ALGEBRAS IN $MC_n(k)$ WITH $dim(m_R^2) = 1$

Youngkwon Song*

ABSTRACT. We introduce a method to construct some algebras $R \in MC_n(k)$ with dim(R) = n and $dim(m_R^2) = 1$ for each $n \geq 3$.

1. Introduction

Throughout this paper, (R, m_R, k) is a local maximal commutative subalgebra of matrix algebra $M_n(k)$ of size $n \times n$ with nilpotent maximal ideal m_R and residue class field k. The set of all local maximal commutative subalgebras (R, m_R, k) of $M_n(k)$ will be denoted by $MC_n(k)$. We assume the algebra $R \in MC_n(k)$ contains the multiplicative identity. The socle of the algebra R is denoted by soc(R). Furthermore, I_t is the identity matrix of size $t \times t$ and $O_{t \times s}$ is the zero matrix of size $t \times s$.

The next theorems are known as the Kravchuk's theorem.

THEOREM 1.1. ([5] Kravchuk's first theorem) Let (R, m_R, k) be an algebra in $MC_n(k)$. Then, the matrix $r \in m_R$ can be assumed to be of the following form :

$$r = \begin{pmatrix} O_{\ell \times \ell} & O & O \\ A(r) & B(r) & O \\ C(r) & D(r) & O_{q \times q} \end{pmatrix},$$

where $B(r) \in M_p(k)$, $n = \ell + p + q$, $\ell \neq 0, p \neq 0, q \neq 0$. Moreover, soc(R) consists of all matrices of the form:

$$r = \begin{pmatrix} O_{(n-q)\times\ell} & O_{(n-q)\times(n-\ell)} \\ C(r) & O_{q\times(n-\ell)} \end{pmatrix},$$

where $C(r) \in M_{q \times \ell}(k)$.

Received June 22, 2011; Accepted August 13, 2011.

²⁰¹⁰ Mathematics Subject Classification: Primary 15A27, 15A33.

Key words and phrases: maximal commutative subalgebra, so cle. $\,$

The present research has been conducted by the Research Grant of Kwangwoon University in 2010.

THEOREM 1.2. ([5] Lemma 6) Let (R, m_R, k) be an algebra in $MC_n(k)$. Suppose the matrices $r_i \in m_R$ which are of the form

$$r_i = \begin{pmatrix} O_{\ell \times \ell} & O & O \\ A(r_i) & B(r_i) & O \\ C(r_i) & D(r_i) & O_{q \times q} \end{pmatrix}, \qquad i = 1, 2, \dots, t$$

constitute a basis for m_R where $B(r_i) \in M_p(k)$. Then, the rank of the following $p \times \ell t$ matrix H is p:

$$H = (A(r_1) A(r_2) \cdots A(r_t)).$$

Theorem 1.3. ([1] Theorem 4) Let (R, m_R, k) be a commutative algebra. Then, R is a C_1 -construction if and only if there is an ideal N of R satisfying the following conditions:

- (1) $Ann_R(N) = N$
- (2) The exact sequence $0 \to N \to R \to R/N \to 0$ splits as k-algebras. , where $Ann_R(N)$ is the annihilator of N.

Also, theorem 1.4 is an equivalent condition for a algebra R to be an algebra of the C_2 -construction. The proof can be found in [3].

THEOREM 1.4. ([3] Lemma 2.8) Let (R, m_R, k) be a finite dimensional commutative algebra. Then, R is a C_2 -construction if and only if R contains a subalgebra (B, m_B, k) and an element $x \in m_R$ satisfying the following conditions:

- (1) $x^{\nu} \neq 0 \in soc(B)$ for some positive integer $\nu > 1$
- (2) $m_B x = \{0\}$
- (3) $dim_k(R) = dim_k(B) + (\nu 1)$

The following theorem 1.5 is an equivalent condition to be a C_2^t construction that can be found in [9].

THEOREM 1.5. ([9] Theorem 3.1) Let (R, m_R, k) be a finite dimensional commutative algebra and let t be a positive integer. Then, R is a C_2^t -construction if and only if there exist a subalgebra (B, m_B, k) of R and elements $x_i \in m_R$, i = 1, 2, ..., t satisfying the following properties

- (1) $x_i^2 = x_j^2 \in soc(B) \{0\}$ for all $1 \le i, j \le t$ (2) $x_i x_j = 0$ for all $1 \le i \ne j \le t$
- (3) $m_B x_i = \{0\} \text{ for all } 1 \le i \le t$
- (4) $dim_k(R) = dim_k(B) + t$

2. Algebras in $MC_n(k)$ with dim(R) = n and $dim(m_R^2) = 1$

In this section, for each positive integer $n \geq 3$, we will introduce a construction to produce some algebras $R \in MC_n(k)$ with dim(R) = n and $dim(m_R^2) = 1$.

From now on, we will consider the case of $\ell = 1$ in theorem 1.1. That is, we assume the matrices r_i in m_R are of the form

$$r_i = \begin{pmatrix} O_{1 \times 1} & O & O \\ A(r_i) & B(r_i) & O \\ C(r_i) & D(r_i) & O_{q \times q} \end{pmatrix}, \qquad i = 1, 2, \dots, p + q$$

constitute a basis for m_R .

Now, we define θ -relation as follows:

DEFINITION 2.1. Let θ be a subset of a set $\{1, 2, ..., q\}$. We say the pair $(A(r_i), D(r_i))$ are in θ -relation if for each $A(r_i) \in M_{p \times 1}(k)$, the matrix $D(r_i) \in M_{q \times p}(k)$ are defined as follows:

$$D(r_i) = \begin{pmatrix} D_1(r_i) \\ D_2(r_i) \\ \vdots \\ D_g(r_i) \end{pmatrix}, \qquad D_j(r_i) = \begin{cases} A(r_i)^T, & \text{if } j \in \theta, \\ O_{1 \times p}, & \text{otherwise} \end{cases}$$

Here, $A(r_i)^T$ is the transpose of $A(r_i)$.

Now, we can construct algebras $R \in MC_n(k)$ with dim(R) = n and $dim(m_R^2) = 1$ for each $n \geq 3$ as the following theorem.

THEOREM 2.2. Let R be a subalgebra of $M_n(k)$ and let m_R have a basis consisting of following form of matrices:

$$r_i = \begin{pmatrix} O_{1 \times 1} & O & O \\ A(r_i) & O_{p \times p} & O \\ C(r_i) & D(r_i) & O_{q \times q} \end{pmatrix}, \qquad i = 1, 2, \dots, p + q$$

where $A(r_i) \in M_{p \times 1}(k)$, $C(r_i) \in M_{q \times 1}(k)$, $D(r_i) \in M_{q \times p}(k)$, and n = p + q + 1. If the pairs $(A(r_i), D(r_i))$ are in θ -relation for all $i = 1, 2, \ldots, p + q$, then R is an algebra in $MC_n(k)$.

Proof. Note that by theorem 1.1 and theorem 1.2, we may assume $A(r_i)$, $A(r_j)$ and $C(r_i)$, $C(r_j)$ are of the following form for i = 1, 2, ..., p, j = p + 1, p + 2, ..., p + q:

$$A(r_i) = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i^{th} \ row, \qquad C(r_j) = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow j^{th} \ row$$

$$A(r_j) = O_{p \times 1}, \qquad C(r_i) = O_{q \times 1}$$

Now let

$$S = \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{pmatrix} \in M_n(k)$$

Here, $S_{11} \in k$, $S_{22} \in M_p(k)$, $S_{33} \in M_q(k)$.

Then, we have the following equations from the equation $r_iS = Sr_i$ for all i:

- (1) $S_{12}A(r_i) + S_{13}C(r_i) = 0$
- (2) $S_{13}D(r_i) = 0$
- (3) $S_{22}A(r_i) + S_{23}C(r_i) = A(r_i)S_{11}$
- (4) $S_{23}D(r_i) = A(r_i)S_{12}$
- (5) $A(r_i)S_{13} = O_{p \times q}$
- (6) $S_{32}A(r_i) + S_{33}C(r_i) = C(r_i)S_{11} + D(r_i)S_{21}$
- (7) $S_{33}D(r_i) = C(r_i)S_{12} + D(r_i)S_{22}$
- (8) $C(r_i)S_{13} + D(r_i)S_{23} = O_{q \times q}$

From the equation (1) and (3), $S_{12} = O_{1 \times p}$, $S_{13} = O_{1 \times q}$, $S_{23} = O_{p \times p}$. Thus, we have the following equations:

- (3-1) $S_{22}A(r_i) = A(r_i)S_{11}$
- (6-1) $S_{33}C(r_i) = C(r_i)S_{11}$
- $(6-2) S_{32}A(r_i) = D(r_i)S_{21}$

From the equation (3-1),

$$S_{22}A(r_i) = Col_i(S_{22}) = \begin{pmatrix} 0 \\ \vdots \\ s_{11} \\ \vdots \\ 0 \end{pmatrix} \leftarrow i^{th} = A(r_i)S_{11},$$

where $S_{11} = (s_{11})_{1\times 1}$ and $Col_i(S_{22})$ is the *i*-th column of S_{22} . Thus, $S_{22} = s_{11}I_p$.

From the equation (6-1),

$$S_{33}C(r_i) = Col_i(S_{33}) = \begin{pmatrix} 0 \\ \vdots \\ s_{11} \\ \vdots \\ 0 \end{pmatrix} \leftarrow i^{th} = C(r_i)S_{11}$$

Thus, $S_{33} = s_{11}I_q$.

From the equation (6-2), we have $Col_i(S_{32}) = S_{32}A(r_i) = D(r_i)S_{21}$. If we let $S_{21} = (d_1, d_2, ..., d_p)^T$ for some $d_i \in k, i = 1, 2, ..., p$, then

$$D(r_i)S_{21} = \begin{pmatrix} D_1(r_i) \\ D_2(r_i) \\ \vdots \\ D_q(r_i) \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_p \end{pmatrix} = \begin{pmatrix} d_{1i} \\ d_{2i} \\ \vdots \\ d_{qi} \end{pmatrix},$$

where $d_{ti} = \begin{cases} d_i, & \text{if } t \in \theta, \\ 0, & \text{otherwise} \end{cases}$

Thus,

$$Col_{i}(S_{32}) = \begin{pmatrix} d_{1i} \\ d_{2i} \\ \vdots \\ d_{qi} \end{pmatrix}$$

and so the matrix S is of the form

$$S = \begin{pmatrix} a & O & O \\ S_{21} & aI_p & O \\ S_{31} & S_{32} & aI_q \end{pmatrix}.$$

for some $a \in k$, where

$$S_{21} = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_p \end{pmatrix}, \qquad S_{32} = \begin{pmatrix} S_1 \\ S_2 \\ \vdots \\ S_q \end{pmatrix},$$

where

$$S_j = \begin{cases} S_{21}^T, & \text{if } j \in \theta, \\ O_{1 \times p}, & \text{otherwise} \end{cases}$$

Here, S_{21}^T is the transpose of S_{21} . This implies $S \in R$ and therefore, we can conclude that $R \in MC_n(k)$.

Example 2.3. Let R be a subalgebra of $M_6(k)$ defined as following:

$$R = \left\{ \begin{pmatrix} a & 0 & 0 & 0 & 0 & 0 \\ a_1 & a & 0 & 0 & 0 & 0 \\ a_2 & 0 & a & 0 & 0 & 0 \\ a_3 & a_1 & a_2 & a & 0 & 0 \\ a_4 & 0 & 0 & 0 & a & 0 \\ a_5 & a_1 & a_2 & 0 & 0 & a \end{pmatrix} \mid a, a_1, a_2, a_3, a_4, a_5, \alpha \in k \right\}$$

Then, we may consider as $p = 2, q = 3, \theta = \{1, 3\},\$

$$A(r_{1}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad A(r_{2}) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad A(r_{3}) = A(r_{4}) = A(r_{5}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

$$D(r_{1}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} A(r_{1})^{T} \\ O \\ A(r_{1})^{T} \end{pmatrix}, \quad D(r_{2}) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} A(r_{2})^{T} \\ O \\ A(r_{2})^{T} \end{pmatrix},$$

$$D(r_{3}) = D(r_{4}) = D(r_{5}) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix},$$

$$C(r_{1}) = C(r_{2}) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad C(r_{3}) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

$$C(r_{4}) = C(r_{2}) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad C(r_{5}) = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

Thus, by the theorem 2.2, R should be a subalgebra in $MC_6(k)$ with dim(R) = 6 and $dim(m_R^2) = 1$.

The following lemma 2.4 and theorem 2.5 provides some properties of an algebra $R \in MC_n(k)$ in theorem 2.2 and the proof can be obtained by straightforward calculations. The $(i,j)^{th}$ matrix unit will be denoted by E_{ij} .

LEMMA 2.4. Suppose $R \in MC_n(k)$ is an algebra as in theorem 2.2. Then, $m_R^2 = (E_{1+p+\ell_1,1} + \cdots + E_{1+p+\ell_{\mu},1})$, where $\ell_1, \ldots, \ell_{\mu} \in \theta$ with $\ell_1 < \cdots < \ell_{\mu}$.

THEOREM 2.5. Suppose $R \in MC_n(k)$ is an algebra as in theorem 2.2. Then, the following properties hold:

(1)
$$dim(R) = n$$

- (2) $dim(m_R^2) = 1$
- (3) $m_R^2 \subseteq soc(R)$ (4) dim(soc(R)) = q
- (5) $dim(soc(R)/m_R^2) = q 1$
- (6) $i(m_R) = 3$, where $i(m_R)$ is the index of the nilpotency of m_R .

3. Relation with C_i -constructions

In this section, we want to prove if the construction in section 2 imply the C_2 -construction and the C_2 -construction but not the C_1 construction.

THEOREM 3.1. Suppose $R \in MC_n(k)$ is an algebra in theorem 2.2. Then, R is not a C_1 -construction.

Proof. Suppose R is a C_1 -construction. Then, R should contain an ideal N satisfying $Ann_R(N) = N$. Let $r \in Ann(N)$. Then $r = a_1r_1 + a_2r_2 + a_3r_3 + a_$ $a_2r_2 + \cdots + a_pr_p + bs$ for some $a_i, b \in k, i = 1, 2, \dots, p$ and $s \in soc(R)$. Note that $r^2 = (a_1^2 + a_2^2 + \dots + a_p^2)s_1$ for some $s_1 \neq O_{n \times n} \in soc(R)$. Since $r \in Ann_R(N), r^2 = O_{n \times n} \text{ and so } r^2 = (a_1^2 + a_2^2 + \dots + a_p^2)s_1 = O_{n \times n}$ which implies $a_i = 0$ for all i = 1, 2, ..., p. Thus, $r = bs \in soc(R)$ and so $Ann_R(N) \subseteq soc(R)$. Since $soc(R) \subseteq Ann_R(N)$, we have N = $Ann_R(N) = soc(R)$. But then $N = Ann_R(soc(R)) = m_R$ and $m_R^2 =$ $N^2 = \{O_{n \times n}\}$ which is impossible since $dim(m_R^2) = 1$. Therefore, there doesn't exist an ideal N satisfying $Ann_R(N) = N$ and we can conclude that R is not a C_1 -construction.

Theorem 3.2. Suppose $R \in MC_n(k)$ is an algebra in theorem 2.2. Then, R is a C_2 -construction.

Proof. Let $B = k[r_2, \ldots, r_p] \oplus soc(R)$. Then B is a subalgebra of R and for the element $x = r_1$, the following properties holds:

- (1) $x^2 \neq O_{n \times n} \in soc(B)$
- $(2) m_B x = \{O_{n \times n}\}\$
- (3) dim(R) = dim(B) + 1.

Thus, the algebra R satisfies the conditions in theorem 1.4 and so Ris a C_2 -construction.

Theorem 3.3. Suppose $R \in MC_n(k)$ is an algebra in theorem 2.2. Then, R is a C_2^t -construction.

Proof. Let B = k[soc(R)] and let $x_i = r_i$ for all i = 1, 2, ..., p. Then B and x_i satisfies the following conditions:

- (1) $x_i^2 = x_j^2 \in soc(B) \{O_{n \times n}\}$ for all $1 \le i, j \le p$ (2) $x_i x_j = O_{n \times n}$ for all $1 \le i \ne j \le p$
- (3) $m_B x_i = \{O_{n \times n}\}$ for all $1 \le i \le p$
- $(4) dim_k(R) = dim_k(B) + p$

Thus, by the theorem 1.5, R is a C_2^t -construction for t = p.

References

[1] W. C. Brown and F. W. Call, Maximal Commutative Subalgebras of $n \times n$ Matrices, Communications in Algebra 59 (1993), no. 12, 4439-4460.

- [2] W. C. Brown, Two Constructions of Maximal Commutative Subalgebras of $n \times n$ Matrices, Communications in Algebra 22 (1994), no. 10, 4051-4066.
- _____, Constructing Maximal Commutative Subalgebras of Matrix Rings in Small Dimensions, Communications in Algebra 25 (1997), no. 12, 3923–3946.
- [4] R. C. Courter, The Dimension of Maximal Commutative Subalgebras of K_n , Duke Mathematical Journal 32 (1965), 225–232.
- [5] D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices, Academic Press, 1968.
- [6] Youngkwon Song, On the Maximal Commutative Subalgebras of 14 by 14 Matrices, Communications in Algebra 25 (1997), no. 12, 3823-3840.
- _____, Maximal Commutative Subalgebras of Matrix Algebras, Communications in Algebra 27 (1999), no. 4, 1649–1663.
- _____, Notes on the Constructions of Maximal Commutative Subalgebra of $M_n(k)$, Communications in Algebra **29** (2001), no. 10, 4333–4339.
- [9] _____, On C_2^t -Construction, FJMS **33** (2009), no. 1, 33-40.

Department of Mathematics Kwangwoon University Seoul 139–701, Republic of Korea E-mail: yksong@kw.ac.kr