THE TENSION FIELD OF THE ENERGY FUNCTIONAL ON RIEMANNIAN SUBMERSION

Boo-Yong Choi*

ABSTRACT. In this paper, we will study the tension field of the function related to a Riemannain submersion $\pi:N\to M$ with totally geodesic fibres. In case that the Riemannain submersion $\pi:N\to M$ particularly has a smooth map $f:M\to N$ which happens to be a section, we will show that tension field $\tau(f)$ of the energy functional can be decomposed into the horizontal and vertical parts.

1. Introduction

Let M and N be complete Riemannian manifolds. Assume M is compact. A smooth map $f: M \to N$ is called harmonic if it is a critical point of the energy functional. This critical point of the energy functional is written and characterized in terms of some differential equation (called the Euler-Lagrange equation). And we can now calculate the tension field to obtain the Euler-Lagrange equation. We consider the case when N is a fibre bundle over M, and $f: M \to N$ is a smooth map which happens to be a section of this fibration. We will consider the case when the fibres are totally geodesic compact submanifolds, and hence Nis also a compact Riemannian manifold. In this case, the Euler-Lagrange equation for such a section is formulated([1], [2], [3], [4]). In this paper, we will obtain both horizontal and vertical parts of the tension field. In section 2, we are primarily devoted to a summary of known results of Riemannian submersion([5]). And in section 3, we will set up the tension field of $f: M \to N$ which happens to be a section of this fibration. In main result, we will decompose $\tau(f)$ as horizontal parts $\tau^{\mathcal{H}}(f)$ and vertical parts $\tau^{\mathcal{V}}(f)$.

Received February 28, 2011; Accepted May 16, 2011.

²⁰¹⁰ Mathematics Subject Classification: Primary 53C30; Secondary 53C43, 58E20

Key words and phrases: tension field, Riemannian submersion, section, euler-lagrange equation.

2. Riemannian submersion with totally geodesic fibres

We will study a particular case of Riemannian submersion with totally geodesic fibres, so we need some properties and formulas about Riemannian submersion. We will use the terminology of O'Neill([5]).

DEFINITION 2.1. A Riemannian submersion $\pi: N \to M$ is a submersion of Riemannian manifolds such that:

- (1) The fibre $\pi^{-1}(x)$, $x \in M$, are Riemannian submanifolds of N,
- (2) $d\pi$ preserves scalar products of vectors normal to fibres.

Given a Riemannian submersion π from N to M, we denote by \mathcal{V} the vector subbundle of TN defined by the foliation of N by the fibres of π . \mathcal{H} will denote the complementary distribution of \mathcal{V} in TN determined by the metric on N. Following O'Neill([5]), we define the tensor T for arbitrary vector fields E and F by $T_EF = \mathcal{H}\nabla_{\mathcal{V}E}\mathcal{V}F + \mathcal{V}\nabla_{\mathcal{V}E}\mathcal{H}F$ where $\mathcal{V}E$, $\mathcal{H}F$, etc. denote the vertical and horizontal projections of vector field E and ∇ is the covariant derivative of N. O'Neill has described the following three properties of the tensor T:

- 1. T_E is a skew-symmetric operator on the tangent space of N reversing horizontal and vertical subspaces.
 - 2. $T_E = T_{\mathcal{V}E}$
- 3. For vertical vector fields V and W, T is symmetric, i.e., $T_VW = T_WV$.

In fact, along a fibre T is the second fundamental form of the fibre provided we restrict ourselves to vertical vector fields. Next we define the integrability tensor A associated with the submersion. For arbitrary vector fields E and F,

$$A_E F = \mathcal{H} \nabla_{\mathcal{H} E} \mathcal{V} F + \mathcal{V} \nabla_{\mathcal{H} E} \mathcal{H} F.$$

- 1'. At each point A_E is a skew-symmetric operator on TN reversing the horizontal and vertical subspaces.
 - 2'. $A_E = A_{HE}$
 - 3'. For X, Y horizontal A is alternating, i.e., $A_XY = -A_YX$.

We define a vector field X on N to be basic provided X is horizontal and π -related to a vector field \tilde{X} on M. Every vector field \tilde{X} on M has a horizontal lift X to N and X is basic.

We recall the following standard results about Riemannian submersion.

LEMMA 2.2. If X and Y are basic vector fields on N, then

- (a) $g(X,Y) = h(\tilde{X},\tilde{Y}) \circ \pi$ where g is the metric on N and h the metric on M,
 - (b) $\mathcal{H}[X,Y]$ is basic and is π -related to $[\tilde{X},\tilde{Y}]$
- (c) $\mathcal{H}\nabla_X Y$ is basic and is π -related to $\tilde{\nabla}_{\tilde{X}} \tilde{Y}$ where $\tilde{\nabla}$ is the Riemannian connection on M.

LEMMA 2.3. If X and Y are horizontal vector fields, then

$$A_X Y = \frac{1}{2} \mathcal{V}[X, Y].$$

LEMMA 2.4. Let X and Y be horizontal vector fields, and V and W vertical vector fields. Then

- (a) $\nabla_V W = T_V W + \mathcal{V} \nabla_V W$
- (b) $\nabla_V X = T_V X + \mathcal{H} \nabla_V X$
- (c) $\nabla_X V = A_X V + \mathcal{V} \nabla_X V$
- (d) $\nabla_X Y = A_X Y + \mathcal{H} \nabla_X Y$

Furthermore, if X is basic, $\mathcal{H}\nabla_V X = A_X V$.

Lemma 2.5. Let X be a horizontal vector field and W a vertical vector field. Then

- (a) $(\nabla_X A)_W = -A_{A_X W}$,
- (b) $(\nabla_W T)_X = -T_{T_W X}$.

The next result gives a geometric characterization of the parallelism of the fundamental tensors T and A.

- (a) If A is parallel, then A is identically zero, i.e., $\nabla_E A = 0$ implies A = 0.
- (b) If T is parallel, then T is identically zero, i.e., $\nabla_E T = 0$ implies T = 0.

Thus Riemannian submersions with parallel integrability tensors A are characterized as those whose horizontal distributions are integrable, and Riemannian submersions with parallel tensors T as those fibres are totally geodesic.

Assume $\pi: N \to M$ has the structure of a fibred space; as usual, assume π is a Riemannian submersion and, in addition, N is complete. Let γ be a smooth curve in M with $\gamma(0) = p$ and $\gamma(t_0) = q$. Then the family of unique horizontal lifts of γ to N denoted by $\{\tilde{\gamma}_x\}$ with $\tilde{\gamma}_x(0) = x \in \pi^{-1}(p)$, we have $F_{\gamma}(x) = \tilde{\gamma}_x(t_0)$ and therefore, the mapping F_{γ} are diffeomorphisms between the fibres. Moreover, a necessary and sufficient condition for the mapping F_{γ} to be isometries is that the fibres are totally geodesic.

3. Tension field of sections

Let M and N be complete Riemannian manifolds. Assume M is compact. A smooth map $\pi: N \to M$ is called a Riemannian submersion if π is a submersion and if for each $x \in N$, the horizontal subspace of T_xN (orthogonal to the fibre over $\pi(x)$ in N) is mapped isometrically by $d\pi|_x$ to $T_{\pi(x)}M$. We denote by \mathcal{H} , \mathcal{V} the horizontal and the vertical distribution, respectively. Then we can decompose the tangent bundle $TN = TN^{\mathcal{H}} \oplus TN^{\mathcal{V}}$, where we denote by $TN^{\mathcal{H}}$, $TN^{\mathcal{V}}$ the horizontal and the vertical subbundle, respectively.

We now consider a Riemannian submersion with totally geodesic fibre F, that is, for each x in N with $p=\pi(x), \pi^{-1}(p)=F_x$ is a totally geodesic submanifold of N. Then all the fibres are isometric to each other and π is a Riemannian fibration. Furthermore, the horizontal distribution defines a connection on this fibre bundle. Let $f:M\to N$ be a smooth map which happens to be a section. The energy functional of the section f is $E(f)=\int_M e(f)dv$, where $e(f)=\frac{1}{2}\|df\|^2$ is the energy density of f. The differential map df is a differential 1-form with values in the pull-back bundle $f^{-1}(TN)$ and hence a section of $T^*M\otimes f^{-1}(TN)$. Decompose $f^{-1}(TN)$ as $f^{-1}(TN^{\mathcal{H}})\oplus f^{-1}(TN^{\mathcal{H}})$, and then we have $df=df^{\mathcal{H}}+df^{\mathcal{V}}$, where $df^{\mathcal{H}}\in\Gamma(T^*M\otimes f^{-1}(TN^{\mathcal{H}}))$, $df^{\mathcal{V}}\in\Gamma(T^*M\otimes f^{-1}(TN^{\mathcal{V}}))$, and $\Gamma(\cdot)$ denotes the set of all smooth sections of the corresponding bundle. Then the energy E(f) is given by

$$E(f) = E^{\mathcal{H}}(f) + E^{\mathcal{V}}(f) = \frac{1}{2} \int_{M} \|df^{\mathcal{H}}\|^{2} dv + \frac{1}{2} \int_{M} \|df^{\mathcal{V}}\|^{2} dv.$$

Since f is a section of a Riemannian fibration, the linear map $df_p^{\mathcal{H}}$: $T_pM \to (T_xN)^{\mathcal{H}}$ is an isometry for each $p=\pi(x)$, and hence we have $E^{\mathcal{H}}(f)=\frac{m}{2} \operatorname{Vol}(M)$ (dim M=m).

For $f: M \to N$ we now consider the Euler-Lagrange equation of the energy functional. Let ∇ and $\tilde{\nabla}$ be the Levi-Civita connection on M and N, respectively, and let $\bar{\nabla}$ be the induced connection on the pullback bundle. Then we have $\bar{\nabla}(df) \in \Gamma((S^2M \otimes f^{-1}(TN^{\mathcal{H}})) \oplus (S^2M \otimes f^{-1}(TN^{\mathcal{V}})))$, where S^2M is the space of symmetric covariant 2-tensors. Taking trace of the second fundamental form gives the tension field,

$$\tau(f) = -\bar{\nabla}^*(\bar{\nabla}df) = Tr(\bar{\nabla}df) \in \Gamma(f^{-1}(TN)).$$

4. Main result

In this section, we will show both horizontal and vertical parts of the tension field. Let $\pi: N \to M$ be a Riemannian submersion with totally geodesic fibre and $f: M \to N$ be a smooth section as section 3. In section 3,

$$df \in \Gamma \{ (T^*M \otimes f^{-1}(TN^{\mathcal{H}}) \oplus (T^*M \otimes f^{-1}(TN^{\mathcal{V}})) \},$$

we have $df = df^{\mathcal{H}} + df^{\mathcal{V}}$. And

$$\bar{\nabla}(df) \in \Gamma((S^2M \otimes f^{-1}(TN^{\mathcal{H}})) \oplus (S^2M \otimes f^{-1}(TN^{\mathcal{V}}))).$$

Since $\tau(f) = -\bar{\nabla}^*(\bar{\nabla}df) = Tr(\bar{\nabla}df)$, we decompose $\tau(f)$ as $\tau(f) = \tau^{\mathcal{H}}(f) + \tau^{\mathcal{V}}(f)$, where $\tau^{\mathcal{H}}(f) \in \Gamma(f^{-1}(TN^{\mathcal{H}}))$ and $\tau^{\mathcal{V}}(f) \in \Gamma(f^{-1}(TN^{\mathcal{V}}))$. For a vector field X on M let \tilde{X} denote the basic vector field which is a horizontal lift of X. Then for a local orthonormal frame field $\{e_i\}$ of M, $df^{\mathcal{H}}(e_i) = \tilde{e}_i$.

$$\tau(f) = Tr(\bar{\nabla}df)
= \sum_{i} (\bar{\nabla}df)(e_{i}, e_{i}) = \sum_{i} (\bar{\nabla}_{e_{i}}df)(e_{i})
= \sum_{i} (\bar{\nabla}_{e_{i}}(df(e_{i})) - df(\nabla_{e_{i}}e_{i}))
(4.1) = \sum_{i} \{\bar{\nabla}_{e_{i}}(df^{\mathcal{H}}(e_{i}) + df^{\mathcal{V}}(e_{i})) - (df^{\mathcal{H}}(\nabla_{e_{i}}e_{i}) + df^{\mathcal{V}}(\nabla_{e_{i}}e_{i}))\}.$$

Now, we can calculate the horizontal and vertical parts of the tension field. Since $(\bar{\nabla}_{e_i} df^{\mathcal{H}})(e_i) = \bar{\nabla}_{e_i} (df^{\mathcal{H}}(e_i)) - df^{\mathcal{H}}(\nabla_{e_i} e_i)$ and $\tilde{\nabla}_{\tilde{e}_i} \tilde{e}_i = (\bar{\nabla}_{e_i} e_i)$ by O'Neill's formular in [5].

$$(\bar{\nabla}_{e_{i}}df^{\mathcal{H}})(e_{i}) = (\bar{\nabla}_{e_{i}}\tilde{e_{i}}) - (\overline{\nabla}_{e_{i}}e_{i})$$

$$= (\tilde{\nabla}_{\tilde{e_{i}}}\tilde{e_{i}} + \tilde{\nabla}_{df^{\mathcal{V}}(e_{i})}\tilde{e_{i}}) - (\overline{\nabla}_{e_{i}}e_{i})$$

$$= \tilde{\nabla}_{df^{\mathcal{V}}(e_{i})}\tilde{e_{i}}.$$

$$(4.2)$$

And since fibres are totally geodesic, we have $\nabla_{df} v_{(e_i)} \tilde{e_i} \in \mathcal{H}$ i.e., $(\nabla_{e_i} df^{\mathcal{H}})^{\mathcal{V}}(e_i) = 0$. For the vertical component, we locally extend $df^{\mathcal{V}}(e_i)$, a vector field along f, to a vertical vector field on N which we also denote by $df^{\mathcal{V}}(e_i)$. We then have

$$(\bar{\nabla}_{e_i} df^{\mathcal{V}})(e_i) = \bar{\nabla}_{e_i} df^{\mathcal{V}}(e_i) - df^{\mathcal{V}}(\nabla_{e_i} e_i) = (\tilde{\nabla}_{\tilde{e_i}} df^{\mathcal{V}}(e_i) + \tilde{\nabla}_{df^{\mathcal{V}}(e_i)} df^{\mathcal{V}}(e_i)) - df^{\mathcal{V}}(\nabla_{e_i} e_i)$$

where $df^{\mathcal{V}}(\nabla_{e_i}e_i)$ and $\tilde{\nabla}_{df^{\mathcal{V}}(e_i)}df^{\mathcal{V}}(e_i)$ are in \mathcal{V} because the fibres are totally geodesic. Furthermore $[\tilde{e_i}, df^{\mathcal{V}}(e_i)] \in \mathcal{V}$. Therefore

$$[\tilde{e}_i, df^{\mathcal{V}}(e_i)]^{\mathcal{H}} = (\tilde{\nabla}_{\tilde{e}_i} df^{\mathcal{V}}(e_i))^{\mathcal{H}} - (\tilde{\nabla}_{df^{\mathcal{V}}(e_i)} \tilde{e}_i)^{\mathcal{H}} = 0,$$

so $(\tilde{\nabla}_{\tilde{e_i}} df^{\mathcal{V}}(e_i))^{\mathcal{H}} = (\tilde{\nabla}_{df^{\mathcal{V}}(e_i)} \tilde{e_i})^{\mathcal{H}}$. But since $\tilde{\nabla}_{df^{\mathcal{V}}(e_i)} \tilde{e_i} \in \mathcal{H}$, $(\tilde{\nabla}_{df^{\mathcal{V}}(e_i)} \tilde{e_i})^{\mathcal{H}}$ = $\tilde{\nabla}_{df^{\mathcal{V}}(e_i)} \tilde{e_i}$. Thus we conclude that

(4.3)
$$(\bar{\nabla}_{e_i} df^{\mathcal{V}}(e_i))^{\mathcal{H}} = (\tilde{\nabla}_{\tilde{e_i}} df^{\mathcal{V}}(e_i))^{\mathcal{H}} = \tilde{\nabla}_{df^{\mathcal{V}}(e_i)} \tilde{e_i}.$$

Now, we can decompose the horizontal and vertical parts of tension field by (4.2) and (4.3).

$$\tau(f) = \sum_{i} \left\{ \bar{\nabla}_{e_{i}} \left(df^{\mathcal{H}}(e_{i}) + df^{\mathcal{V}}(e_{i}) \right) - \left(df^{\mathcal{H}}(\nabla_{e_{i}}e_{i}) + df^{\mathcal{V}}(\nabla_{e_{i}}e_{i}) \right) \right\}$$

$$= \sum_{i} \left\{ \tilde{\nabla}_{df^{\mathcal{V}}(e_{i})} \tilde{e}_{i} \right\}$$

$$+ \sum_{i} \left\{ \left(\bar{\nabla}_{e_{i}} df^{\mathcal{V}}(e_{i}) \right)^{\mathcal{H}} + \left(\bar{\nabla}_{e_{i}} df^{\mathcal{V}}(e_{i}) \right)^{\mathcal{V}} - df^{\mathcal{V}}(\nabla_{e_{i}}e_{i}) \right\}$$

$$= 2 \sum_{i} \left\{ \tilde{\nabla}_{df^{\mathcal{V}}(e_{i})} \tilde{e}_{i} \right\} + \sum_{i} \left\{ \left(\bar{\nabla}_{e_{i}} df^{\mathcal{V}}(e_{i}) \right)^{\mathcal{V}} - df^{\mathcal{V}}(\nabla_{e_{i}}e_{i}) \right\}.$$

Therefore we now have the following.

THEOREM 4.1. For $f: M \to N$ be a smooth section as section 3, we can decompose $\tau(f)$ as horizontal and vertical parts i.e.,

$$\tau(f) = \tau^{\mathcal{H}}(f) + \tau^{\mathcal{V}}(f)$$

where $\tau^{\mathcal{H}}(f) = 2\sum_{i} (\tilde{\nabla}_{df^{\mathcal{V}}(e_{i})} \tilde{e}_{i})$ and $\tau^{\mathcal{V}}(f) = \sum_{i} \{(\bar{\nabla}_{e_{i}} df^{\mathcal{V}}(e_{i}))^{\mathcal{V}} - df^{\mathcal{V}}(\nabla_{e_{i}} e_{i})\}.$

References

- [1] B. Y. Choi and J. W. Yim, Distributions on Riemannian Manifolds, which are Harmonic maps, Tohoku Math. J. **55** (2003), 175-188.
- [2] T. Ishihara, Harmonic section of tangent bundles, J. Math. Tokushima Univ. 13 (1979), 23-27.

- [3] G. Jensen and M. Rigoli, $Harmonic\ Gauss\ maps,$ Pacific J. Math. 136 (1989), 261-282.
- [4] J. J. Konderak, On harmonic vector field, Publ. Mat. 36 (1992), 217-228.
- [5] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.

*

Department of Mathematics Air Force Academy Cheongwon 363-849, Republic of Korea *E-mail*: byc8734@hanmail.net