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ESTIMATION OF GENUS FOR CERTAIN ARITHMETIC
GROUP

Daeyeol Jeon*

Abstract. In this work, we find the genera of arithmetic sub-
groups 〈Γ∆(N), Φ〉 of GL+

2 (R) generated by congruence subgroup
Γ∆(N) and the Fricke involution Φ.

1. Introduction

Let H be the complex upper half plane. Then GL+
2 (R) acts on H by

(
a b
c d

)
· z =

az + b

cz + d
.

Let H∗ be the union of H and P1(Q), and Γ be a discrete subgroup of
GL+

2 (R) commensurable with SL2(Z). Then the quotient curve Γ\H∗
is a projective closure of the affine curve Γ\H, which is denoted by XΓ

with genus g(Γ).
For any positive integer N , let Γ1(N), Γ0(N) be the congruence sub-

groups of Γ(1) = SL2(Z) consisting of the matrices
(

a b
c d

)
congruent

modulo N to ( 1 ∗
0 1 ), ( ∗ ∗0 ∗ ) respectively. Let ∆ be a subgroup of (Z/NZ)∗.

Let Γ∆(N) be the modular group defined by

Γ∆(N) =
{(

a b
c d

)
∈ Γ | c ≡ 0 mod N, (a mod N) ∈ ∆

}
.

We always assume that −1 ∈ ∆.
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Kim and Koo determine the genus of the curve XΓ when Γ = 〈Γ1(N),Φ〉
is the arithmetic subgroup of GL+

2 (R) generated by Γ1(N) and the Fricke

involution Φ =
(

0 −1
N 0

)
as follows:

Theorem 1.1. For any positive integer N ≥ 1,

g(〈Γ1(N), Φ〉) =
g(Γ1(N))− g(Γ0(N))

2
+ g(〈Γ0(N), Φ〉).

In this paper, we show that the same genus formula holds true for
the curve XΓ when Γ = 〈Γ∆(N), Φ〉. Our main result is as follows:

Theorem 1.2. For any positive integer N ≥ 1,

g(〈Γ∆(N), Φ〉) =
g(Γ∆(N))− g(Γ0(N))

2
+ g(〈Γ0(N), Φ〉).

One can find a genus formula of g(Γ∆(N)) in [1].

2. Proof of Theorem 1.2

Kim and Koo [2] obtained their genus formula by showing that the
number of 〈Γ1(N), Φ〉-inequivalent elliptic points fixed by Φ is the same
as the number of 〈Γ0(N), Φ〉-inequivalent elliptic points fixed by Φ. If
we can show that it holds for Γ∆(N), then we are done. For that we use
the exact same notation as in [2].

For any positive integer N , let Γ0(N) be the congruence subgroup
of Γ(1) consisting of the matrices

(
a b
c d

)
congruent ( ∗ 0∗ ∗ ) mod N , and

let Γ∆(N) be the subgroup of Γ0(N) consisting of the matrices
(

a b
c d

)

with a ∈ ∆. Since
(

N 0
0 1

)
〈Γ∗(N), Φ〉

(
N 0
0 1

)−1

= 〈Γ∗(N),Φ′〉 with

Φ′ =
(

0 −N
1 0

)
, the number of 〈Γ∗(N), Φ〉-inequivalent elliptic points

fixed by Φ is the same as the number of 〈Γ∗(N),Φ′〉-inequivalent elliptic
points fixed by Φ′.

Observe that for 1 ≤ N ≤ 4, 〈Γ∆(N), Φ′〉 = 〈Γ0(N),Φ′〉 and Γ∆(N) =
Γ0(N). Thus it suffices to prove for the case N ≥ 5. Let OD be an order
with discriminant D in a quadratic number field Q(

√−N) and C(OD)
be the group of equivalence classes of proper OD-lattices. For an ellip-
tic point w ∈ H∗ of 〈Γ0(N), Φ′〉, we put [w] to be an orbit of w, i.e.,
[w] = {γw | γ ∈ 〈Γ0(N), Φ′〉}.

Let E′
2 be the set of equivalence classes of elliptic points of 〈Γ0(N),Φ′〉

fixed by some elliptic elements in the coset Γ0(N)Φ′. We define E(resp.
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E′) a subset E′
2 consisting of [w] where w is an elliptic point fixed by

some elliptic element
(

a b
c d

)
∈ Γ0(N)Φ′ where one of a and d is odd

(resp. both a and d are even).
Kim and Koo [2] showed that

E′
2 =

{
E if −N 6≡ 1mod 4
E∪̇E′ if −N ≡ 1mod 4

.

Let G = (Z/NZ)∗/{±1}. We define two maps N : E → G/G2 and
N′ : E′ → G/G2 as follows: for [w] ∈ E(resp. E′),

N([w])(resp. N′([w])) = N({1, w})−1 mod G2

where N denote the norm map from the set of proper OD-lattice to
Z. Note that if w satisfy the quadratic equation aw2 + bw + c then
N({1, w}) = a−1. Then Kim and Koo [2] showed that N and N′ are
surjective homomorphisms.

Now we let H = (Z/NZ)∗/∆. We define two maps NH : E → H/H2

and N′
H : E′ → H/H2 by the exact same manner as N and N′. Since

there is a natural surjective homomorphism G/G2 → H/H2, the maps
NH and N′

H are surjective homomorphisms too.

Theorem 2.1. Let N ≥ 5. Then the number of elements of E′
2 is the

same as the number of elements of the set E2 consisting of 〈Γ∆(N), Φ′〉-
inequivalent elliptic points fixed by some elliptic elements in the coset
Γ∆(N)Φ′

Proof. Consider a diagram

H∗

π
²²

id // H∗

π′
²²

〈Γ∆(N), Φ′〉\H∗ ϕ
// 〈Γ0(N),Φ′〉\H∗

Let [w] ∈ E′
2 and M ∈ Γ0(N)Φ′ fix w. Let Γ0(N)/Γ∆(N) = {γ1, . . . , γδN

}
where δN is the order of H. Then ϕ−1(π′(w)) = {π(γiw) | i = 1, . . . , δN}.
For each i, one can show that γiw is an elliptic point of 〈Γ∆(N), Φ′〉 if and

only tw ≡ ad−2 mod N for some a ∈ ∆ when we write M =
(∗ ∗
∗ tw

)
Φ′

and γi =
(∗ ∗
∗ d

)
. Thus we know that π(E2) ∩ ϕ−1(π′(w)) 6= ∅ if and

only tw ∈ H2.
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Furthermore, by the exactly method in the proof of Lemma 11 in [2]
we get that

tw ∈ H2 ⇔
{

[w] ∈ kerNH if [w] ∈ E

[w] ∈ ([w′] · kerN′
H) if [w] ∈ E′ and −N ≡ 1 mod 4

where we have chosen [w′] ∈ E′ so that f ′([w′]) = 2−1 mod H2.
Let ν2 and ν ′2 be the number of E2 and E′

2 respectively. Now

ν2 = #π(E2) =
∑

[w]∈E′2

#[π(E2) ∩ ϕ−1([w])]

=
∑

[w]∈kerNH∪([w′]·kerN′H)

#{d ∈ H | d2 = tw
−1}

=
∑

[w]∈kerNH∪([w′]·kerN′H)

#{d ∈ H | d2 = 1}

=
∑

[w]∈kerNH∪([w′]·kerN′H)

|H/H2|

=

{
|H/H2| · |kerNH | if −N 6≡ 1 mod 4
|H/H2| · (|kerNH |+ |kerN′

H |) if −N ≡ 1 mod 4

=

{
#E if −N 6≡ 1 mod 4
#E + #E′ if −N ≡ 1 mod 4

= #E′
2 = ν ′2

By Hurwitz formula one can show that g(〈Γ∆(N), Φ〉) =
g(Γ∆(N))

2
+

1
2
− ν2

4
and g(〈Γ0(N), Φ〉) =

g(Γ0(N))
2

+
1
2
− ν ′2

4
. Theorem 1.2 follows

from these equations and Theorem 2.1.
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