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SOME INVARIANT SUBSPACES FOR

BOUNDED LINEAR OPERATORS
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Abstract. A bounded linear operator T on a complex Banach space X
is said to have property (I) provided that T has Bishop’s property (β) and
there exists an integer p > 0 such that for a closed subset F of C

XT (F ) = ET (F ) =
∩

λ∈C\F
(T − λ)pX for all closed sets F ⊆ C,

where XT (F ) denote the analytic spectral subspace and ET (F ) denote the
algebraic spectral subspace of T. Easy examples are provided by normal

operators and hyponormal operators in Hilbert spaces, and more generally,
generalized scalar operators and subscalar operators in Banach spaces.

In this paper, we prove that if T has property (I), then the quasi-nilpotent

part H0(T ) of T is given by

KerT p = {x ∈ X : rT (x) = 0} =
∩
λ ̸=0

(T − λ)pX

for all sufficiently large integers p, where rT (x) = lim supn→∞ ||Tnx||
1
n . We

also prove that if T has property (I) and the spectrum σ(T ) is finite, then
T is algebraic. Finally, we prove that if T ∈ L(X) has property (I) and has
decomposition property (δ), then T has a non-trivial invariant closed linear

subspace.

1. Introduction

Let X be a complex Banach space and L(X) denotes the Banach algebra

of all bounded linear operators on X. For T ∈ L(X), let, as usual, σ(T ),

ρ(T ) and r(T ) denote the spectrum, resolvent set, spectral radius of T,

respectively and let Lat(T ) stand for the collection of all T−invariant closed

linear subspaces of X. For T ∈ L(X) and Y ∈ Lat(T ), T |Y denote the

restriction of T on Y.
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Given an operator T ∈ L(X) and a linear subspace Y of X, we say that Y

is an invariant subspace of T if TY ⊆ Y. Obviously {0} and X are invariant

subspaces and M invariant implies M invariant. So the interesting closed

invariant subspaces are the non-trivial ones. The invariant subspace problem

asks whether every operator on a complex separable Hilbert space has a non-

trivial invariant subspace. This problem has its origins approximately in

1935 when (according to [11]) J. von Neumann proved that every compact

operator on a separable infinite dimensional complex Hilbert space has a

non-trivial subspace. In 1954, Aronszajn and Smith [11] proved that if X is

an infinite dimensional complex Banach space and T ∈ L(X) is completely

continuous then T has a non-trivial invariant subspace. In 1966, Bernstein

and Robinson [17] proved that ifH is a complex Hilbert space, and T ∈ L(H)

is a polynomially compact operator, i.e. for some non-zero polynomial p,

p(T ) is compact, then T has a non-trivial invariant subspace. The proof uses

non-standard analysis as well as techniques similar to [11]. In 1966, Halmos

[33] gave a proof of the same result by a similar method but avoiding the

non-standard tools.

In 1968, Arveson and Feldman [12] proved that ifH is a Hilbert space and

T ∈ L(H) satisfy ∥TPn−PnTPn∥ → 0 for some sequence (Pn) of orthogonal

projection operators which converges strongly to the identity operator. As-

sume that the norm closed algebra generated by T and I contains a non-zero

compact operator, then T has a non-trivial invariant subspace.

In 1973, Pearcy and Salinas [48] proved that if T ∈ L(H) is a quasitri-

angular operator on a Hilbert space H and R(T )(the norm closure of the

rational functions of T ) contains a non-zero compact operator, then there

exists a non-trivial subspace invariant under all operators in R(T ). In 1973,

Lomonosov [42] proved that if X is a complex Banach space, and T ∈ L(X)

is an operator which is not a multiple of the identity and commutes with

some non-zero compact operator, then T has a non-trivial invariant sub-

space. Lomonosov’s result was extended to real Banach spaces by Hooker

in [35].
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In 1978, Brown [19] proved that every subnormal operator has a non-

trivial invariant subspace. In 1987, Brown proved [20] that every hyponor-

mal operator has a non-trivial invariant subspace whenever C(σ(T )) ̸=
R(σ(T )) where for a compact K ⊆ C, C(K) denotes the continuous func-

tions on K and R(K) denotes the closure in the C(K) norm of the rational

functions on K with poles outside of K. Using the technique of minimal vec-

tors, a special case of the 1973 of Lomonosov is proved in [8]. If T ∈ L(H) is

a non-zero compact operator on a Hilbert space H, then T has a non-trivial

hyperinvariant subspace. In 1984, Putinar [50] proved that all hyponormal

operators have property (β). The preceding result subsumes, in particular,

Brown’s celebrated invariant subspace theorem for hyponormal operators

with thick spectrum.

In 1984, C. J. Read [52] proved that there exist quasi-nilpotent opera-

tors(and hence decomposable) on Banach spaces without non-trivial closed

invariant subspaces. It is clear that the condition of thick spectrum cannot

be dropped in general; see [41] for more details.

In 1990, Eschmeier and Prunaru [30] established that Lat(T) is non-

trivial provided that σ(T ) is thick, and that Lat(T) is rich in the sense that

it contains the lattice of all closed subspaces of some infinite-dimensional

Banach space provided that the essential spectrum σe(T ) is thick. Here we

skip the formal definition of thick subsets of the complex plane, but note that

all compact sets with non-empty interior are thick. The invariant subspace

problem has motivated enormous literature in operator theory, see [9], [10],

[14], [16], [27], [33], [48] and [51] for more informations.

In this note, we show that if T ∈ L(X) has property (I) on a Banach

space X, then ∥Tnx0∥
1
n → 0 as n → ∞ if and only if T px0 = 0 for some

integer p > 0. Moreover, KerT p = XT ({0}) is the quasi-nilpotent part

of T. We also prove that if T has property (I) and the spectrum σ(T ) is

finite, then T is algebraic. Finally, we prove that if T ∈ L(X) has prop-

erty (I) and T has decomposition property (δ), then T has a non-trivial

invariant closed linear subspace. This results are exemplified in the case
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of subscalar(spectral, generalized scalar, normal, subnormal, hyponormal,

ω−hyponormal, log−hyponormal, k-quasihyponormal, isometries)operators

with property (δ).

2. Local spectral theory and property (I)

An operator T ∈ L(X) is said to be decomposable, provided that, for each

open cover C = U ∪ V of the complex plane C, there exist Y,Z ∈ Lat(T )

for which

X = Y + Z, σ(T |Y ) ⊆ U and σ(T |Z) ⊆ V.

This simple definition is equivalent to the original notion of decomposabil-

ity, as introduced by Foias in 1963 and discussed in the classical books by

Colojoarvă and Foias [22], and [41]. The theory of decomposable operators

is now richly developed with many interesting applications and connections.

Evidently, the class of decomposable operators contains all normal opera-

tors on Hilbert spaces and more generally, all spectral operators in the sense

of Dunford on Banach spaces. Moreover, a simple application of the Riesz

functional calculus shows that all operators with totally disconnected spec-

trum are decomposable. In particular, all compact and algebraic operators

are decomposable.

We now say that an operator T ∈ L(X) on a complex Banach space X

has Bishop’s property (β) provided that for every open subset U of C and

for every sequence of analytic functions fn : U → X for which (T − λ)fn(λ)

converges uniformly to zero on each compact subset of U, it follows that

also fn(λ) → 0 as n → ∞, locally uniformly on U. Obviously, property (β)

implies that T ∈ L(X) has the single-valued extension property(SVEP), if

for every open U ⊆ C, the only analytic solution f : U → X of the equation

(T − λ)f(λ) = 0 for all λ ∈ U is the constant f ≡ 0.

Given an arbitrary operator T ∈ L(X), let σT (x) ⊆ C denote the local

spectrum of T at the point x ∈ X, i.e. the complement of the set ρT (x) of

all λ ∈ C for which there exist an open neighborhood U of λ in C and an

analytic function f : U → X such that (T − µ)f(µ) = x holds for all µ ∈ U.

For every closed subset F of C, let XT (F ) = {x ∈ X : σT (x) ⊆ F} denote
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the corresponding analytic spectral subspace of T . It is easy to see that

XT (F ) is a T−invariant linear subspace of X and also hyperinvariant for T.

This space doesn’t have to be closed in general. These spectral subspaces

date back to early work of E. Bishop [18] and have been fundamental in

the recent progress of local spectral theory, for instance in connection with

functional models and invariant subspaces [7], [41].

An operator T ∈ L(X) is said to have Dunford’s property (C) if XT (F ) is

closed for every closed F ⊆ C. Finally, an operator T ∈ L(X) is said to have

the decomposition property (δ) if, given an arbitrary open covering {U1, U2}
of C, every x ∈ X has a decomposition x = u1+u2 where u1, u2 ∈ X satisfy

uk = (T − λ)fk(λ) for all λ ∈ C \ Uk

and some analytic function fk : C\Uk → X for k = 1, 2. It is not difficult to

see that property (δ) is inherited by quotients, and that T is decomposable

precisely when T has both properties (β) and (δ). It is clear that Bishop’s

property (β) implies Dunford property (C) and property (C) implies SVEP.

Note that neither of the implications may be reversed in general, [22], [45].

Associated with the operator T and each closed subset F of C is also

an algebraic spectral subspace ET (F ), defined to be the linear span of the

collection of all (not necessarily closed) linear subspaces Y of X for which

(T − λ)Y = Y for each λ ∈ C \ F.

Evidently, ET (F ) is the largest linear subspace Y for which (T−λ)Y = Y for

all λ ∈ C\F. It follows from Proposition 1.2.16 of [41] that XT (F ) ⊆ ET (F )

for every T ∈ L(X) and all closed set F ⊆ C. Thus if T has no non-trivial

divisible subspace in the sense that ET (ϕ) = {0}, then clearly T has SVEP.

By the open mapping theorem, we observe, for a closed set F ⊆ C that if

ET (F ) is closed, then ET (F ) = XT (F ), see [41].

Definition 2.1. An operator T ∈ L(X) has property (I) provided that

T has Bishop’s property (β) and there exists an integer p > 0 such that

XT (F ) = ET (F ) =
∩

λ∈C\F

(T − λ)pX for all closed sets F ⊆ C.
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We say that a linear subspace Y of X is said to be T−divisible if (T −
λ)Y = Y for all λ ∈ C. Evidently, ET (ϕ) is exactly the largest T−divisible

linear subspace. It is clear that if T ∈ L(X) has property (I) then T is

admissible, i.e. for each closed set F ⊆ C, the algebraic spectral subspace

ET (F ) is closed. In particular, T has no divisible subspace different from

zero.

Example 2.2. Let T be a normal operator on a complex Hilbert space

H. Pták and Vrbová proved in [49] that the ranges of the spectral projections

can be represented in the form

HT (F ) = E(F )H =
∩

λ∈C\F

(T − λ)H

for all closed sets F ⊆ C, where E denotes the spectral measure associated

with T. Evidently, T has Bishop’s property (β), and hence T has property

(I).

An important generalization of normal operators to the setting of Banach

spaces is the class of generalized scalar operators. Recall that an operator

T ∈ L(X) is said to be generalized scalar operator if there exists a continuous

algebra homomorphism Φ : C∞(C) → L(X) such that

Φ(1) = I and Φ(z) = T,

where C∞(C) denote the Fréchet algebra of all infinitely differentiable com-

plex valued functions on C, and z denotes the identity function on C. The

class of generalized scalar operators was introduced by Colojoarǎ and Foiaş

[22]. Every linear operator on a finite dimensional space as well as every

spectral operator of finite type are generalized scalar operators.

Example 2.3. Let T ∈ L(X) be a generalized scalar operator on a

complex Banach space X. In [55], Vrbová proved that

XT (F ) = ET (F ) =
∩

λ∈C\F

(T − λ)pX
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for all sufficiently large integers p and closed sets F ⊆ C. Since every gener-

alized scalar operator is decomposable, and hence T has Bishop’s property.

Vrbová’s result shows that

ET (ϕ) =
∩
λ∈C

(T − λ)pX = {0},

i.e. generalized scalar operators have no divisible subspace different from

zero and there exists an integer p > 0 such that the intersection of the ranges

(T − λ)pX over all λ ∈ C is trivial. Hence T has property (I).

An operator T ∈ L(X) is said to be a spectral operator if there exists

a spectral measure E on σ−algebra B which satisfies E(B)T = TE(B) and

σ(T |E(B)X) ⊆ B for all B ∈ B. Dunford and Schwartz [26] proved that if

T ∈ L(X) is a spectral operator with spectral measure E on a Banach space

X, then XT (F ) = E(F )X for all closed F ⊆ C. Later Curtis and Neumann

(Theorem 3.1, [23]) proved that if T ∈ L(X) is a spectral operator of type

k on a Banach space X, then

XT (F ) = ET (F ) =
∩

λ∈C\F

(T − λ)pX

for all closed F ⊆ C and all p ∈ N with p ≥ k + 2, and hence spectral

operator has property (I).

An operator T ∈ L(X) is said to be subscalar, if T is similar to the restric-

tion of a generalized scalar operator to one of its closed invariant subspaces.

It is well known that hyponormal operators, isometries, k−quasihyponormal,

ω−hyponormal, log−hyponormal operators are subscalar, see [15], [37] and

[50]. It is well known [41] that if there exist an operator S ∈ L(X) and a

constant c > 0 for which

∥(S − λ)x∥ ≤ c∥(T − λ)x∥ for all λ ∈ C andx ∈ X,

then T is subscalar. In particular, if T ∈ L(H) on a complex Hilbert space

H is M−hyponormal, i.e. there exists a constant M > 0 such that

∥(T ∗ − λ)x∥ ≤ M∥(T − λ)x∥ for all x ∈ H andλ ∈ C,
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where T ∗ denotes the Hilbert space adjoint of T, then T is subscalar. The

class of subscalar operators is strictly larger than the class of generalized

scalar operators. For instance, the unilateral right shift T on the space

ℓ2(N) is hyponormal, and hence T is subscalar. But T is not generalized

scalar operator, since T ∗ does not have the SVEP, we have that T is not

decomposable. It follows from [40] that T is not generalized scalar.

Example 2.4. Let T ∈ L(X) be a subscalar on a Banach space X. Then,

by Theorem 4, [46], there exists an integer p ∈ N such that

XT (F ) = ET (F ) =
∩

λ∈C\F

(T − λ)pX for all closed sets F ⊆ C.

It is clear that the restriction of an operator T with property (β) to a closed

invariant subspace certainly inherits this property. Hence T has property

(I).

Let (ωn)n∈N0 be a bounded sequence of strictly positive real numbers. Let

us consider the corresponding weighted unilateral right shift on the sequence

space X := ℓq(N0) for some 1 ≤ q < ∞, defined by

Tx :=

∞∑
n=0

ωnxnen+1 for all x = (xn)n∈N0 ∈ ℓp(N0),

where (en) stands for the canonical basis of ℓ
p(N0). It follows from Corollary

7 [46] that if there exist constants c, s > 0 such that

1

cns
≤ inf

k≥0
ωk · ωk+1 · · ·ωn+k−1 ≤ sup

k≥0
ωk · ωk+1 · · ·ωn+k−1 ≤ cns

for all n ∈ N, then T is subscalar and for all sufficiently large integers p,

XT (F ) = ET (F ) =
∩

λ∈C\F

(T − λ)pX for all closed F ⊆ C.

Thus T has property (I).

We recall [40] that an operator T ∈ L(X) is said to be super-decomposable,

provided that, for pair of open sets U, V ⊆ C such that U ∪ V = C
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there exists some R ∈ L(X) such that RT = TR, σ(T |R(X)) ⊆ U, and

σ(T |(I −R)(X)) ⊆ V. Super-decomposable operators are obviously decom-

posable. Evidently, the class of super-decomposable operators contains all

normal operators on Hilbert spaces and more generally, all spectral oper-

ators, all generalized scalar operators as well as all operators with totally

disconnected spectrum are super-decomposable; for more information we

refer to [40], [41].

Example 2.5. Let T ∈ L(X) be a super-decomposable operator on a

Banach space X, and suppose that∩
λ∈C

(T − λ)pX = {0}

for some integer p ≥ 1. Then, by Proposition 1.4.15 [41], for every closed set

F ⊆ C, we have the identities

XT (F ) = ET (F ) =
∩

λ∈C\F

(T − λ)pX.

Clearly, T has Bishop’s property (β) and hence T has property (I).

Colojoarvă and Foias [22] proved that every multiplication operator on a

regular semi-simple commutative Banach algebra is decomposable. Later it

was observed by Frunzǎ [32] that the decomposability of all multiplication

operators actually characterizes the regularity of a semi-simple commutative

Banach algebra A, i.e. for each a ∈ A, Ta is decomposable if and only if A
is regular.

Example 2.6. Let A be a regular semi-simple commutative Banach al-

gebra, and let T := Ta ∈ L(A) is a multiplication operator on A. Then,

by Theorem 1.4 [47], T is decomposable and hence T has Bishop’s property

(β), and the spectral maximal spaces of T are given by

AT (F ) = ET (F ) =
∩

λ∈C\F

(T − λ)A for all closed sets F ⊆ C.

Hence T has property (I).
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Example 2.7. Consider the Banach spaceX := C([0, 1]) and the Volterra

operator T ∈ L(X) given by

(Tf)(s) =

∫ s

0

f(t)dt for all f ∈ C([0, 1]) and s ∈ [0, 1].

Then T is both compact and quasi-nilpotent, and hence decomposable. It is

clear that XT (ϕ) = {0} and has the following non-trivial divisible subspace

ET (ϕ) =

∞∩
n=1

TnX = {f ∈ C∞([0, 1]) : f (k)(0) = 0 for all integer k ≥ 0}.

It follows that T does not have the property (I).

3. Invariant subspaces of a bounded Linear operators

Given an operator T ∈ L(X), the quasi-nilpotent part of T is the set

H0(T ) := {x ∈ X : lim
n→∞

∥Tnx∥ 1
n = 0}.

Obviously, H0(T ) is a linear subspace of X, generally not closed. It is clear

that

Ker(Tn) ⊆ H0(T ) ⊆ {x ∈ X : σT (x) ⊆ {0}}

for all n ∈ N. Furthermore, T is quasi-nilpotent if and only if H0(T ) = X.

Moreover, if T is invertible, then H0(T ) = {0}, see more details [1] and [44].

Given an operator T ∈ L(X) on a Banach space X and x ∈ X, the quantity

rT (x) := lim sup
n→∞

∥Tnx∥ 1
n

is called the local spectral radius of T at x. It is clear that

max{|λ| : λ ∈ σT (x)} ≤ rT (x)

for all x ∈ X. It follows from Proposition 3.3.13 of [41] that if T has SVEP,

then the local spectral radius formula

rT (x) = max{|λ| : λ ∈ σT (x)}

holds for all non-zero x ∈ X, but for operators without SVEP, this inequality

may well strict.
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Theorem 3.1. Assume that T ∈ L(X) has property (I) on a Banach

space X. Then limn→∞ ∥Tnx0∥
1
n = 0 if and only if T px0 = 0 for some

integer p > 0. Moreover, KerT p = XT ({0}) is the quasi-nilpotent part of

T. In this case,

H0(T ) = KerT p = ET ({0}) = {x ∈ X : rT (x) = 0} =
∩

λ∈C\{0}

(T − λ)pX,

where rT (x) denotes the local spectral radius of T at x.

Proof. Suppose that T ∈ L(X) has property (I). Then there exists an

integer p > 0 such that

ET (F ) = XT (F ) =
∩

µ∈C\F

(T − µ)pX

holds for all closed set F ⊆ C. For each λ ∈ F, we obtain

ET ({λ}) =
∩
µ̸=λ

(T − µ)pX.

Thus we have

(T − λ)pET ({λ}) = (T − λ)p[
∩
µ ̸=λ

(T − µ)pX]

⊆
∩
µ∈C

(T − µ)pX = XT (ϕ) = {0},

since T has single-valued extension property. It follows that (T−λ)pET ({λ})
= {0}, this implies that ET ({λ}) ⊆ Ker(T −λ)p for all λ ∈ F. On the other

hand, by Proposition 1.2.16 of [41]

Ker(T − λ)k ⊆ XT ({λ}) ⊆ ET ({λ})

for all λ ∈ F and k ∈ N and hence

Ker(T − λ)p = XT ({λ}) = ET ({λ}) for all λ ∈ F.

Thus we have

KerT p = H0(T ) = XT ({0}) = ET ({0}) =
∩
λ ̸=0

(T − λ)pX.
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Since T has Bishop’s property (β), T has SVEP and hence, by Corollary 2.4

of [39],

XT ({0}) = {x ∈ X : lim
n→∞

∥Tnx∥ 1
n = 0}.

Finally, it follows from Proposition 3.3.7 of [41] that rT (x) = limn→∞ ∥Tnx∥ 1
n .

This completes the proof. �

Theorem 3.2. Assume that T ∈ L(X) has property (I) on a Banach

space X. If T has finite spectrum, then T is algebraic. In particular, if T is

quasi-nilpotent then T is nilpotent.

Proof. Suppose that T ∈ L(X) has property (I). Then there exists an

integer m > 0 such that

ET (F ) = XT (F ) =
∩

µ∈C\F

(T − µ)mX

holds for all closed set F ⊆ C. Assume that σ(T ) is a finite set, say σ(T ) =

{λ1, λ2, · · · , λn}. Then, by the first part of Theorem 3.1, there exists positive

integer mk ∈ N such that

ET ({λk}) = XT ({λk}) = Ker(T − λk)
mk

for all k = 1, 2, · · · , n. Thus we have

XT (σ(T )) = ET (σ(T )) =
∩

µ∈C\σ(T )

(T − µ)mX = X,

since for each µ ∈ C \ σ(T ), T − µ is invertible. It follows from Theorem 1

of [53] that

X = XT (σ(T )) = XT ({λ1})⊕XT ({λ2})⊕ · · · ⊕XT ({λn})

= Ker(T − λ1)
m1 ⊕Ker(T − λ2)

m2 ⊕ · · · ⊕Ker(T − λn)
mn

holds as an algebraic direct sum. Consequently, if p denotes the complex

polynomial given by

p(λ) := (λ− λ1)
m1(λ− λ2)

m2 · · · (λ− λn)
mn for all λ ∈ C,

then we conclude that p(T ) = 0, and hence T is algebraic. This completes

the proof. �

We shall also need the following elementary lemma which may be known;

see [41].
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Lemma 3.3. Every decomposable operator whose spectrum contains at

least two points has a non-trivial hyperinvariant closed linear subspace.

In 1984, C. J. Read proved [52] that there exist quasi-nilpotent opera-

tors(and hence decomposable) on Banach spaces without non-trivial closed

invariant subspaces.

We can now prove the main result of this section.

Theorem 3.4. Let T ∈ L(X) be a bounded linear operator on a Banach

space X of dimension greater than 1. If T ∈ L(X) has both property (I)

and decomposition property (δ), then T has a non-trivial invariant closed

linear subspace.

Proof. Suppose that T ∈ L(X) has both property (I) and decomposition

property (δ) on a Banach space X of dimension greater than 1. Then T is

decomposable. At first, we show that if σ(T ) contains at least two points,

then T has a non-trivial hyperinvariant closed linear subspace. Since T is

decomposable, it follows from Lemma 3.3 that T has a non-trivial hyperin-

variant closed linear subspace. It remains to consider the case of operator

T ∈ L(X) such that X is at least two-dimensional and σ(T ) is a singleton.

Then it follows from Theorem 3.2 that T = λI+N for some λ ∈ C and some

nilpotent operator N ∈ L(X). Let p ∈ N be the smallest integer for which

Np = 0, and choose an x ∈ X for which Np−1x ̸= 0. The linear subspace

generated by Np−1x is a one-dimensional T−invariant linear subspace of X.

This completes the proof. �

The previous result extends [41, Proposition 1.5.11].

Corollary 3.5. Every subscalar operator with property (δ) on a Ba-

nach space of dimension greater than 1 has a non-trivial invariant closed

linear subspace.

The above result applies to all generalized scalar(k−quasihyponormal,

isometries, M−hyponormal, ω−hyponormal, log-hyponormal or hyponor-

mal) with property (δ).
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Corollary 3.6. Every generalized scalar operator on a Banach space of

dimension greater than 1 has a non-trivial invariant closed linear subspace.

Corollary 3.7. Every hyponormal operator with property (δ) on a

Hilbert space of dimension greater than 1 has a non-trivial invariant closed

linear subspace.
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