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ALGEBRAS IN MCn(k) WITH dim(m2
R) = 1

Youngkwon Song*

Abstract. We introduce a method to construct some algebras R ∈
MCn(k) with dim(R) = n and dim(m2

R) = 1 for each n ≥ 3.

1. Introduction

Throughout this paper, (R, mR, k) is a local maximal commutative
subalgebra of matrix algebra Mn(k) of size n×n with nilpotent maximal
ideal mR and residue class field k. The set of all local maximal commu-
tative subalgebras (R,mR, k) of Mn(k) will be denoted by MCn(k). We
assume the algebra R ∈ MCn(k) contains the multiplicative identity.
The socle of the algebra R is denoted by soc(R). Furthermore, It is the
identity matrix of size t× t and Ot×s is the zero matrix of size t× s.

The next theorems are known as the Kravchuk’s theorem.

Theorem 1.1. ([5] Kravchuk’s first theorem ) Let (R, mR, k) be an
algebra in MCn(k). Then, the matrix r ∈ mR can be assumed to be of
the following form :

r =




O`×` O O
A(r) B(r) O
C(r) D(r) Oq×q


 ,

where B(r) ∈ Mp(k), n = ` + p + q, ` 6= 0, p 6= 0, q 6= 0. Moreover,
soc(R) consists of all matrices of the form :

r =
(

O(n−q)×` O(n−q)×(n−`)

C(r) Oq×(n−`)

)
,

where C(r) ∈ Mq×`(k).

Received June 22, 2011; Accepted August 13, 2011.
2010 Mathematics Subject Classification: Primary 15A27, 15A33.
Key words and phrases: maximal commutative subalgebra, socle.
The present research has been conducted by the Research Grant of Kwangwoon

University in 2010.



554 Youngkwon Song

Theorem 1.2. ([5] Lemma 6) Let (R, mR, k) be an algebra in MCn(k).
Suppose the matrices ri ∈ mR which are of the form

ri =




O`×` O O
A(ri) B(ri) O
C(ri) D(ri) Oq×q


 , i = 1, 2, . . . , t

constitute a basis for mR where B(ri) ∈ Mp(k). Then, the rank of the
following p× `t matrix H is p :

H =
(

A(r1) A(r2) · · · A(rt)
)
.

Theorem 1.3. ([1] Theorem 4 ) Let (R, mR, k) be a commutative
algebra. Then, R is a C1-construction if and only if there is an ideal N
of R satisfying the following conditions :

(1) AnnR(N) = N
(2) The exact sequence 0 → N → R → R/N → 0 splits as k-algebras.
, where AnnR(N) is the annihilator of N .

Also, theorem 1.4 is an equivalent condition for a algebra R to be an
algebra of the C2-construction. The proof can be found in [3].

Theorem 1.4. ([3] Lemma 2.8) Let (R, mR, k) be a finite dimensional
commutative algebra. Then, R is a C2-construction if and only if R
contains a subalgebra (B, mB, k) and an element x ∈ mR satisfying the
following conditions :

(1) xν 6= 0 ∈ soc(B) for some positive integer ν > 1
(2) mBx = {0}
(3) dimk(R) = dimk(B) + (ν − 1)

The following theorem 1.5 is an equivalent condition to be a Ct
2-

construction that can be found in [9].

Theorem 1.5. ([9] Theorem 3.1) Let (R, mR, k) be a finite dimen-
sional commutative algebra and let t be a positive integer. Then, R is a
Ct

2-construction if and only if there exist a subalgebra (B,mB, k) of R
and elements xi ∈ mR, i = 1, 2, . . . , t satisfying the following properties
:

(1) x2
i = x2

j ∈ soc(B)− {0} for all 1 ≤ i, j ≤ t

(2) xixj = 0 for all 1 ≤ i 6= j ≤ t
(3) mBxi = {0} for all 1 ≤ i ≤ t
(4) dimk(R) = dimk(B) + t
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2. Algebras in MCn(k) with dim(R) = n and dim(m2
R) = 1

In this section, for each positive integer n ≥ 3, we will introduce a
construction to produce some algebras R ∈ MCn(k) with dim(R) = n
and dim(m2

R) = 1.
From now on, we will consider the case of ` = 1 in theorem 1.1. That

is, we assume the matrices ri in mR are of the form

ri =




O1×1 O O
A(ri) B(ri) O
C(ri) D(ri) Oq×q


 , i = 1, 2, . . . , p + q

constitute a basis for mR.

Now, we define θ-relation as follows :

Definition 2.1. Let θ be a subset of a set {1, 2, . . . , q}. We say the
pair (A(ri), D(ri)) are in θ-relation if for each A(ri) ∈ Mp×1(k), the
matrix D(ri) ∈ Mq×p(k) are defined as follows :

D(ri) =




D1(ri)
D2(ri)

...
Dq(ri)


 , Dj(ri) =

{
A(ri)T , if j ∈ θ,

O1×p, otherwise

Here, A(ri)T is the transpose of A(ri).

Now, we can construct algebras R ∈ MCn(k) with dim(R) = n and
dim(m2

R) = 1 for each n ≥ 3 as the following theorem.

Theorem 2.2. Let R be a subalgebra of Mn(k) and let mR have a
basis consisting of following form of matrices :

ri =




O1×1 O O
A(ri) Op×p O
C(ri) D(ri) Oq×q


 , i = 1, 2, . . . , p + q

,where A(ri) ∈ Mp×1(k), C(ri) ∈ Mq×1(k), D(ri) ∈ Mq×p(k), and
n = p + q + 1. If the pairs (A(ri), D(ri)) are in θ-relation for all i =
1, 2, . . . , p + q, then R is an algebra in MCn(k).

Proof. Note that by theorem 1.1 and theorem 1.2, we may assume
A(ri), A(rj) and C(ri), C(rj) are of the following form for i = 1, 2, . . . , p,
j = p + 1, p + 2, . . . , p + q:
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A(ri) =




0
...
1
...
0



← ith row, C(rj) =




0
...
1
...
0



← jth row

A(rj) = Op×1, C(ri) = Oq×1

Now let

S =




S11 S12 S13

S21 S22 S23

S31 S32 S33


 ∈ Mn(k)

Here, S11 ∈ k, S22 ∈ Mp(k), S33 ∈ Mq(k).
Then, we have the following equations from the equation riS = Sri

for all i :
(1) S12A(ri) + S13C(ri) = 0
(2) S13D(ri) = 0
(3) S22A(ri) + S23C(ri) = A(ri)S11

(4) S23D(ri) = A(ri)S12

(5) A(ri)S13 = Op×q

(6) S32A(ri) + S33C(ri) = C(ri)S11 + D(ri)S21

(7) S33D(ri) = C(ri)S12 + D(ri)S22

(8) C(ri)S13 + D(ri)S23 = Oq×q

From the equation (1) and (3), S12 = O1×p, S13 = O1×q, S23 = Op×p.
Thus, we have the following equations :
(3-1) S22A(ri) = A(ri)S11

(6-1) S33C(ri) = C(ri)S11

(6-2) S32A(ri) = D(ri)S21

From the equation (3-1),

S22A(ri) = Coli(S22) =




0
...

s11
...
0



← ith = A(ri)S11,

where S11 = (s11)1×1 and Coli(S22) is the i-th column of S22. Thus,
S22 = s11Ip.

From the equation (6-1),
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S33C(ri) = Coli(S33) =




0
...

s11
...
0



← ith = C(ri)S11

Thus, S33 = s11Iq.
From the equation (6-2), we have Coli(S32) = S32A(ri) = D(ri)S21.
If we let S21 = (d1, d2, . . . , dp)T for some di ∈ k, i = 1, 2, . . . , p, then

D(ri)S21 =




D1(ri)
D2(ri)

...
Dq(ri)







d1

d2
...

dp


 =




d1i

d2i
...

dqi


 ,

where dti =

{
di, if t ∈ θ,

0, otherwise
Thus,

Coli(S32) =




d1i

d2i
...

dqi




and so the matrix S is of the form

S =




a O O
S21 aIp O
S31 S32 aIq


 .

for some a ∈ k, where

S21 =




d1

d2
...

dp


 , S32 =




S1

S2
...

Sq


 ,

where

Sj =

{
ST

21, if j ∈ θ,

O1×p, otherwise

Here, ST
21 is the transpose of S21. This implies S ∈ R and therefore, we

can conclude that R ∈ MCn(k).
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Example 2.3. Let R be a subalgebra of M6(k) defined as following:

R =








a 0 0 0 0 0
a1 a 0 0 0 0
a2 0 a 0 0 0
a3 a1 a2 a 0 0
a4 0 0 0 a 0
a5 a1 a2 0 0 a



| a, a1, a2, a3, a4, a5, α ∈ k





Then, we may consider as p = 2, q = 3, θ = {1, 3},

A(r1) =
(

1
0

)
, A(r2) =

(
0
1

)
, A(r3) = A(r4) = A(r5) =

(
0
0

)
,

D(r1) =




1 0
0 0
1 0


 =




A(r1)T

O
A(r1)T


 , D(r2) =




0 1
0 0
0 1


 =




A(r2)T

O
A(r2)T


 ,

D(r3) = D(r4) = D(r5) =




0 0
0 0
0 0


 ,

C(r1) = C(r2) =




0
0
0


 , C(r3) =




1
0
0


 ,

C(r4) = C(r2) =




0
1
0


 , C(r5) =




0
0
1


 .

Thus, by the theorem 2.2, R should be a subalgebra in MC6(k) with
dim(R) = 6 and dim(m2

R) = 1.

The following lemma 2.4 and theorem 2.5 provides some properties of
an algebra R ∈ MCn(k) in theorem 2.2 and the proof can be obtained
by straightforward calculations. The (i, j)th matrix unit will be denoted
by Eij .

Lemma 2.4. Suppose R ∈ MCn(k) is an algebra as in theorem 2.2.
Then, m2

R = (E1+p+`1,1+· · ·+E1+p+`µ,1), where `1, . . . , `µ ∈ θ with `1 <
· · · < `µ.

Theorem 2.5. Suppose R ∈ MCn(k) is an algebra as in theorem 2.2.
Then, the following properties hold :

(1) dim(R) = n



Algebras in MCn(k) with dim(m2
R) = 1 559

(2) dim(m2
R) = 1

(3) m2
R ⊆ soc(R)

(4) dim(soc(R)) = q
(5) dim(soc(R)/m2

R) = q − 1
(6) i(mR) = 3, where i(mR) is the index of the nilpotency of mR.

3. Relation with Ci-constructions

In this section, we want to prove if the construction in section 2
imply the C2-construction and the Ct

2-construction but not the C1-
construction.

Theorem 3.1. Suppose R ∈ MCn(k) is an algebra in theorem 2.2.
Then, R is not a C1-construction.

Proof. Suppose R is a C1-construction. Then, R should contain an
ideal N satisfying AnnR(N) = N . Let r ∈ Ann(N). Then r = a1r1 +
a2r2 + · · ·+ aprp + bs for some ai, b ∈ k, i = 1, 2, . . . , p and s ∈ soc(R).
Note that r2 = (a2

1+a2
2+ · · ·+a2

p)s1 for some s1 6= On×n ∈ soc(R). Since
r ∈ AnnR(N), r2 = On×n and so r2 = (a2

1 + a2
2 + · · · + a2

p)s1 = On×n

which implies ai = 0 for all i = 1, 2, . . . , p. Thus, r = bs ∈ soc(R)
and so AnnR(N) ⊆ soc(R). Since soc(R) ⊆ AnnR(N), we have N =
AnnR(N) = soc(R). But then N = AnnR(soc(R)) = mR and m2

R =
N2 = {On×n} which is impossible since dim(m2

R) = 1. Therefore, there
doesn’t exist an ideal N satisfying AnnR(N) = N and we can conclude
that R is not a C1-construction.

Theorem 3.2. Suppose R ∈ MCn(k) is an algebra in theorem 2.2.
Then, R is a C2-construction.

Proof. Let B = k[r2, . . . , rp] ⊕ soc(R). Then B is a subalgebra of R
and for the element x = r1, the following properties holds :

(1) x2 6= On×n ∈ soc(B)
(2) mBx = {On×n}
(3) dim(R) = dim(B) + 1.
Thus, the algebra R satisfies the conditions in theorem 1.4 and so R

is a C2-construction.

Theorem 3.3. Suppose R ∈ MCn(k) is an algebra in theorem 2.2.
Then, R is a Ct

2-construction.

Proof. Let B = k[soc(R)] and let xi = ri for all i = 1, 2, . . . , p. Then
B and xi satisfies the following conditions :
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(1) x2
i = x2

j ∈ soc(B)− {On×n} for all 1 ≤ i, j ≤ p

(2) xixj = On×n for all 1 ≤ i 6= j ≤ p
(3) mBxi = {On×n} for all 1 ≤ i ≤ p
(4) dimk(R) = dimk(B) + p

Thus, by the theorem 1.5, R is a Ct
2-construction for t = p.
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