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AN EXTENDED THEOREM FOR GRADIENTS AND
SUBGRADIENTS

HyanNc Joo RHEE*

ABSTRACT. In this paper, we introduce certain concepts which we
will provide us with a perspective and insight into the problem of
calculating best approximations. The material of this paper will
be mainly, but not only, used in developing algorithms for the one-
sided and two-sided sided approximation problem.

1. Introduction

We first fix some notation. For a set B, ¥ a o-field of subsets of B,
and v a positive measure defined on ¥, i.e., v(E) > 0 for all E € 3. By
LP(B,v),1 < p < oo, we denote the set of all real-valued v-measurable
functions f defined on B for which |f|P is v-integrable over B. We
consider two functions of LP(B,v) as equivalent if they are equal v a.e..
Under this convention LP(B,v) with norm

171 = ([ Ife)Pava)?

= ([ I1ray?

is a normed linear space and in fact a Bancch space.
Let L*°(B,v) is defined analogously with norm

[ flloo = esssup,cplf(z)|

where the ess sup is the infimum of all real constants ¢ for which |f(z)| <
¢, v a.e.. Then L>°(B,v) is also a Banach space. We are interested in
the case p = 1. If p = 1, the dual space is not always given by this
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equality. However we shall assume that v is o-finite, in which case we
necessarily have

LY(B,v)* = L*(B,v).

Let S be a n-dimensional subspace of L!(B,v) and we choose and
fix a basis s1,82, -, 8, for S. For each f; € L'(B,v),1 < j < ¢, set
F= {f17f27 te 7f€} and defined by

n
M(a) = Imax Hf] — ZaisiHl
=1

1<j<t
where a = (a1, a9, -+ ,ay,) € R™.

Before proving the main Theorem, we need to pursue some tech-
nical facts, that M is continuous, convex and limj,~e M(a) = oo,
where || - || is any norm on R™. By A. M. Pinkus[4], we know that
H(a) = ||f -1 a;sil| is continuous, almost everywhere differentiable,

convex and limjj,|—o H(a) = oo. From general considerations it fol-
lows that M is continuous, almost everywhere differentiable, convex and
lim|j4| oo M (a) = oo. Thus the unconstrained problem of determining
a best approximation to F' from S is equivalent to that of finding the
minimum of a given convex function M. The study of this problem
leads us to the important concepts of gradients and subgradients. The
subgradients of M at a are defined as follows:

DEFINITION 1.1. Let M be as above and a € R™. A vector g € R" is
said to be a subgradient to M at a if

M(b) > M(a) + (9,5~ a)

for all b € R™ where (-,-) is the usual inner product of vectors in R".
We let G(a) denote the set of subgradients to M at a.

Each elements of G(a) corresponds to a supporting hyperplane to M
at a. Since M is convex, G(a) is non-empty. Furthermore, the set G(a)
is bounded, closed and convex for each a € R".

DEFINITION 1.2. Let M be as above and a € R™. If G(a) is a singleton
then this singleton is called the gradient to M at a.

Thus a gradient to M exists at a if and only if there is a unique
supporting hyperplane to M at a.

Let us now deduce the usual simple criterion for determing when a*
is a minimum point of M. Such a minimum point exists.
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LEMMA 1.3. Let M be as above and a* € R"™. Then a* is a minimum
point of M if and only if 0 € G(a*).

Proof. If a* is a minumum of M, then M(b) — M(a*) > 0 for all
b e R"™. Thus M(b) — M(a*) > (0,b—a*) for all b € R". So 0 € G(a*).
Conversely, if 0 € G(a*), then M (b) — M (a*) > (0,b — a*) = 0 for all
b e R™ Thus M(b) > M(a*) for all b € R™. O

2. Gradients and subgradients

Since G(a) is a compact convex set, it is uniquely determined by its
extreme points. These extreme points are related to one-sided direc-
tional derivatives as follows. Let W be an arbitrary subset of R". A ray
W is the union of the origin and the various rays(half-lines of the form
{AylA = 0}).

PROPOSITION 2.1. Let M be as above and a € R". For each d € R"
lim M(a +td) — M(a)
t—0t t

= Mg(a)
exists. Furthermore,

M)(a) = max{(g,d) : g € G(a)}.

Proof. Set

r(t) = M(a—i—tci)—M(a).

We verify that the above limit exists by proving that r(¢) is non-decreasing
and bounded below on (0, c0).
Let 0 < s <t < oo. Since § € (0,1) and M is convex,

M(a + sd) = M(;(a +td) + (1— ;)a) < §M(a +td)+ (1— ;)M(a).
Thus
t{M(a + sd) — M(a)] < s[M(a + td) — M(a)],
that is, r(s) < r(t). Now, take any g € G(a). By definition,
M(a+td) — M(a) > (g,td) = t(g,d).

Thus r(t) > (g,d) for all t € (0,00). Since r(t) is bounded below, the
desired limit exists.
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The above also confirms that M/ (a) > (g, d) for every g € G(a). Since

G(a) is compact, we therefore have
Mg(a) > max{(g,d) : g € G(a)}.

It remain to prove that equality holds.

Let Wy, Wo € R™! be defined by

Wi ={(b,y) : beR", y > M(b)}
Wy = {(a +td, M(a) +tM}(a)): t > 0}.
Since M is convex, W7 is convex and by definition, W5 is ray. Since
r(t) > M)(a) for all t > 0, W> contains no point in the interior of Wj.
However (a, M(a)) € Wy (| Wa. Therefore, there exists a § = (g, gn+1) €
R\ {0} such that
(9,0 —a) + gnia(y — M(a)) > 0 > (g, td) + gn+1tMg(a)
forallb € R",y > M(b),and t > 0. If b = a, then g,+1(y—M(a)) > 0 for
all y > M (a) which implies that g, +1 > 0. If g, +1 = 0, then (g, b—a) >0
for all b € R™, and so g = 0. It is a contradiction. Thus g1 > 0, set
9" = —9/gn+1- Then
M(b) — M(a) = (g%, b—a)
for all b € R", and
(9", d) = Mg(a).
From the inequality, g* € G(a). The second inequality implies that
maz{(g, d) : g € Gla)} = Mj(a).
O

Based on the above, we call d a descent direction if M}(a) < 0.
We can now discern the germ of an idea behind the construction of
algorithms for this problem.

THEOREM 2.2. [4] Let S be a subspace of L*(B,v) and f € L'(B,v)\S.
Then g* is a best L'(B,v) approximation to f from S if and only if

—g")gd d
[t = ol < [ gl
for all g € S, where Z(f — g*) = {z|f(z) = g*(x)}.

The general plan is to find a good descent direction, and to employ
this information in an efficient manner. Let us assume that we can find
G(a) or at least a descent direction. We end this paper by identifying
G(a).
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THEOREM 2.3. Let a € R™. Then G(a) is the set of all vector g =
(917 T 7971)7 Where

gj :/ hsjdy—/ sgn(fj, — Z:alsZ )sidv j=1,-
Z(F=30 aisi)

1=1
and h is any L°°(B,v) function satisfying |h| < 1 va.e. on Z(F —
> iy aisi) with

n l n
=Y aisi) = () 2(f; =Y aisi)
i=1 j=1 i=1
and j, is a subindex of f satisfying M(a) = ||fj. — iy @isil|1-

Proof. Let g = (g1, -+ ,gn) be as in the statement. For every b € R",
it follows frorn Theorem 2.0.5. that

(g, b—a) Zgj i—aj)
:/Z(FZ?_IMSZ) Zb 5 — Zajs]

7j=1

—/ sgn(fj, — Zaisi)(z bjsj — Zajsj)du
B i=1 j=1 j=1
= h bjsj — fj,)dv

/;w>231awn Qb= fi)

+/ sgn(fi, — > aisi)(fi, — > _ bjsj)dv
B P =
—/Bsgn(fja 20451 )(fia — ZG’JSJ

=1
< fje = Dbl = 11f5a — Zajstl
j=1 j=1
< M(b) — M(a).

So each g is a subgradient to M at a. Let G denote the set of all such
g. Then G C G(a), and G is both convex and compact. If G # G(a),
there exists a ¢* € G(a) and a d € R™ for which

(9, d) < (g d)
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for all g € G. Thus
maz{(g, d) : g € G} < maz{(g, d) : g € G(a)} = M}(a).

Let g € G be as in the statement of the proposition with A = sgn(Z?zl d;sj)
on Z(F -3 a;s;). Then
n n n
(9, d) = / 1D djsjldv — / sgn(fio — Y _ajs;) Y djsjdv.
Z(F-Yi  aisi) 5 B j=1 j=1
Let us extend h = sgn(3_7_, djs;) on Z(fj, — D2\, a;s;), then by the
theorem 2.0.5.,

(g,d) = / |Zdjsj|du—/ sgn(fja—Zajsj)Zdjsjdu
Z(fja=2iz1 @isi) =1 B j=1 j=1
= 1imt—>0+ T(t)
= Mi(a).
This contradicts the above strict inequality and therefore G = G(a).
O

n

Note that d is a descent direction if and only if
Z dj Sj ‘I/.

sgn( fj, — a;s;) djs;dv > / |
/B ; ]; Z(F=321 aisi) j=1

This is yet another explanation of Theorem 2.0.5. Also note that M has
a gradient at a if and only if v(Z(F — Y. a;s;)) = 0. It is then given
by g = (g1, - ,gn) where

n
gj = —/ sgn(fj, — Zaisi)sjdu,
B i=1
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