ON COCYCLIC MAPS AND COCATEGORY

YEON SOO YOON*

ABSTRACT. It is known [5] that the concepts of C_k -spaces and those can be characterized using by the Gottlieb sets and the LS category of spaces as follows; A space X is a C_k -space if and only if the Gottlieb set G(Z,X)=[Z,X] for any space Z with $cat\ Z\leq k$. In this paper, we introduce a dual concept of C_k -space and obtain a dual result of the above result using the dual Gottlieb set and the dual LS category.

1. Introduction

A based map $g: B \to X$ is called cyclic [10] if there exist a map $G: X \times B \to X$ such that $Gj \sim \nabla(1 \vee g)$, where $j: X \vee B \to X \times B$ is the inclusion and $\nabla: X \vee X \to X$ is the folding map. The Gottlieb set G(B,X) is the set of all homotopy classes of cyclic maps from B to X. The loop space ΩX of any space X has a homotopy type of an associative H-space. A 0-connected space X is filtered by the projective spaces of ΩX by a result of Milnor [8] and Stasheff [9];

$$\Sigma \Omega X = P^1(\Omega X) \hookrightarrow P^2(\Omega X) \hookrightarrow \cdots \hookrightarrow P^{\infty}(\Omega X) \simeq X.$$

For each k, let $e_k^X: P^k(\Omega X) \to P^\infty(\Omega X) \simeq X$ be the natural inclusion. We write $e^X = e_1^X: \Sigma \Omega X = P^1(\Omega X) \to X$. It was shown [1] that X is a T-space if and only if $e = e_1: \Sigma \Omega X \to X$ is cyclic. We see that $e_\infty^X \sim 1_X: X \to X$. A connected space X is called a C_k -space if the inclusion $e_k^X: P^k(\Omega X) \to X$ is cyclic [5]. In fact, T-spaces and C_1 -spaces are the same. We showed [5] that the concept of a C_k -space can be characterized using by the Gottlieb set and the LS category as follows; A space X is a C_k -space if and only if the Gottlieb set G(Z,X) = [Z,X] for any space Z with $cat Z \le k$. In this paper, we introduce a dual

Received February 16, 2011; Accepted March 04, 2011.

2010 Mathematics Subject Classification: Primary 55P45, 55P35.

Key words and phrases: cocyclic maps, cocategory of spaces.

This work was supported by Hannam University Research Fund, 2010.

concept of C_k -space and obtain a dual result of the above result using the dual Gottlieb set and the dual LS category.

2. DC_k -spaces

We now recall the following Ganea's theorem [4].

THEOREM 2.1. [4] Let $k \geq 1$ be an integer or $k = \infty$ and assume that X is a 0-connected space. The category cat $X \leq k$ if and only if $e_k^X : P^k(\Omega X) \to X$ has a right homotopy inverse.

In [3], Ganea introduced the concept of cocategory of a space as follows; Let X be a any space. Define a sequence of cofibrations

$$C_k: X \xrightarrow{e'_k} F_k \xrightarrow{s'_k} B_k \ (k \ge 0)$$

as follows, let $C_0: X \stackrel{e'_0}{\to} cX \stackrel{s'_0}{\to} \Sigma X$ be the standard cofibration. Assuming C_k to be defined, let F'_{k+1} be the fibre of s'_k and $e''_{k+1}: X \to F'_{k+1}$ lift e'_k . Define F_{k+1} as the reduced mapping cylinder of e''_{k+1} , let $e'_{k+1}: X \to F_{k+1}$ is the obvious inclusion map, and let $B_{k+1} = F_{k+1}/e'_{k+1}(X)$ and $s'_{k+1}: F_{k+1} \to F_{k+1}/e_{k+1}(X)$ the quotient map.

DEFINITION 2.2. [3] The cocategory of X, cocat X, is the least integer $k \geq 0$ for which there is a map $r: F_k \to X$ such that $r \circ e'_k \sim 1$. If there is no such integer, cocat $X = \infty$.

The following remark can easily obtained from the above definition.

Remark 2.3.

- (1) cocat $X \leq k$ if and only if $e'_k : X \to F_k$ has a left homotopy inverse.
- (2) cocat X = 0 if and only if X is contractible.

A based map $g: X \to B$ is cocyclic [10] if there is a map $\theta: X \to X \lor B$ such that $j\theta \sim (1 \times g)\Delta$, where $j: X \lor B \to X \times B$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. The dual Gottlieb set, denoted DG(X,B), is the set of all homotopy classes of cocyclic maps from X to B.

We can easily show that F_1 and $\Omega \Sigma X$ have the same homotopy type. A space X is called [11] a co-T-space if $e' = e'_1 : X \to \Omega \Sigma X$ is cocyclic. Thus we can define DC_k -spaces as follows;

DEFINITION 2.4. A space X is called a DC_k -space if the inclusion $e'_k: X \to F_k$ is cocyclic.

Clearly, DC_1 -spaces and co-T-spaces are the same.

The following theorem say that DC_k -spaces are closely related by the dual Gottlieb sets and cocategory of spaces.

THEOREM 2.5. A space X is a DC_k -space if and only if DG(X, Z) = [X, Z] for any space Z with cocat $Z \leq k$.

Proof. Suppose X is a DC_k -space. Since $e'_k: X \to F_k$ is cocyclic, there is a map $\theta: X \to X \vee F_k$ such that $j\theta \sim (1 \times \theta)\Delta$, where $j: X \vee F_k \to X \times F_k$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. Let Z be a space with $cocat \ Z \le k$. Let $g: X \to Z$ be any map. Since $cocat \ Z \le k$, there is a map $s: F_k \to Z$ such that $s \circ e'_k \sim 1_Z$. Interpreting F_k as a functor, we have the following homotopy commutative diagram;

$$X \xrightarrow{g} Z$$

$$\downarrow e'_k \qquad \qquad \downarrow e'_k \qquad 1$$

$$F_k(X) \xrightarrow{F_k(g)} F_k(Z) \xrightarrow{s} Z.$$

Also, we consider the following homotopy commutative diagram;

Thus we have a map $\phi = (1 \vee s)(1 \vee F_k(g))\theta : X \to X \vee Z$ such that $j\phi \sim (1 \times g)\Delta$, where $j: X \vee Z \to X \times Z$ is the inclusion. Thus $g: X \to Z$ is cocyclic. On the other hand, we assume that for any space Z with $cocat \ Z \le k$, DG(X,Z) = [X,Z]. It is well known [3] that if $F \xrightarrow{i} E \xrightarrow{p} B$ is a fibration, then $cocat \ F \le cocat \ E + 1$. From the fact that $F_k \simeq F_k' \to F_{k-1} \xrightarrow{s_{k-1}'} B_{k-1}$ is a fibration, we know that $cocat \ F_k \le cocat \ F_{k-1} + 1$. Then we have, by induction, $cocat \ F_k \le k$. Thus we know, by our assumption, that $e_k': X \to F_k$ is cocyclic and X is a DC_k -space.

It is shown [2] that $cocat Z \leq 1$ if and only if Z can be dominated by a loop space. Thus we have the following corollary.

COROLLARY 2.6. [11] A space X is a co-T-space if and only if $DG(X, \Omega B) = [X, \Omega B]$ for any space B.

It is well known fact [7] that a space X is a co-H-spaces if and only if $1: X \to X$ is cocyclic. Moreover, it is also known [10] that if $f: X \to Y$

is cocyclic and $g:Y\to Z$ is any map, then $gf:X\to Z$ is cocyclic. Thus we have the following corollary from the definition of cocategory and the above theorem.

Corollary 2.7.

- (1) If X is a DC_m -space, then X is a DC_n -space for any n < m.
- (2) If X is a DC_k -space and cocat X = k, then X is a co-H-space.

References

- [1] J. Aguadé, Decomposable free loop spaces, Can. J. Math. 39 (1987), 938–955.
- [2] T. Ganea, Lusternik-Schnirelmann category and cocategory, Proc. London Math. Soc., (3)10 (1960), 623-639.
- [3] T. Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv. 39 (1965), 295-322.
- [4] N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. Lon. Math. Soc. 30 (1998), 623-634.
- [5] N. Iwase, M. Mimura, N. Oda and Y. S. Yoon, *The Milnor-Stasheff filtration on spaces and generalized cyclic maps*, to appear in Canad. Math. Bull.,
- [6] I. M. James, On category in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348.
- [7] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), 63-71.
- [8] J. Milnor, Construction of universal bundles, I, II, Ann. Math. 63 (1956), 272–284, 430–436.
- [9] J. D. Stasheff, Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc. 108 (1963), 275–292, 293–312.
- [10] K. Varadarajan, Genralized Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164.
- [11] M. H. Woo and Y. S. Yoon, *T-spaces by the Gottlieb groups and duality*, J. Austral. Math. Soc., (Series A) 59 (1995), 193-203.
- [12] Y. S. Yoon, The generalized dual Gottlieb sets, Top. Appl. 109 (2001), 173-181.
- [13] Y. S. Yoon, H^f-spaces for maps and their duals, J. Korea Soc. Math. Educ. Ser. B Vol. 14 (4) (2007), 289-306.

*

Department of Mathematics Education Hannam University Daejeon 306-791, Republic of Korea E-mail: yoon@hannam.ac.kr