choose and
fix a basis s1, s2, · · · , sn for S. For each fj ∈ L1(B, ν), 1 ≤ j ≤ `, set
F = {f1, f2, · · · , f`} and defined by

M(a) = max
1≤j≤`

||fj −
n∑

i=1

aisi||1

where a = (a1, a2, · · · , an) ∈ Rn.
Before proving the main Theorem, we need to pursue some tech-

nical facts, that M is continuous, convex and lim||a||→∞M(a) = ∞,
where || · || is any norm on Rn. By A. M. Pinkus[4], we know that
H(a) = ||f−∑n

i=1 aisi|| is continuous, almost everywhere differentiable,
convex and lim||a||→∞H(a) = ∞. From general considerations it fol-
lows that M is continuous, almost everywhere differentiable, convex and
lim||a||→∞M(a) = ∞. Thus the unconstrained problem of determining
a best approximation to F from S is equivalent to that of finding the
minimum of a given convex function M . The study of this problem
leads us to the important concepts of gradients and subgradients. The
subgradients of M at a are defined as follows:

Definition 1.1. Let M be as above and a ∈ Rn. A vector g ∈ Rn is
said to be a subgradient to M at a if

M(b) ≥ M(a) + (g, b− a)

for all b ∈ Rn where (·, ·) is the usual inner product of vectors in Rn.
We let G(a) denote the set of subgradients to M at a.

Each elements of G(a) corresponds to a supporting hyperplane to M
at a. Since M is convex, G(a) is non-empty. Furthermore, the set G(a)
is bounded, closed and convex for each a ∈ Rn.

Definition 1.2. Let M be as above and a ∈ Rn. If G(a) is a singleton
then this singleton is called the gradient to M at a.

Thus a gradient to M exists at a if and only if there is a unique
supporting hyperplane to M at a.

Let us now deduce the usual simple criterion for determing when a∗
is a minimum point of M . Such a minimum point exists.
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Lemma 1.3. Let M be as above and a∗ ∈ Rn. Then a∗ is a minimum
point of M if and only if 0 ∈ G(a∗).

Proof. If a∗ is a minumum of M , then M(b) − M(a∗) ≥ 0 for all
b ∈ Rn. Thus M(b)−M(a∗) ≥ (0, b− a∗) for all b ∈ Rn. So 0 ∈ G(a∗).

Conversely, if 0 ∈ G(a∗), then M(b)−M(a∗) ≥ (0, b− a∗) = 0 for all
b ∈ Rn. Thus M(b) ≥ M(a∗) for all b ∈ Rn.

2. Gradients and subgradients

Since G(a) is a compact convex set, it is uniquely determined by its
extreme points. These extreme points are related to one-sided direc-
tional derivatives as follows. Let W be an arbitrary subset of Rn. A ray
W is the union of the origin and the various rays(half-lines of the form
{λy|λ ≥ 0}).

Proposition 2.1. Let M be as above and a ∈ Rn. For each d ∈ Rn

lim
t→0+

M(a + td)−M(a)
t

= M ′
d(a)

exists. Furthermore,

M ′
d(a) = max{(g, d) : g ∈ G(a)}.

Proof. Set

r(t) =
M(a + td)−M(a)

t
.

We verify that the above limit exists by proving that r(t) is non-decreasing
and bounded below on (0,∞).

Let 0 < s < t < ∞. Since s
t ∈ (0, 1) and M is convex,

M(a + sd) = M(
s

t
(a + td) + (1− s

t
)a) ≤ s

t
M(a + td) + (1− s

t
)M(a).

Thus
t[M(a + sd)−M(a)] ≤ s[M(a + td)−M(a)],

that is, r(s) ≤ r(t). Now, take any g ∈ G(a). By definition,

M(a + td)−M(a) ≥ (g, td) = t(g, d).

Thus r(t) ≥ (g, d) for all t ∈ (0,∞). Since r(t) is bounded below, the
desired limit exists.
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The above also confirms that M ′
d(a) ≥ (g, d) for every g ∈ G(a). Since

G(a) is compact, we therefore have

M ′
d(a) ≥ max{(g, d) : g ∈ G(a)}.

It remain to prove that equality holds.
Let W1,W2 ⊂ Rn+1 be defined by

W1 = {(b, y) : b ∈ Rn, y ≥ M(b)}
W2 = {(a + td, M(a) + tM ′

d(a)) : t ≥ 0}.
Since M is convex, W1 is convex and by definition, W2 is ray. Since
r(t) ≥ M ′

d(a) for all t > 0, W2 contains no point in the interior of W1.
However (a,M(a)) ∈ W1

⋂
W2. Therefore, there exists a g̃ = (g, gn+1) ∈

Rn+1\{0} such that

(g, b− a) + gn+1(y −M(a)) ≥ 0 ≥ (g, td) + gn+1tM
′
d(a)

for all b ∈ Rn, y ≥ M(b), and t ≥ 0. If b = a, then gn+1(y−M(a)) ≥ 0 for
all y ≥ M(a) which implies that gn+1 ≥ 0. If gn+1 = 0, then (g, b−a) ≥ 0
for all b ∈ Rn, and so g = 0. It is a contradiction. Thus gn+1 > 0, set
g∗ = −g/gn+1. Then

M(b)−M(a) ≥ (g∗, b− a)

for all b ∈ Rn, and
(g∗, d) ≥ M ′

d(a).
From the inequality, g∗ ∈ G(a). The second inequality implies that

max{(g, d) : g ∈ G(a)} = M ′
d(a).

Based on the above, we call d a descent direction if M ′
d(a) < 0.

We can now discern the germ of an idea behind the construction of
algorithms for this problem.

Theorem 2.2. [4] Let S be a subspace of L1(B, ν) and f ∈ L1(B, ν)\S.
Then g∗ is a best L1(B, ν) approximation to f from S if and only if

|
∫

B
sgn(f − g∗)gdν| ≤

∫

Z(f−g∗)
|g|dν

for all g ∈ S, where Z(f − g∗) = {x|f(x) = g∗(x)}.
The general plan is to find a good descent direction, and to employ

this information in an efficient manner. Let us assume that we can find
G(a) or at least a descent direction. We end this paper by identifying
G(a).
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Theorem 2.3. Let a ∈ Rn. Then G(a) is the set of all vector g =
(g1, · · · , gn), where

gj =
∫

Z(F−∑n
i=1 aisi)

hsjdν −
∫

B
sgn(fja −

n∑

i=1

aisi)sjdν j = 1, · · · , n

and h is any L∞(B, ν) function satisfying |h| ≤ 1 νa.e. on Z(F −∑n
i=1 aisi) with

Z(F −
n∑

i=1

aisi) =
⋂̀

j=1

Z(fj −
n∑

i=1

aisi)

and ja is a subindex of f satisfying M(a) = ||fja −
∑n

i=1 aisi||1.

Proof. Let g = (g1, · · · , gn) be as in the statement. For every b ∈ Rn,
it follows from Theorem 2.0.5. that

(g, b−a) =
n∑

j=1

gj(bj−aj)

=
∫

Z(F−∑n
i=1 aisi)

h(
n∑

j=1

bjsj −
n∑

j=1

ajsj)dν

−
∫

B
sgn(fja −

n∑

i=1

aisi)(
n∑

j=1

bjsj −
n∑

j=1

ajsj)dν

=
∫

Z(F−∑n
i=1 aisi)

h(
n∑

j=1

bjsj − fja)dν

+
∫

B
sgn(fja −

n∑

i=1

aisi)(fja −
n∑

j=1

bjsj)dν

−
∫

B
sgn(fja −

n∑

i=1

aisi)(fja −
n∑

j=1

ajsj)dν

≤ ||fja −
n∑

j=1

bjsj ||1 − ||fja −
n∑

j=1

ajsj ||1

≤ M(b)−M(a).
So each g is a subgradient to M at a. Let G̃ denote the set of all such
g. Then G̃ ⊆ G(a), and G̃ is both convex and compact. If G̃ 6= G(a),
there exists a g∗ ∈ G(a) and a d ∈ Rn for which

(g, d) < (g∗, d)
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for all g ∈ G̃. Thus

max{(g, d) : g ∈ G̃} < max{(g, d) : g ∈ G(a)} = M ′
d(a).

Let g ∈ G̃ be as in the statement of the proposition with h = sgn(
∑n

j=1 djsj)
on Z(F −∑n

i=1 aisi). Then

(g, d) =
∫

Z(F−∑n
i=1 aisi)

|
n∑

j=1

djsj |dν −
∫

B
sgn(fja −

n∑

j=1

ajsj)
n∑

j=1

djsjdν.

Let us extend h = sgn(
∑n

j=1 djsj) on Z(fja −
∑n

i=1 aisi), then by the
theorem 2.0.5.,

(g, d) =
∫

Z(fja−
∑n

i=1 aisi)
|

n∑

j=1

djsj |dν−
∫

B
sgn(fja−

n∑

j=1

ajsj)
n∑

j=1

djsjdν

= limt→0+ r(t)
= M ′

d(a).
This contradicts the above strict inequality and therefore G̃ = G(a).

Note that d is a descent direction if and only if
∫

B
sgn(fja −

n∑

i=1

aisi)
n∑

j=1

djsjdν >

∫

Z(F−∑n
i=1 aisi)

|
n∑

j=1

djsj |ν.

This is yet another explanation of Theorem 2.0.5. Also note that M has
a gradient at a if and only if ν(Z(F −∑n

i=1 aisi)) = 0. It is then given
by g = (g1, · · · , gn) where

gj = −
∫

B
sgn(fja −

n∑

i=1

aisi)sjdν,

j = 1, · · · , n.
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