JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 24, No. 3, September 2011

ALGEBRAS IN MC, (k) WITH dim(m%) = 1

YOUNGKWON SONG*

ABSTRACT. We introduce a method to construct some algebras R €
MC,, (k) with dim(R) = n and dim(m%) = 1 for each n > 3.

1. Introduction

Throughout this paper, (R, mp, k) is a local maximal commutative
subalgebra of matrix algebra M, (k) of size n x n with nilpotent maximal
ideal mp and residue class field k. The set of all local maximal commu-
tative subalgebras (R, mpg, k) of M, (k) will be denoted by MC,, (k). We
assume the algebra R € MC, (k) contains the multiplicative identity.
The socle of the algebra R is denoted by soc(R). Furthermore, I is the
identity matrix of size t X t and Oy is the zero matrix of size ¢t x s.

The next theorems are known as the Kravchuk’s theorem.

THEOREM 1.1. ([5] Kravchuk’s first theorem ) Let (R, mpg,k) be an
algebra in M C,,(k). Then, the matrix r € mg can be assumed to be of
the following form :

O¢xe O @
r=1 A(r) B(r) O ,
C(r) D(r) Ogxq
where B(r) € My(k), n =¢+p+gq, £ # 0,p # 0,q # 0. Moreover,
soc(R) consists of all matrices of the form :

;e ( Opn—g)xt Otn—g)x(n—0) )
C(T‘) OqX(n—E) ’
where C(r) € Myx(k).
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THEOREM 1.2. ([5] Lemma 6) Let (R, mpg, k) be an algebra in M C,,(k).
Suppose the matrices r; € mg which are of the form

Oixe O O
ri=1| A(r;)) B(r;)) O , 1=1,2,...,t
C(ri) D(ry) Ogxq

constitute a basis for mp where B(r;) € M,(k). Then, the rank of the
following p X ¢t matrix H isp :

H={( A(r1) A(rg) -+ A(ry) ).

THEOREM 1.3. ([1] Theorem 4 ) Let (R, mpg,k) be a commutative
algebra. Then, R is a C}-construction if and only if there is an ideal N
of R satisfying the following conditions :

(1) Anngr(N) =N
(2) The exact sequence 0 — N — R — R/N — 0 splits as k-algebras.
, where Anng(N) is the annihilator of N.

Also, theorem 1.4 is an equivalent condition for a algebra R to be an
algebra of the Cy-construction. The proof can be found in [3].

THEOREM 1.4. ([3] Lemma 2.8) Let (R, mpg, k) be a finite dimensional
commutative algebra. Then, R is a Cs-construction if and only if R
contains a subalgebra (B, mp, k) and an element x € mp satisfying the
following conditions :

(1) ¥ # 0 € soc(B) for some positive integer v > 1

(2) mpx = {0}
(3) dzmk(R) = dzmk(B) + (V — 1)

The following theorem 1.5 is an equivalent condition to be a Ci-
construction that can be found in [9].

THEOREM 1.5. ([9] Theorem 3.1) Let (R,mp, k) be a finite dimen-
sional commutative algebra and let t be a positive integer. Then, R is a
Cl-construction if and only if there exist a subalgebra (B,mp, k) of R

and elements x; € mpg, i = 1,2,...,t satisfying the following properties
(1):c—x € soc(B) — {0} for all 1 <i,j <t
(2) xq:]—()foralll<17éj<t
(3) mpx; ={0} forall 1 <i <t
(4) dimg(R) = dimy(B) + t
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2. Algebras in MC,(k) with dim(R) = n and dim(m%) =1

In this section, for each positive integer n > 3, we will introduce a
construction to produce some algebras R € MC,, (k) with dim(R) = n
and dim(m%) = 1.

From now on, we will consider the case of £ = 1 in theorem 1.1. That
is, we assume the matrices r; in mp are of the form

Oix1 O 0
ri = A(Tl) B(TZ) O ) 1=1,2,....p+¢
C(ri) D(ry) Ogxq

constitute a basis for mpg.

Now, we define -relation as follows :

DEFINITION 2.1. Let 6 be a subset of a set {1,2,...,q}. We say the
pair (A(r;), D(r;)) are in @-relation if for each A(r;) € Myx1(k), the
matrix D(r;) € Mgxp(k) are defined as follows :

D (rs)
D T NT .
D(rl) - 2'( ) ) D](Tz) = A(Tl) ’ lfj € 9.7
: O1xp, otherwise
Dy(ri)

Here, A(r;)T is the transpose of A(r;).

Now, we can construct algebras R € MC,, (k) with dim(R) = n and
dim(m%) = 1 for each n > 3 as the following theorem.

THEOREM 2.2. Let R be a subalgebra of M, (k) and let mp have a
basis consisting of following form of matrices :

O1x1 O O
ri=| A(ri) Opxp O , 1=1,2,...,p+q
C(ri) D(ri) Ogxq
;where A(r;) € Mpx1(k), C(r;) € Mgxi1(k), D(r;) € Myxp(k), and
n = p+q+ 1. If the pairs (A(r;), D(r;)) are in 0-relation for all i =
1,2,...,p+q, then R is an algebra in M C, (k).

Proof. Note that by theorem 1.1 and theorem 1.2, we may assume
A(ry), A(r;) and C(r;), C(r;) are of the following form fori =1,2,...,p,
J=p+Lp+2,....ptq
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0 0
Alr) =1 1 | — i row, Clrjy=1 1 [ « 5" row
0 0
A(rj) = Opxa, C(r;) = Ogx1
Now let
St Sz Si3
S = 521 522 523 € Mn(k})
S31 S32 33

Here, 511 € k, 522 S Mp(k), 533 S Mq(k‘)
Then, we have the following equations from the equation r;S = Sr;
for all 7 :

5130(7“1) =0

+
(2) =0
(4) = A(Tz)slz
(5) A(Ti)Sl?) = Opxgq
(6) S32A(r;) 4+ S33C(15) = C(r;)S11 + D(r;)S21
(7) S33D(r;) = C(r;)S12 +D(T7,)522
(8) C(Tl)S13 + D(TZ)Sgg = q><q
From the equation (1) and (3), Si12 = O1xp, S13 = O1xq, S23 = Opxp.
Thus, we have the following equations :
(3-1) S A(r;) = A(ry)S11
(6-1) S33C(ry) = C(r;)S11
(6-2) 53214(7“1) = D(’l“i)Sm
From the equation (3-1),

0
SQQA(Ti) = COli(SQQ) = S11 — ith = A(T‘i)SH,
0
where S11 = (s11)1x1 and Col;(S22) is the i-th column of Sge. Thus,

Sog = SHIP.
From the equation (6-1),



Algebras in MC,, (k) with dim(m%) = 1 557
0

5330(7”1') = COli(Sgg) = S11 — ith = C(T‘i)Sn

Thus, 533 = Sllfq.
From the equation (6-2), we have Col;(S32) = S32A(1;) = D(r;)So1.
If we let Sy = (di,ds,...,dp)T for some d; € k, i =1,2,...,p, then

D () dq di;
Dsy(r5) do do;
D(Ti)Sm = . . = : )
Dy(ri) dp dgi
where dy; — d;, ifte 9,
0, otherwise
Thus,
dy;
do;
COli(ng) = .
dy;
and so the matrix S is of the form
a O O
S = 521 aIp 0]
S31 S32 aly
for some a € k, where
dl Sl
dg 52
521 = . 5 S32 = : 5
dp Sq

where

g — SI, ifjeo,
T O1xp, otherwise

Here, S3, is the transpose of Sp;. This implies S € R and therefore, we
can conclude that R € MC,, (k). O
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EXAMPLE 2.3. Let R be a subalgebra of Mg(k) defined as following:

a 0 0 0 0O

ag a 0 0 0 O

_ aa 0 a 0 0 O
k= a3 a1 ay a 0 O ‘ a,ai,as,as,aq, a5, € k

ag 0 0 0 a O

L\ a5 a1 a2 0 0 «a

Then, we may consider as p = 2,q = 3,0 = {1, 3},

1 0 A(r)T 0 1 A(r)T
D)= 0 0 |= O , D(r 00 |= 0
10 A(r)T (0 1 A(ry)T
0 0
D(r3) =D(rqy) =D(r5)=1| 0 0)
0 0
0 1
C(r1) = C(r2) 0 (0 ;
0 0
0 0
C(T4) = C(’I“Q) = 1 0
0 1

Thus, by the theorem 2.2, R should be a subalgebra in M Cg(k) with
dim(R) = 6 and dim(m%) = 1.

The following lemma 2.4 and theorem 2.5 provides some properties of
an algebra R € MC,, (k) in theorem 2.2 and the proof can be obtained
by straightforward calculations. The (i, )" matrix unit will be denoted
by EU

LEMMA 2.4. Suppose R € MC, (k) is an algebra as in theorem 2.2.
Then, mQR = (Biyproya+-+Eiipie, 1), where by, ..., £, € 0 with {1 <

<Ay,

THEOREM 2.5. Suppose R € MC,,(k) is an algebra as in theorem 2.2.
Then, the following properties hold :

(1) dim(R) =n
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(2) dim(m%) =1

(3) m% C soc(R)

(4) dim(soc(R)) = q

(5) dim(soc(R)/m%) = q— 1

(6) i(mg) = 3, where i(mpg) is the index of the nilpotency of mp.

3. Relation with C;-constructions

In this section, we want to prove if the construction in section 2
imply the Cs-construction and the Cﬁ—construction but not the C;-
construction.

THEOREM 3.1. Suppose R € MC,,(k) is an algebra in theorem 2.2.
Then, R is not a C-construction.

Proof. Suppose R is a Ci-construction. Then, R should contain an
ideal N satisfying Anng(N) = N. Let r € Ann(N). Then r = ajry +
asry + - -+ + apry + bs for some a;,b €k, i =1,2,...,p and s € soc(R).
Note that r? = (a2 +a3+- - -—|—a12,)31 for some s1 # Opxn € soc(R). Since
r € Anng(N), 2 = Opxpn and so 72 = (@ + a3 +--- + a?,)s1 = Onxn
which implies a; = 0 for all ¢ = 1,2,...,p. Thus, r = bs € soc(R)
and so Anngr(N) C soc(R). Since soc(R) € Anng(N), we have N =
Anng(N) = soc(R). But then N = AnnR(soc(R)) = mp and m% =
N2 = {Opnxn} which is impossible since dim(m ) = 1. Therefore, there
doesn’t exist an ideal N satisfying Anng(N) = N and we can conclude
that R is not a C}-construction. O

THEOREM 3.2. Suppose R € MC, (k) is an algebra in theorem 2.2.
Then, R is a Cy-construction.

Proof. Let B = klra,...,rp] @ soc(R). Then B is a subalgebra of R
and for the element x = r1, the following properties holds :
(1) 22 # Opnxn € soc(B)
(2) mpx = {Opxn}
(3) dim(R) = dim(B) + 1.
Thus, the algebra R satisfies the conditions in theorem 1.4 and so R
is a Cy-construction. O

THEOREM 3.3. Suppose R € MC, (k) is an algebra in theorem 2.2.
Then, R is a Cl-construction.

Proof. Let B = k[soc(R)] and let x; = r; for all i = 1,2,...,p. Then
B and x; satisfies the following conditions :
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(1) 22 = x? € soc(B) — {Opxn} forall 1 <i,j <p
(2) ixj = Opxp forall1 <i#j<p
(3) mpx; = {Opxn} forall 1 <i<p
(4) dimy(R) = dimy(B) +p
Thus, by the theorem 1.5, R is a Ck-construction for ¢ = p. O
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