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APPROXIMATELY CENTRALIZING DERIVATIONS
OF NONCOMMUTATIVE BANACH ALGEBRA

Ick-Soon Chang*

Abstract. In this paper, we consider the functional inequalities
with approximately centralizing derivations on noncommutative Ba-
nach algebras, and investigate the problem that functions satisfying
the functional inequalities mentioned above map into the radical.

1. Introduction and preliminaries

Throughout this paper, X will denote algebra over the real or complex
field F. A mapping L : X → X is called a centralizing if the functional
equation [L(x), x] ∈ Z(X ) for all x ∈ X , where, [x, y] = xy − yx is
the commutator of x and y, and Z(X ) is the center of X . An additive
mapping d : X → X is called a ring derivation if the functional equation
d(xy) = xd(y) + d(x)y is valid for all x, y ∈ X . In addition, d is said to
be a linear derivation if the functional equation d(λx) = λd(x) holds for
all λ ∈ F and all x ∈ X .

Let us introduce the historical background of our investigation. The
stability problem of functional equations has originally been formulated
by Ulam [16] : under what condition does there exists a homomorphism
near an approximate homomorphism? Hyers [8] answered the problem
of Ulam under the assumption that the groups are Banach spaces. A
generalized version of the theorem of Hyers for approximately additive
mappings was given by Aoki [1] and for approximately linear mappings
was presented by Rassias [12] by considering an unbounded Cauchy dif-
ference. The paper work of Rassias [12] has had a lot of influence in
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the development of what call the generalized Hyers-Ulam stability of
functional equations.

Since then, more generalizations and applications of the generalized
Hyers-Ulam stability to a number of functional equations and mappings
have been investigated. In particular, the stability result concerning
derivations between operator algebras was first obtained by Šemrl [13].
Badora [2] gave a generalization of the Bourgin’s result [5] and he also
dealt with the Hyers-Ulam stability and the Bourgin-type superstability
of derivations in [3].

Singer and Wermer [14] obtained a fundamental result which started
investigation into the ranges of linear derivations on Banach algebras.
The result, which is called the Singer-Wermer theorem, states that ev-
ery continuous linear derivation on a commutative Banach algebra maps
into the radical. They also made a very insightful conjecture, namely
that the assumption of continuity is unnecessary. This was known as the
Singer-Wermer conjecture and was proved by Thomas [15]. The Singer-
Wermer conjecture implies that every linear derivation on a commuta-
tive semisimple Banach algebra is identically zero which is the result of
Johnson [9]. On the other hand, Hatori and Wada [7] showed that a zero
operator is the only ring derivation on a commutative semisimple Ba-
nach algebra with the maximal ideal space without isolated points. Note
that this differs from the above result of Johnson. Based on these facts
and a private communication with Watanabe [11], Miura et al. proved
the generalized Hyers-Ulam stability and Bourgin-type superstability of
ring derivations on Banach algebras in [11].

The main purpose of this paper is to study the superstability for
functional inequalities with centralizing derivations and investigate the
problem of functional inequalities which derivations map into the radical
of noncommutative Banach algebras.

2. Main results

We first demonstrate the definition which is used in this section.

Definition 2.1. Let X be an algebra. A linear mapping f : X → X
is said to be an approximately centralizing linear derivation if f is a
linear derivation such that

‖[f(x), x]y − y[f(x), x]‖ ≤ δ

is fulfilled for all x, y ∈ X .
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In view of the Thomas’ result [15], derivations on Banach algebras
now belong to the noncommutative setting. Among the various non-
commutative versions of the Singer-Wermer theorem, Breŝar [6] proved
that every centralizing linear derivation on a semiprime Banach algebra
maps into the intersection of the center and the radical and Mathieu and
Murphy [10] verify that every continuous centralizing linear derivation
on a Banach algebra maps into the radical.

Theorem 2.2. Let X be a noncommutative Banach algebra. As-
sume that s, t are fixed positive numbers, and r = max{s, t} and u =
min{s, t}. Suppose that f : X → X is a continuous mapping subjected
to the inequality

‖αsf(x) + αtf(y) + rf(αz)− ruf(v)− rf(u)v‖(2.1)

≤
∥∥∥rf

(sx + ty

r
+ z − uv

)∥∥∥
for all x, y, z, u, v ∈ X , where α = 1, i, and

‖[f(x), x]y − y[f(x), x]‖ ≤ δ(2.2)

for all x, y ∈ X . Then f maps X into the radical rad(X ).

Proof. By letting α = 1 and x = y = z = u = v = 0 in (2.1), we get
f(0) = 0. And by putting u = 0 in (2.1), we have

‖αsf(x) + αtf(y) + rf(αz)‖ ≤
∥∥∥rf

(sx + ty

r
+ z

)∥∥∥(2.3)

for all x, y, z ∈ A. Without loss of generality, we assume that r = t.
Then (2.1) can be rewritten the following

‖αuf(x) + αrf(y) + rf(αz)‖ ≤
∥∥∥rf

(ux

r
+ y + z

)∥∥∥(2.4)

for all x, y, z ∈ A. Also, by setting α = 1, x = 0, y = x and z = −x
in (2.4), we obtain f(−x) = −f(x) for all x ∈ A. Letting α = 1, x =
r
u(−x− y), y = x and z = y in (2.4), we arrive at

rf(x) + rf(y) = uf
( r

u
(x + y)

)
(2.5)

for all x, y ∈ A. By putting y = 0 in (2.5), we get

f
( r

u
x
)

=
r

u
f(x)(2.6)

for all x ∈ A. Comparing (2.5) and (2.6), we see that f is additive.
Now, since f is continuous, we feel that f(tx) is continuous in t ∈ R

for each fixed x ∈ X . The mapping f is R-linear [12]. By letting α =
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i, x = 0, y = x and z = −x in (2.4), we obtain f(ix) = if(x) for all
x ∈ X . Therefore, for all µ = s + it ∈ C and all x ∈ X ,

f(µx) = sf(x) + itf(x) = µf(x).

Thus, we conclude that f is C-linear.
By letting α = 1 and x = y = 0, z = xy, u = x, v = y in (2.1), we

arrive at f(xy) = xf(y) + f(x)y.
Therefore, f is linear derivation satisfying (2.2), that is, f is approx-

imately centralizing derivation
On the other hand, it follows by (2.6) that

f(x) =
u

r
f
( r

u
x
)

=
(u

r

)2
f
(( r

u

)2
x
)

= · · · =
(u

r

)n
f
(( r

u

)n
x
)

(2.7)

for all positive integer n and all x ∈ X . So we now define

f(x) := lim
n→∞

(u

r

)n
f
(( r

u

)n
x
)

(2.8)

for all x ∈ A. In view of (2.2) and (2.8), we have

‖[f(x), x]y − y[f(x), x]‖
= lim

n→∞

(u

r

)2n∥∥∥
( r

u

)n[
f
(( r

u

)n
x
)
, x

]
y −

( r

u

)n
y
[
f
(( r

u

)n
x
)
, x

]∥∥∥

≤ lim
n→∞

(u

r

)2n
δ = 0,

which means that f is a centralizing mapping.
With the help of Mathieu and Murphy’s result, we have the desired

assertion.

Theorem 2.3. Let X be a noncommutative semiprime Banach alge-
bra. Assume that s, t are fixed positive numbers, and r = max{s, t} and
u = min{s, t}. Suppose that f : X → X is a mapping subjected to the
inequality

‖αsf(x) + αtf(y) + rf(αz)− ruf(v)− rf(u)v‖(2.9)

≤
∥∥∥rf

(sx + ty

r
+ z − uv

)∥∥∥
for all x, y, z, u, v ∈ X and all α ∈ U := {z ∈ C : |z| = 1}, and the
inequality (2.2). Then f maps X into the intersection of the center
Z(X ) and the radical rad(X ).

Proof. As in the proof of Theorem 2.2, we have f(0) = 0 and

‖αsf(x) + αtf(y) + rf(αz)‖ ≤
∥∥∥rf

(sx + ty

r
+ z

)∥∥∥
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for all x, y, z ∈ X and all α ∈ U. Without loss of generality, we assume
that r = t. The above functional inequality can be written as follows.

‖αsf(x) + αrf(y) + rf(αz)‖ ≤
∥∥∥rf

(ux

r
+ y + z

)∥∥∥(2.10)

for all x, y, z ∈ X and all α ∈ U. Employing the same argument as in the
proof of Theorem 2.2, we find that f is a centralizing ring derivation.

Now we need to show that f is linear : By letting x = 0, y = x and z =
−x in (2.10), we obtain f(αx) = αf(x). Clearly, f(0x) = 0 = 0f(x). Let
us assume that λ is a nonzero complex number and that M is a positive
integer greater than |λ|. Then, by applying a geometric argument, there
exist λ1, λ2 ∈ U such that 2(λ/M) = λ1 + λ2. In particular, we obtain
f(x/2) = (1/2)f(x) for all x ∈ A. Thus we have that f(λx) = λf(x) for
all x ∈ A, so that f is C-linear.

According to Breŝar’s result, we arrive at the conclusion of Theorem.

Theorem 2.4. Let X be a noncommutative Banach algebra with
unit. Assume that s, t are fixed distinct positive numbers, and r =
max{s, t} and u = min{s, t}. Suppose that f : X → X is a continuous
mapping subjected to the inequality

‖αsf(x) + αtf(y) + rf(αz)− ruf(v)− rf(u)v‖(2.11)

≤
∥∥∥rf

(sx + ty

r
+ z − uv

)∥∥∥ + ε

for all x, y, z, u, v ∈ X , where α = 1, i, and the inequality (2.2). Then f
maps X into the radical rad(X ).

Proof. By letting α = 1 and x = y = z = u = v = 0 in (2.11), we get
‖f(0)‖ ≤ ε

u+r . Without loss of generality, we assume that r = t. Then,
(2.11) can be written as the following :

‖αuf(x) + αrf(y) + rf(αz)− ruf(v)− rf(u)v‖(2.12)

≤
∥∥∥rf

(ux

r
+ y + z − uv

)∥∥∥ + ε

for all x, y, z, u, v ∈ X with α = 1, i. We also have by letting α = 1, x =
r
ux, y = −x, z = 0 and u = v = 0 in (2.12) that

(2.13)
∥∥∥u

r
f
( r

u
x
)

+ f(−x)
∥∥∥ ≤

(1
r

+
2

u + r

)
ε

for all x ∈ X . Next, by letting α = 1, x = 0, y = x, z = −x and
u = v = 0 in (2.12), we obtain

(2.14) ‖f(x) + f(−x)‖ ≤ 2ε

r



548 Ick-Soon Chang

for all x ∈ X . Therefore, by (2.13) and (2.14), we see that

∥∥∥
(u

r

)l
f
(( r

u

)l
x
)
−

(u

r

)m
f
(( r

u

)m
x
)∥∥∥

≤
m−1∑

j=l

∥∥∥
(u

r

)j
f
(( r

u

)j
x
)
−

(u

r

)j+1
f
(( r

u

)j+1
x
)∥∥∥

≤
m−1∑

j=l

[ ∥∥∥
(u

r

)j
f
(( r

u

)j
x
)

+
(u

r

)j+1
f
(
−

( r

u

)j+1
x
)∥∥∥

+
∥∥∥
(u

r

)j+1
f
(
−

( r

u

)j+1
x
)

+
(u

r

)j+1
f
(( r

u

)j+1
x
)∥∥∥

]

≤
m−1∑

j=l

(u

r

)j[2u

r2
+

1
r

+
2

u + r

]
ε

for all nonnegative integers m, l with m > l and all x ∈ X . It follows that
the sequence {(u

r )nf(( r
u)nx)} is a Cauchy and so it is convergent. So

one can define a mapping L : X → X by L(x) := limn→∞(u
r )nf(( r

u)nx)
for all x ∈ X . By letting l = 0 and taking the limit m →∞, we obtain

‖f(x)− L(x)‖ ≤
[2u

r2
+

1
r

+
2

u + r

] rε

r − u
(2.15)

for all x ∈ X .

Now, we claim that the mapping L is additive. By (2.14), one notes

‖L(x) + L(−x)‖ = lim
n→∞

(u

r

)n∥∥∥f
(( r

u

)n
x
)

+ f
(
−

( r

u

)n
x
)∥∥∥

≤ lim
n→∞

(u

r

)n
· 2ε

r
= 0.

So we have L(−x) = −L(x). By (2.12), we arrive at

‖L(x) + L(y)− L(x + y)‖
= lim

n→∞

(u

r

)n∥∥∥f
(( r

u

)n
x
)

+ f
(( r

u

)n
y
)

+
u

r
f
(( r

u

)n+1
(−x− y)

)∥∥∥

≤ lim
n→∞

(u

r

)n[ 1
u + r

+
1
r

]
ε = 0

for all x, y ∈ X . So L is additive mapping.
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Now, to show uniqueness of the mapping L, let us assume that T :
X → X is another additive mapping satisfying (2.15). Then we have

‖L(x)− T (x)‖ = lim
n→∞

(u

r

)n∥∥∥L
(( r

u

)n
x
)
− T

(( r

u

)n
x
)∥∥∥

≤ lim
n→∞

(u

r

)n[ ∥∥∥L
(( r

u

)n
x
)
− f

(( r

u

)n
x
)∥∥∥

+
∥∥∥f

(( r

u

)n
x
)
− L

(( r

u

)n
x
)∥∥∥

]

≤ lim
n→∞ 2

(u

r

)n[2u

r2
+

1
r

+
2

u + r

] rε

r − u
= 0

for all x ∈ X . Therefore we conclude that there exists a unique additive
mapping L : X → X satisfying (2.15).

By letting α = 1, x = y = 0, z = xy, u = x, v = y in (2.12), we get

‖f(xy)− xf(y)− f(x)y‖ ≤
[2r + u

r + u
+ 1

]ε

r
,

which implies that

lim
n→∞

(u

r

)n∥∥∥f
(( r

u

)n
xy

)
−

( r

u

)n
xf(y)− f

(( r

u

)n
x
)
y
∥∥∥

≤ lim
n→∞

( r

u

)n[2r + u

r + u
+ 1

]ε

r
= 0.

That is,

L(xy) = xf(y) + L(x)y(2.16)

for all x, y ∈ X . It follows from (2.16) that
( r

u

)n
xf(y) +

( r

u

)n
L(x)y = L

(( r

u

)n
x · y

)

= L
(
x ·

( r

u

)n
y
)

= xf
(( r

u

)n
y
)

+
( r

u

)n
L(x)y.

Hence we have

xf(y) = lim
n→∞x

(u

r

)n
f
(( r

u

)n
y
)

= xL(y)

Since X contains the unit element, we see that L = f. Therefore, f is a
ring derivation.

Now, since f is continuous, we feel that f(tx) is continuous in t ∈ R
for each fixed x ∈ X . The mapping f is R-linear [12]. Again, by letting
α = i, x = 0, y = x, z = −x and u = v = 0 in (2.12), we obtain

(2.17) ‖if(x) + f(−ix)‖ ≤ 2ε

r
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for all x ∈ X . Due to (2.17), we have

lim
n→∞

(u

r

)n∥∥∥if
(( r

u

)n
x
)

+ f
(
− i

( r

u

)n
x
)∥∥∥ ≤ lim

n→∞

(u

r

)n 2ε

r
= 0,

which means that f(ix) = if(x) for all x ∈ X . As in the proof of
Theorem 2.2, the mapping f is C-linear.

Thus, f is linear derivation satisfying (2.2), that is, f is approximately
centralizing derivation and employing the same argument as the proof
Theorem 2.2, we know that f is centralizing mapping.

The Mathieu and Murphy’s result guarantees the claim of the theo-
rem.

Theorem 2.5. Let X be a noncommutative semiprime Banach al-
gebra with unit. Assume that s, t are fixed positive numbers, and
r = max{s, t} and u = min{s, t}. Suppose that f : X → X is a mapping
subjected to the inequality (2.11)

‖αsf(x) + αtf(y) + rf(αz)− ruf(v)− rf(u)v‖
≤

∥∥∥rf
(sx + ty

r
+ z − uv

)∥∥∥ + ε

for all x, y, z, u, v ∈ X and all α ∈ U, and the inequality (2.2). Then f
maps X into the intersection of the center Z(X ) and the radical rad(X ).

Proof. As we did in the proof of Theorem 2.3, we find that f is a
centralizing ring derivation.

Again, by letting x = 0, y = x, z = −x and u = v = 0 in (2.12), we
obtain

(2.18) ‖αf(x) + f(−αx)‖ ≤ 2ε

r

for all x ∈ X . Due to (2.18), we have

lim
n→∞

(u

r

)n∥∥∥αf
(( r

u

)n
x
)

+ f
(
− α

( r

u

)n
x
)∥∥∥ ≤ lim

n→∞

(u

r

)n 2ε

r
= 0,

which means that f(αx) = αf(x) for all x ∈ X . As in the proof of
Theorem 2.3, the mapping f is C-linear.

From the Breŝar’s result, we come to the concluding remark of the
theorem.
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[13] P. Šemrl, The functional equation of multiplicative derivation is superstable on
standard operator algebras, Integr. Equat. Oper. Theory 18 (1994), 118–122.

[14] I. M. Singer and J. Wermer, Derivations on commutative normed algebras,
Math. Ann. 129 (1955), 260–264.

[15] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of
Math. 128 (1988), 435–460.

[16] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New
York, 1960.

*
Department of Mathematics
Mokwon University
Daejeon 302-729, Republic of Korea
E-mail : ischang@mokwon.ac.kr


