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THE TENSION FIELD OF THE ENERGY
FUNCTIONAL ON RIEMANNIAN SUBMERSION

Boo-Yona CHor*

ABSTRACT. In this paper, we will study the tension field of the
function related to a Riemannain submersion 7 : N — M with
totally geodesic fibres. In case that the Riemannain submersion
m : N — M particularly has a smooth map f : M — N which
happens to be a section, we will show that tension field 7(f) of
the energy functional can be decomposed into the horizontal and
vertical parts.

1. Introduction

Let M and N be complete Riemannian manifolds. Asumme M is
compact. A smooth map f: M — N is called harmonic if it is a critical
point of the energy functional. This critical point of the energy func-
tional is written and characterized in terms of some differential equation
(called the Euler-Lagrange equation). And we can now calculate the
tension field to obtain the Euler-Lagrange equation. We consider the
case when N is a fibre bundle over M, and f : M — N is a smooth map
which happens to be a section of this fibration. We will consider the case
when the fibres are totally geodesic compact submanifolds, and hence N
is also a compact Riemannian manifold. In this case, the Euler-Lagrange
equation for such a section is formulated([1], [2], [3], [4]). In this paper,
we will obtain both horizontal and vertical parts of the tension field.
In section 2, we are primarily devoted to a summary of known results of
Riemannian submersion([5]). And in section 3, we will set up the ten-
sion field of f : M — N which happens to be a section of this fibration.
In main result, we will decompose 7(f) as horizontal parts 7/(f) and
vertical parts 7V (f).
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2. Riemannian submersion with totally geodesic fibres

We will study a particular case of Riemannian submersion with to-
tally geodesic fibres, so we need some properties and formulas about
Riemannian submersion. We will use the terminology of O’Neill([5]).

DEFINITION 2.1. A Riemannian submersion 7 : N — M is a submer-
sion of Riemannian manifolds such that:

(1) The fibre 7~ 1(x), * € M, are Riemannian submanifolds of N,

(2) dm preserves scalar products of vectors normal to fibres.

Given a Riemannian submersion 7 from N to M, we denote by V the
vector subbundle of T'N defined by the foliation of N by the fibres of 7.
‘H will denote the complementary distribution of V in T'N determined
by the metric on N. Following O’Neill([5]), we define the tensor T for
arbitrary vector fields E and F' by TgF = HVygVF +VVygHE where
VE, HF, etc. denote the vertical and horizontal projections of vector
field E and V is the covariant derivative of N. O’Neill has described the
following three properties of the tensor 71" :

1. Tg is a skew-symmetric operator on the tangent space of N re-
versing horizontal and vertical subspaces.

2. TE = TVE

3. For vertical vector fields V and W, T is symmetric, i.e., Ty W =
TwV.

In fact, along a fibre T is the second fundamental form of the fibre
provided we restrict ourselves to vertical vector fields. Next we define
the integrability tensor A associated with the submersion. For arbitrary
vector fields E and F,

ApF = HVygVF +VVyEHE.

1’. At each point Ag is a skew-symmetric operator on T'N reversing
the horizontal and vertical subspaces.

2. A E — AHE

3/. For X, Y horizontal A is alternating, i.e., AxY = —Ay X.

We define a vector field X on N to be basic provided X is horizontal
and m-related to a vector field X on M. Every vector field X on M has
a horizontal lift X to N and X is basic.

We recall the following standard results about Riemannian submer-
sion.

LEMMA 2.2. If X and Y are basic vector fields on N, then
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(a) g(X,Y) = h(X,Y) o where g is the metric on N and h the
metric on M,

(b) H[X,Y] is basic and is w-related to [X,Y]

(¢) HVxY is basic and is m-related to @XY where V is the Riemann-
ian connection on M.

LEMMA 2.3. If X and Y are horizontal vector fields, then

AxY = ZV[X,Y].

1
2
LEMMA 2.4. Let X and Y be horizontal vector fields, and V and W
vertical vector fields. Then
(a) VvW =Ty W + VVWy W
(b) Vy X =Ty X + HVy X
(c) VxV = AxV + VWV
(d) VxY = AxY + HVxY
Furthermore, if X is basic, HVy X = AxV.

LEMMA 2.5. Let X be a horizontal vector field and W a vertical
vector field. Then

(a) (VxA)w = —Aayw,

(b) (VwT)x = —Try x-

The next result gives a geometric characterization of the parallelism
of the fundamental tensors T and A.
(a) If A is parallel, then A is identically zero, i.e., Vg A = 0 implies

A=0.
(b) If T is parallel, then T is identically zero, i.e., VET = 0 implies
T=0.

Thus Riemannian submersions with parallel integrability tensors A
are characterized as those whose horizontal distributions are integrable,
and Riemannian submersions with parallel tensors 1" as those fibres are
totally geodesic.

Assume m : N — M has the structure of a fibred space; as usual,
assume 7 is a Riemannian submersion and, in addition, N is complete.
Let v be a smooth curve in M with (0) = p and ~(t9) = ¢. Then
the family of unique horizontal lifts of v to N denoted by {7,} with
3:(0) = z € 7~ 1(p), we have F,(z) = 7,(to) and therefore, the mapping
FE, are diffeomorphisms between the fibres. Moreover, a necessary and
sufficient condition for the mapping F’, to be isometries is that the fibres
are totally geodesic.
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3. Tension field of sections

Let M and N be complete Riemannian manifolds. Assume M is
compact. A smooth map 7 : N — M is called a Riemannian submersion
if 7 is a submersion and if for each x € N, the horizontal subspace of
T, N (orthogonal to the fibre over 7(x) in N) is mapped isometrically
by drl|; to Ty, M. We denote by H, V the horizontal and the vertical
distribution, respectively. Then we can decompose the tangent bundle
TN =TN"®TNY, where we denote by TN, TNV the horizontal and
the vertical subbundle, respectively.

We now consider a Riemannian submersion with totally geodesic fi-
bre F, that is, for each z in N with p = 7(x), 771 (p) = F, is a totally
geodesic submanifold of N. Then all the fibres are isometric to each
other and 7 is a Riemannian fibration. Furthermore, the horizontal dis-
tribution defines a connection on this fibre bundle. Let f : M — N
be a smooth map which happens to be a section. The energy func-
tional of the section f is E(f) = [,;e(f)dv, where e(f) = %||df||2 is
the energy density of f. The differential map df is a differential 1-form
with values in the pull-back bundle f~!'(T'N) and hence a section of
T*M ® f~Y(TN). Decompose f~Y(TN) as f~Y(TN™") @ f~Y(TNV),
and then we have df = df"* + dfY, where df"t € F(T*M ® ffl(TNH)),
dfY € I'(T*M ® f~1(TNV)), and I'(-) denotes the set of all smooth
sections of the corresponding bundle. Then the energy E(f) is given by

B = B+ B () = 5 [ aifao+ g [ 1a ).

Since f is a section of a Riemannian fibration, the linear map dfg{ :
T,M — (T,N)™ is an isometry for each p = 7(z), and hence we have
E™(f) =2 Vol(M) (dim M = m).

For f: M — N we now consider the Euler-Lagrange equation of the
energy functional. Let V and V be the Levi-Civita connection on M
and N, respectively, and let V be the induced connection on the pull-
back bundle. Then we have V(df) € T((S?M @ f~1(TN™)) @ (S’M ®
f~YTNY))), where S2M is the space of symmetric covariant 2-tensors.
Taking trace of the second fundamental form gives the tension field,

7(f) = =V*(Vdf) = Tr(Vdf) € D(fTH(TN)).
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4. Main result

In this section, we will show both horizontal and vertical parts of the
tension field. Let 7 : N — M be a Riemannian submersion with totally
geodesic fibre and f : M — N be a smooth section as section 3. In
section 3,

df eT{(T"M @ f 1 (TN") & (T*"M ® f~1(TNY)},
we have df = df" + dfY. And
V(df) e T((S*’M @ fHTN™) @ (S°M @ f~1(TNY))).
Since 7(f) = —V*(Vdf) = Tr(Vdf), we decompose 7(f) as 7(f) =
TH(f)+1Y(f), where 77 (f) € F(f_l(TNH)) and 7V(f) € F(f_l(TNV)).
For a vector field X on M let X denote the basic vector field which is

a horizontal lift of X. Then for a local orthonormal frame field {e;} of

M, df"(e;) = é;.

(f) = Tr(Vdf)
= S (Vdf)(eie) = (Ve,df)(er)

(2

= > (Ve(df(e) = df (Ve,e0))
(A1) = D AV (df(e:) + df¥(e5)) — (df(Ve,ei) + dfY (Ve,ei)) ).
Now, we can calculate the horizontal and vertical parts of the tension

field. Since (Ve df")(e;) = Ve, (df(e;)) — df*(Ve,ei) and V& =
(Ve,ei) by O’Neill’s formular in [5].

(Ve df™)(e)) = (Ve&i) = (Veer)
= (@éiéi + @dfv(ei)éi) — (Ve,ei)
(4'2) = @de(ei)éZ’.

And since fibres are totally geodesic, we have @df\;(ei)e} € H ie.,

(Ve,df)Y (e;) = 0. For the vertical component, we locally extend df (e;),
a vector field along f, to a vertical vector field on N which we also denote
by dfY (e;). We then have
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(?eidfv)(ei) = ?eidfv(ei) - dfv(veiei)
= (Vadf¥(e:) + Vapviepdf¥ (ei)) = df¥ (Veies)
where dfY(Ve,e;) and @de(ei)de(ei) are in V because the fibres are
totally geodesic. Furthermore [€;, dfY (e;)] € V. Therefore
~ = H = ~\H
[, df¥ ()] = (Vedf¥(e1) " = (Vapv(en€i) ~ =0,

SO (@@.dfv(ei))H = (@de(ei)éi)H. But since @de(e )6}' S H, (@dfv(ei)éi

7

( )"

= Vv (e,)€i- Thus we conclude that

(4.3) (Veudf¥ (e)™ = (Vedf¥ (€)™ = V(e i

Now, we can decompose the horizontal and vertical parts of tension
field by (4.2) and (4.3).

() = D AVeldf™ (e + df¥(e) = (A" (Veer) +df¥ (Veien)) }
= EZ: {Varv(enéi}
v Do A(Ved™ () + (Veidf¥(e)” = ¥ (Veien)}
. Z Vapeodi} +3 {(Vedf¥ ()’ —dfY (Vee) ).

Therefore we now have the following.

THEOREM 4.1. For f : M — N be a smooth section as section 3, we
can decompose 7(f) as horizontal and vertical parts i.e.,

T(f) =) +77(f)

where TH(f) = 2Y, (@de(ei)éi) and TV(f) = zi{(@eide(ei))V -
de(Veiei)}.
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