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THE TENSION FIELD OF THE ENERGY
FUNCTIONAL ON RIEMANNIAN SUBMERSION
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Abstract. In this paper, we will study the tension field of the
function related to a Riemannain submersion π : N → M with
totally geodesic fibres. In case that the Riemannain submersion
π : N → M particularly has a smooth map f : M → N which
happens to be a section, we will show that tension field τ(f) of
the energy functional can be decomposed into the horizontal and
vertical parts.

1. Introduction

Let M and N be complete Riemannian manifolds. Asumme M is
compact. A smooth map f : M → N is called harmonic if it is a critical
point of the energy functional. This critical point of the energy func-
tional is written and characterized in terms of some differential equation
(called the Euler-Lagrange equation). And we can now calculate the
tension field to obtain the Euler-Lagrange equation. We consider the
case when N is a fibre bundle over M, and f : M → N is a smooth map
which happens to be a section of this fibration. We will consider the case
when the fibres are totally geodesic compact submanifolds, and hence N
is also a compact Riemannian manifold. In this case, the Euler-Lagrange
equation for such a section is formulated([1], [2], [3], [4]). In this paper,
we will obtain both horizontal and vertical parts of the tension field.
In section 2, we are primarily devoted to a summary of known results of
Riemannian submersion([5]). And in section 3, we will set up the ten-
sion field of f : M → N which happens to be a section of this fibration.
In main result, we will decompose τ(f) as horizontal parts τH(f) and
vertical parts τV(f).
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2. Riemannian submersion with totally geodesic fibres

We will study a particular case of Riemannian submersion with to-
tally geodesic fibres, so we need some properties and formulas about
Riemannian submersion. We will use the terminology of O’Neill([5]).

Definition 2.1. A Riemannian submersion π : N → M is a submer-
sion of Riemannian manifolds such that:

(1) The fibre π−1(x), x ∈ M, are Riemannian submanifolds of N,
(2) dπ preserves scalar products of vectors normal to fibres.

Given a Riemannian submersion π from N to M, we denote by V the
vector subbundle of TN defined by the foliation of N by the fibres of π.
H will denote the complementary distribution of V in TN determined
by the metric on N. Following O’Neill([5]), we define the tensor T for
arbitrary vector fields E and F by TEF = H∇VEVF +V∇VEHF where
VE, HF, etc. denote the vertical and horizontal projections of vector
field E and ∇ is the covariant derivative of N. O’Neill has described the
following three properties of the tensor T :

1. TE is a skew-symmetric operator on the tangent space of N re-
versing horizontal and vertical subspaces.

2. TE = TVE

3. For vertical vector fields V and W, T is symmetric, i.e., TV W =
TW V.

In fact, along a fibre T is the second fundamental form of the fibre
provided we restrict ourselves to vertical vector fields. Next we define
the integrability tensor A associated with the submersion. For arbitrary
vector fields E and F,

AEF = H∇HEVF + V∇HEHF.

1′. At each point AE is a skew-symmetric operator on TN reversing
the horizontal and vertical subspaces.

2′. AE = AHE

3′. For X, Y horizontal A is alternating, i.e., AXY = −AY X.
We define a vector field X on N to be basic provided X is horizontal

and π-related to a vector field X̃ on M. Every vector field X̃ on M has
a horizontal lift X to N and X is basic.

We recall the following standard results about Riemannian submer-
sion.

Lemma 2.2. If X and Y are basic vector fields on N, then
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(a) g(X, Y ) = h(X̃, Ỹ ) ◦ π where g is the metric on N and h the
metric on M,

(b) H[X, Y ] is basic and is π-related to [X̃, Ỹ ]
(c) H∇XY is basic and is π-related to ∇̃X̃ Ỹ where ∇̃ is the Riemann-

ian connection on M.

Lemma 2.3. If X and Y are horizontal vector fields, then

AXY =
1
2
V[X, Y ].

Lemma 2.4. Let X and Y be horizontal vector fields, and V and W
vertical vector fields. Then

(a) ∇V W = TV W + V∇V W
(b) ∇V X = TV X +H∇V X
(c) ∇XV = AXV + V∇XV
(d) ∇XY = AXY +H∇XY

Furthermore, if X is basic, H∇V X = AXV.

Lemma 2.5. Let X be a horizontal vector field and W a vertical
vector field. Then

(a) (∇XA)W = −AAXW ,
(b) (∇W T )X = −TTW X .

The next result gives a geometric characterization of the parallelism
of the fundamental tensors T and A.

(a) If A is parallel, then A is identically zero, i.e., ∇EA = 0 implies
A = 0.

(b) If T is parallel, then T is identically zero, i.e., ∇ET = 0 implies
T = 0.

Thus Riemannian submersions with parallel integrability tensors A
are characterized as those whose horizontal distributions are integrable,
and Riemannian submersions with parallel tensors T as those fibres are
totally geodesic.

Assume π : N → M has the structure of a fibred space; as usual,
assume π is a Riemannian submersion and, in addition, N is complete.
Let γ be a smooth curve in M with γ(0) = p and γ(t0) = q. Then
the family of unique horizontal lifts of γ to N denoted by {γ̃x} with
γ̃x(0) = x ∈ π−1(p), we have Fγ(x) = γ̃x(t0) and therefore, the mapping
Fγ are diffeomorphisms between the fibres. Moreover, a necessary and
sufficient condition for the mapping Fγ to be isometries is that the fibres
are totally geodesic.
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3. Tension field of sections

Let M and N be complete Riemannian manifolds. Assume M is
compact. A smooth map π : N → M is called a Riemannian submersion
if π is a submersion and if for each x ∈ N , the horizontal subspace of
TxN (orthogonal to the fibre over π(x) in N) is mapped isometrically
by dπ|x to Tπ(x)M. We denote by H, V the horizontal and the vertical
distribution, respectively. Then we can decompose the tangent bundle
TN = TNH⊕TNV , where we denote by TNH, TNV the horizontal and
the vertical subbundle, respectively.

We now consider a Riemannian submersion with totally geodesic fi-
bre F , that is, for each x in N with p = π(x), π−1(p) = Fx is a totally
geodesic submanifold of N. Then all the fibres are isometric to each
other and π is a Riemannian fibration. Furthermore, the horizontal dis-
tribution defines a connection on this fibre bundle. Let f : M → N
be a smooth map which happens to be a section. The energy func-
tional of the section f is E(f) =

∫
M e(f)dv, where e(f) = 1

2‖df‖2 is
the energy density of f . The differential map df is a differential 1-form
with values in the pull-back bundle f−1(TN) and hence a section of
T ∗M ⊗ f−1(TN). Decompose f−1(TN) as f−1(TNH) ⊕ f−1(TNV),
and then we have df = dfH + dfV , where dfH ∈ Γ

(
T ∗M ⊗ f−1(TNH)

)
,

dfV ∈ Γ
(
T ∗M ⊗ f−1(TNV)

)
, and Γ(·) denotes the set of all smooth

sections of the corresponding bundle. Then the energy E(f) is given by

E(f) = EH(f) + EV(f) =
1
2

∫

M
‖dfH‖2

dv +
1
2

∫

M
‖dfV‖2

dv.

Since f is a section of a Riemannian fibration, the linear map dfHp :
TpM → (TxN)H is an isometry for each p = π(x), and hence we have
EH(f) = m

2 Vol(M) (dim M = m).
For f : M → N we now consider the Euler-Lagrange equation of the

energy functional. Let ∇ and ∇̃ be the Levi-Civita connection on M
and N , respectively, and let ∇̄ be the induced connection on the pull-
back bundle. Then we have ∇̄(df) ∈ Γ((S2M ⊗ f−1(TNH)) ⊕ (S2M ⊗
f−1(TNV))), where S2M is the space of symmetric covariant 2-tensors.
Taking trace of the second fundamental form gives the tension field,

τ(f) = −∇̄∗(∇̄df) = Tr(∇̄df) ∈ Γ(f−1(TN)).
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4. Main result

In this section, we will show both horizontal and vertical parts of the
tension field. Let π : N → M be a Riemannian submersion with totally
geodesic fibre and f : M → N be a smooth section as section 3. In
section 3,

df ∈ Γ
{
(T ∗M ⊗ f−1(TNH)⊕ (T ∗M ⊗ f−1(TNV)

}
,

we have df = dfH + dfV . And

∇̄(df) ∈ Γ((S2M ⊗ f−1(TNH))⊕ (S2M ⊗ f−1(TNV))).

Since τ(f) = −∇̄∗(∇̄df) = Tr(∇̄df), we decompose τ(f) as τ(f) =
τH(f)+τV(f), where τH(f) ∈ Γ

(
f−1(TNH)

)
and τV(f) ∈ Γ

(
f−1(TNV)

)
.

For a vector field X on M let X̃ denote the basic vector field which is
a horizontal lift of X. Then for a local orthonormal frame field {ei} of
M, dfH(ei) = ẽi.

τ(f) = Tr(∇̄df)

=
∑

i

(∇̄df)(ei, ei) =
∑

i

(∇̄eidf)(ei)

=
∑

i

(∇̄ei(df(ei))− df(∇eiei)
)

=
∑

i

{∇̄ei

(
dfH(ei) + dfV(ei)

)− (
dfH(∇eiei) + dfV(∇eiei)

)}
.(4.1)

Now, we can calculate the horizontal and vertical parts of the tension
field. Since (∇̄eidf

H)(ei) = ∇̄ei

(
dfH(ei)

) − dfH(∇eiei) and ∇̃ẽi ẽi =
˜(∇eiei) by O’Neill’s formular in [5].

(∇̄eidf
H)(ei) = (∇̄ei ẽi)− ˜(∇eiei)

=
(∇̃ẽi ẽi + ∇̃dfV (ei)ẽi

)− ˜(∇eiei)

= ∇̃dfV (ei)ẽi.(4.2)

And since fibres are totally geodesic, we have ∇̃dfV (ei)ẽi ∈ H i.e.,
(∇̄eidf

H)V(ei) = 0. For the vertical component, we locally extend dfV(ei),
a vector field along f, to a vertical vector field on N which we also denote
by dfV(ei). We then have
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(∇̄eidf
V)(ei) = ∇̄eidf

V(ei)− dfV(∇eiei)

=
(∇̃ẽidf

V(ei) + ∇̃dfV (ei)df
V(ei)

)− dfV(∇eiei)

where dfV(∇eiei) and ∇̃dfV (ei)df
V(ei) are in V because the fibres are

totally geodesic. Furthermore [ẽi, df
V(ei)] ∈ V. Therefore

[ẽi, df
V(ei)]H =

(∇̃ẽidf
V(ei)

)H − (∇̃dfV (ei)ẽi

)H = 0,

so
(∇̃ẽidf

V(ei)
)H =

(∇̃dfV (ei)ẽi

)H
. But since ∇̃dfV (ei)ẽi ∈ H,

(∇̃dfV (ei)ẽi

)H
= ∇̃dfV (ei)ẽi. Thus we conclude that

(∇̄eidf
V(ei)

)H =
(∇̃ẽidf

V(ei)
)H = ∇̃dfV (ei)ẽi.(4.3)

Now, we can decompose the horizontal and vertical parts of tension
field by (4.2) and (4.3).

τ(f) =
∑

i

{∇̄ei

(
dfH(ei) + dfV(ei)

)− (
dfH(∇eiei) + dfV(∇eiei)

)}

=
∑

i

{∇̃dfV (ei)ẽi

}

+
∑

i

{(∇̄eidf
V(ei)

)H +
(∇̄eidf

V(ei)
)V − dfV(∇eiei)

}

= 2
∑

i

{∇̃dfV (ei)ẽi

}
+

∑

i

{(∇̄eidf
V(ei)

)V − dfV(∇eiei)
}
.

Therefore we now have the following.

Theorem 4.1. For f : M → N be a smooth section as section 3, we
can decompose τ(f) as horizontal and vertical parts i.e.,

τ(f) = τH(f) + τV(f)

where τH(f) = 2
∑

i

(∇̃dfV (ei)ẽi

)
and τV(f) =

∑
i

{(∇̄eidf
V(ei)

)V −
dfV(∇eiei)

}
.
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