SOME PROPERTIES INVOLVING THE HIGHER ORDER q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α,β) VIA THE p-ADIC q-INTEGRAL ON \mathbb{Z}_p

Jong Jin Seo* and Serkan Araci**

ABSTRACT. The main properties of this paper is to describe the higher order q-Genocchi polynomials with weight (α, β) . However, we derive some interesting properties concerning this type of polynomials.

1. Introduction, definitions and notations

The main motivations of this paper are the papers [8], [14] by Kim et al. and Hwang et al., in which they introduced and studied on higher order q-Euler numbers and polynomials with weight α and higher order q-Bernoulli numbers and polynomials with weight α , respectively.

By using q-Volkenborn integral, Kim introduced the q-Bernoulli numbers and polynomials with weight α which are derived some interesting properties of q-Bernoulli numbers and polynomials with weight α . However, several mathematicians have studied on the special numbers and polynomials with weight α (see for details [3],[4], [8], [9], [10], [11], [14],[17], [22]).

Assume that p is a fixed odd prime number. Throughout this paper \mathbb{Z}_p , \mathbb{Q}_p , \mathbb{C} and \mathbb{C}_p , will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field and the completion of algebraic closure of \mathbb{Q}_p . Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. Let v_p be the normalized exponential

Received October 15, 2011; Accepted November 24, 2011.

²⁰¹⁰ Mathematics Subject Classification: Primary 05A10, 11B65, 28B99, 11B68, 11B73

Key words and phrases: Genocchi numbers and polynomials, q-Genocchi numbers and polynomials, higher order q-Genocchi numbers and polynomials.

Correspondence should be addressed to Jong Jin Seo, seo2011@pknu.ac.kr.

valuation of \mathbb{C}_p with $|p|_p = p^{-v_p(p)} = \frac{1}{p}$ (see [1-6,8-17]). If $q \in \mathbb{C}$, then we always assume that |q| < 1. If $q \in \mathbb{C}_p$, then we usually assume that $|1 - q|_p < p^{-\frac{1}{p-1}}$, which yields $q^x = \exp(\log q)$ for $|x|_p \le 1$.

The q-basic naturel numbers are defined by $[x]_q = \frac{q^x-1}{q-1}$ $(x \in \mathbb{N})$. Hence, $\lim_{q \to 1} [x]_q = x$ for any x with $|x|_p \le 1$ in the present p-adic case. The q-factorial is defined as $[n]_q! = [n]_q \cdot [n-1]_q \cdot [n-2]_q \cdot \cdots \cdot [2]_q \cdot [1]_q$, and the Gaussian binomial coefficients is defined by $\binom{n}{k}_q = \frac{[n]_q!}{[n-k]_q![k]_q!}$. Note that $\lim_{q \to 1} \binom{n}{k}_q = \binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}$ (see [5,8-16]).

In [5,10,11,16], the q-binomial formulas are known,

$$(1.1) (b;q)_n = (1-b) (1-qb) \cdots (1-q^{n-1}b)$$

$$= \sum_{k=0}^n \binom{n}{k}_q q^{\binom{k}{2}} (-1)^k b^k,$$

$$(b;q)_n^{-1} = \frac{1}{(1-b) (1-qb) \cdots (1-q^{n-1}b)}$$

$$= \sum_{k=0}^\infty \binom{n+k-1}{k}_q b^k.$$

We say that f (and write $f \in UD(\mathbb{Z}_p)$) is a uniformly differentiable function at a point $a \in \mathbb{Z}_p$, if the quotients $F_f(x,y) = \frac{f(x)-f(y)}{x-y}$ have a limit f(a) as $(x,y) \to (a,a)$. For $f \in UD(\mathbb{Z}_p)$, T. Kim defined the fermionic p-adic q-integral on \mathbb{Z}_p (or q-Volkenborn integral in the sense of fermionic) is defined as

(1.3)
$$I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x)$$

$$= \frac{[2]_q}{2} \lim_{N \to \infty} \sum_{x=0}^{p^N - 1} (-1)^x f(x) q^x, \text{ (see [1-5,8-17])}.$$

The Genocchi polynomials are defined by

(1.4)
$$\frac{2te^{xt}}{e^t + 1} = \sum_{n=0}^{\infty} G_n(x) \frac{t^n}{n!}, \quad |t| < \pi \text{ (see [6,7,10,11])}.$$

The q-extension of Genocchi numbers are defined by

(1.5)
$$G_{0,q} = 0, \ q (qG_q + 1)^n + G_{n,q} = \begin{cases} [2]_q, & n = 1\\ 0, & n \neq 1 \end{cases}$$

with usual the convention about replacing $(G_q)^n$ by $G_{n,q}$ (see [1]). The (h,q)-extension of Genocchi numbers are defined by

(1.6)
$$G_{0,q}^{(h)} = 0, \ q^{h-2} \left(qG_q^{(h)} + 1 \right) + G_{n,q}^{(h)} = \begin{cases} [2]_q, & n = 1\\ 0, & n \neq 1 \end{cases}$$

with usual convention about replacing $\left(G_q^{(h)}\right)^n$ by $G_{n,q}^{(h)}$ (see[2]).

Recently, For $\alpha \in \mathbb{N}$, the weighted q-Genocchi numbers are defined by

(1.7)
$$\widetilde{G}_{0,q}^{(\alpha)} = 0$$
, $q^{1-\alpha} \left(q^{\alpha} \widetilde{G}_{q}^{(\alpha)} + 1 \right)^{n} + \widetilde{G}_{n,q}^{(\alpha)} = \begin{cases} [2]_{q}, & \text{if } n = 0 \\ 0, & \text{if } n \neq 0, \end{cases}$

with usual convention abut replacing $\left(\widetilde{G}_q^{(\alpha)}\right)^n$ by $\widetilde{G}_{n,q}^{(\alpha)}$ (see[4]).

By same the motivation of [8], [14], we consider on the higher order q-Genocchi polynomials with weight (α, β) . However, we derive some interesting properties concerning this type of polynomials.

2. Higher Order *q*-Genocchi numbers and polyomials with weight (α, β)

DEFINITION 1. Let be $h \in \mathbb{Z}$, $\alpha, k, \beta \in \mathbb{N}$ and $n \in \mathbb{Z}_+$. Then we defined higher-order q-Genocchi polynomials with weight (α, β) as follows:

$$(2.1) \qquad \frac{\widetilde{G}_{n+k,q}^{(\alpha,\beta)}(h,k\mid x)}{k!\binom{n+k}{k}}$$

$$= \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x+x_1+\cdots+x_k]_{q^{\alpha}}^n q^{\sum_{j=1}^k x_j(h-j)}$$

$$d\mu_{-q^{\beta}}(x_1)\cdots d\mu_{-q^{\beta}}(x_k)$$

By (1.3) and (2.1), we arrive at the following theorem:

THEOREM 1. For $h \in \mathbb{Z}$, $\alpha, k, \beta \in \mathbb{N}$ and $n \in \mathbb{Z}_+$. We obtain

$$(2.2) \quad \frac{\widetilde{G}_{n+k,q}^{(\alpha,\beta)}(h,k\mid x)}{k!\binom{n+k}{k}} = \frac{[2]_{q^{\beta}}^{k}}{(1-q^{\alpha})^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \frac{q^{\alpha l x}}{(-q^{\alpha l+h-k+\beta};q)_{k}}$$

We simply get,

$$[x_1 + x_2 + \dots + x_k]_{q^{\alpha}}^n q^{x_1(h-1)+\dots + x_k(h-k)}$$

$$= [x_1 + x_2 + \dots + x_k]_{q^{\alpha}}^n q^{x_1(h-\alpha-1)+\dots + x_k(h-\alpha-k)} q^{\alpha(x_1+x_2+\dots + x_k)}$$

$$= [x_1 + x_2 + \dots + x_k]_{q^{\alpha}}^n q^{x_1(h-\alpha-1)+\dots + x_k(h-\alpha-k)} ((q^{\alpha} - 1) \frac{q^{\alpha(x_1+x_2+\dots + x_k)} - 1}{q^{\alpha} - 1} + 1)$$

$$= [x_1 + x_2 + \dots + x_k]_{q^{\alpha}}^n q^{x_1(h-\alpha-1)+\dots + x_k(h-\alpha-k)} ((q^{\alpha} - 1) [x_1 + x_2 + \dots + x_k]_{q^{\alpha}} + 1)$$

Namely, we have Corollary 1 as follows:

COROLLARY 1. For $\alpha, k \in \mathbb{N}$. Then we get

$$(2.3) [x_1 + x_2 + \dots + x_k]_{q^{\alpha}}^n q^{x_1(h-1)+\dots + x_k(h-k)}$$

$$= \left((q^{\alpha} - 1) [x_1 + x_2 + \dots + x_k]_{q^{\alpha}}^{n+1} q^{x_1(h-\alpha-1)+\dots + x_k(h-\alpha-k)} + [x_1 + x_2 + \dots + x_k]_{q^{\alpha}}^n q^{x_1(h-\alpha-1)+\dots + x_k(h-\alpha-k)} \right)$$

With regard to (2.3) and by using fermionic p-adic q-integral, we obtain the following theorem:

THEOREM 2. For $h \in \mathbb{Z}$, $\alpha, k, \beta \in \mathbb{N}$ and $n \in \mathbb{Z}_+$. We obtain

$$(2.4) \qquad G_{n+k,q}^{(\alpha,\beta)}(h,k)$$

$$= (q-1)\left[\alpha\right]_{q} \frac{\binom{n+k}{k}}{\binom{n+k+1}{k}} \widetilde{G}_{n+k+1,q}^{(\alpha,\beta)}(h-\alpha,k) + \widetilde{G}_{n+k}^{(\alpha,\beta)}(h-\alpha,k)$$

By (2.1), we have,

$$\frac{\widetilde{G}_{k,q}^{(\alpha,\beta)}(m\alpha,k+1)}{k!} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} q^{\sum_{j=1}^{k+1}(m\alpha-j)x_j} d\mu_{-q^{\beta}}(x_1) \cdots d\mu_{-q^{\beta}}(x_{k+1}) \\
= \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\frac{q^{\alpha(x_1+\cdots+x_{k+1})}-1}{q^{\alpha}-1} (q^{\alpha}-1)+1 \right)^m q^{-\sum_{j=1}^{k+1} jx_j} \\
 \qquad \qquad \qquad d\mu_{-q^{\beta}}(x_1) \cdots d\mu_{-q^{\beta}}(x_{k+1}) \\
= \sum_{l=0}^m \binom{m}{l} (q^{\alpha}-1)^l \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x_1+\cdots+x_{k+1}]_{q^{\alpha}}^l q^{-\sum_{j=1}^{k+1} jx_j} \\
 \qquad \qquad \qquad d\mu_{-q^{\beta}}(x_1) \cdots d\mu_{-q^{\beta}}(x_{k+1}) \\
= \sum_{l=0}^m \binom{m}{l} (q^{\alpha}-1)^l \frac{\widetilde{G}_{l+k}^{(\alpha,\beta)}(0,k+1)}{k! \binom{l+k}{l}}$$

Therefore, we obtain the following theorem:

THEOREM 3. For $h \in \mathbb{Z}$, $\alpha, k, \beta \in \mathbb{N}$ and $m \in \mathbb{Z}_+$. We obtain

(2.5)
$$\widetilde{G}_{k,q}^{(\alpha,\beta)}(m\alpha,k+1) = \sum_{l=0}^{m} \frac{\binom{m}{l}}{\binom{l+k}{k}} (q^{\alpha}-1)^{l} \widetilde{G}_{l+k}^{(\alpha,\beta)}(0,k+1)$$

Moreover, we readily see,

(2.6)
$$\widetilde{G}_{k,q}^{(\alpha,\beta)}(m\alpha,k+1) = \frac{k! \left[2\right]_{q^{\beta}}^{k+1}}{(-q^{m\alpha-k+\beta};q)_k}$$

By (2.5) and (2.6), we get following theorem:

Theorem 4. For $h \in \mathbb{Z}$, $\alpha, k, \beta \in \mathbb{N}$ and $m \in \mathbb{Z}_+$. We obtain

(2.7)
$$\sum_{l=0}^{m} \frac{\binom{m}{l}}{\binom{l+k}{k}} (q^{\alpha} - 1)^{l} \widetilde{G}_{l+k}^{(\alpha,\beta)} (0, k+1) = \frac{k! \left[2\right]_{q^{\beta}}^{k+1}}{\left(-q^{m\alpha-k+\beta}; q\right)_{k}}$$

From (2.1), we can derive the following equation:

$$\sum_{j=0}^{i} {i \choose j} (q^{\alpha} - 1)^{j} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} [x_{1} + \cdots + x_{k}]_{q^{\alpha}}^{n-i+j} q^{\sum_{l=1}^{k} (h-\alpha-l)x_{l}} d\mu_{-q^{\beta}}(x_{1}) \cdots d\mu_{-q^{\beta}}(x_{k})$$

$$= \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} [x_{1} + \cdots + x_{k}]_{q^{\alpha}}^{n-i} q^{\sum_{l=1}^{k} (h-l)x_{l}} q^{\alpha(x_{1}+\cdots+x_{k})(i-1)} d\mu_{-q^{\beta}}(x_{1}) \cdots d\mu_{-q^{\beta}}(x_{k})$$

$$= \sum_{j=0}^{i-1} {i-1 \choose j} (q^{\alpha} - 1)^{j} \frac{\widetilde{G}_{n-i+j+k}^{(\alpha,\beta)}(h,k)}{k! \binom{n-i+j+k}{k}}.$$

Thus, we obtain the following theorem:

THEOREM 5. For $h \in \mathbb{Z}$, $\alpha, k, \beta \in \mathbb{N}$ and $n, i \in \mathbb{Z}_+$. We obtain

(2.8)
$$\sum_{j=0}^{i} \frac{\binom{i}{j}}{\binom{n-i+j+k}{k}} (q^{\alpha} - 1)^{j} \widetilde{G}_{n-i+j+k}^{(\alpha,\beta)} (h - \alpha, k) = \sum_{j=0}^{i-1} \frac{\binom{i-1}{j}}{\binom{n-i+j+k}{k}} (q^{\alpha} - 1)^{j} \widetilde{G}_{n-i+j+k}^{(\alpha,\beta)} (h, k).$$

3. Polynomials $\widetilde{G}_{n,q}^{(\alpha,\beta)}(0,k\mid x)$

In this section, we discuss the polynomials $\widetilde{G}_{n,q}^{(\alpha,\beta)}\left(0,k\mid x\right)$ by

$$(3.1) \qquad \frac{\widetilde{G}_{n+k,q}^{(\alpha,\beta)}(0,k\mid x)}{k!\binom{n+k}{k}}$$

$$= \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left[x + x_1 + \cdots + x_k \right]_{q^{\alpha}}^n q^{-\sum_{j=1}^k j x_j}$$

$$d\mu_{-q^{\beta}}(x_1) \cdots d\mu_{-q^{\beta}}(x_k).$$

From (3.1), we get

$$(3.2) \qquad \frac{\widetilde{G}_{n+k,q}^{(\alpha,\beta)}(0,k\mid x)}{k!\binom{n+k}{k}} = \frac{[2]_{q^{\beta}}^{k}}{(1-q^{\alpha})^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \frac{q^{lx}}{(-q^{\alpha l-k+\beta};q)_{k}}$$

By (3.1), we can easily derive the equation.

(3.3)
$$\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} q^{\sum_{j=1}^k (\alpha n - j) x_j + \alpha n x} d\mu_{-q^{\beta}}(x_1) \cdots d\mu_{-q^{\beta}}(x_k)$$
$$= \sum_{l=0}^n (q^{\alpha} - 1)^l \frac{\binom{n}{l}}{k! \binom{l+k}{k}} \widetilde{G}_{l+k}^{(\alpha,\beta)}(0, k \mid x)$$

and

(3.4)
$$\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} q^{\sum_{j=1}^k (\alpha n - j) x_j + \alpha n x} d\mu_{-q^{\beta}} (x_1) \cdots d\mu_{-q^{\beta}} (x_k)$$
$$= \frac{[2]_{q^{\beta}}^k q^{\alpha n x}}{(-q^{\alpha n - k + \beta}; q)_k}$$

Therefore, we get the following theorem.

THEOREM 6. For $\alpha, k, \beta \in \mathbb{N}$ and $n \in \mathbb{Z}_+$. We get

$$\frac{\widetilde{G}_{n+k,q}^{(\alpha,\beta)}\left(0,k\mid x\right)}{k!\binom{n+k}{k}} = \frac{\left[2\right]_{q^{\beta}}^{k}}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n} \binom{n}{l} \left(-1\right)^{l} \frac{q^{\alpha l x}}{\left(-q^{\alpha l-k+\beta};q\right)_{k}}$$

and

$$\sum_{l=0}^{n} (q^{\alpha} - 1)^{l} \frac{\binom{n}{l}}{k! \binom{l+k}{k}} \widetilde{G}_{l+k,q}^{(\alpha,\beta)}(0,k \mid x) = \frac{[2]_{q^{\beta}}^{k} q^{\alpha nx}}{(-q^{\alpha n - k + \beta};q)_{k}}.$$

Assume that $d \in \mathbb{N}$ with $d \equiv 1 \pmod{2}$. We readily see, namely,

$$\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} \left[x + \sum_{j=1}^{k} x_{j} \right]_{q^{\alpha}}^{n} q^{-\sum_{j=1}^{k} j x_{j}} d\mu_{-q^{\beta}} (x_{1}) \cdots d\mu_{-q^{\beta}} (x_{k})$$

$$= \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q^{\beta}}} \sum_{a_{1}, \dots, a_{k} = 0}^{d-1} q^{-\sum_{j=2}^{k} (j-1)a_{j}} (-1)^{\sum_{j=1}^{k} a_{j}} \times$$

$$\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} \left[\frac{x + \sum_{j=1}^{k} a_{j}}{d} + \sum_{j=1}^{k} x_{j} \right]_{q^{\alpha d}}^{n} q^{-d\sum_{j=1}^{k} j x_{j}}$$

$$d\mu_{(-q^{\beta})^{d}} (x_{1}) \cdots d\mu_{(-q^{\beta})^{d}} (x_{k})$$

As well as, we obtain the following theorem.

THEOREM 7. For $\alpha, k, \beta \in \mathbb{N}$, $n \in \mathbb{Z}_+$ and $d \equiv 1 \pmod{2}$. We get

$$\begin{split} \widetilde{G}_{n+k,q}^{(\alpha,\beta)}\left(0,k\mid x\right) \\ &= \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q^{\beta}}} \sum_{a_{1,\dots,a_{k}=0}}^{d-1} q^{-\sum_{j=2}^{k}(j-1)a_{j}} \left(-1\right)^{\sum_{j=1}^{k}a_{j}} \\ &\quad \times \widetilde{G}_{n+k,q^{d}}^{(\alpha,\beta)}\left(0,k\mid \frac{x+a_{1}+a_{2}+\dots+a_{k}}{d}\right) \end{split}$$

From (3.1), we have

$$\widetilde{G}_{n+k,q}^{(\alpha,\beta)}\left(0,k\mid x\right) = \sum_{l=0}^{n} \binom{n+k}{l+k} q^{\alpha l x} \left[x\right]_{q^{\alpha}}^{n-l} \widetilde{G}_{l+k,q}^{(\alpha,\beta)}\left(0,k\right).$$

Thus, we note that

$$\widetilde{G}_{n+k,q}^{(\alpha,\beta)}(0,k \mid x+y) = \sum_{l=0}^{n} \binom{n+k}{l+k} q^{\alpha l y} [y]_{q^{\alpha}}^{n-l} \widetilde{G}_{l+k,q}^{(\alpha,\beta)}(0,k \mid x).$$

4. Polynomials $\widetilde{G}_{n,q}^{(\alpha,\beta)}\left(h,1\mid x\right)$

We now consider polynomials $\widetilde{G}_{n,q}^{(h)}(h,1\mid x)$ as follows:

(4.1)
$$\frac{\widetilde{G}_{n+1,q}^{(\alpha,\beta)}(h,1\mid x)}{n+1} = \int_{\mathbb{Z}_p} \left[x + x_1 \right]_{q^{\alpha}}^n q^{(h-1)x_1} d\mu_{-q^{\beta}}(x_1).$$

By (4.1), we get

$$(4.2) \qquad \frac{\widetilde{G}_{n+1,q}^{(\alpha,\beta)}(h,1\mid x)}{n+1} = \frac{[2]_{q^{\beta}}}{(1-q^{\alpha})^n} \sum_{l=0}^n \binom{n}{l} (-1)^l \frac{q^{\alpha lx}}{1+q^{\alpha l+h-1+\beta}}$$

By applying fermionic p-adic q-integral on \mathbb{Z}_p , we see that

$$q^{\alpha x} \int_{\mathbb{Z}_p} [x + x_1]_{q^{\alpha}}^n d\mu_{-q^{\beta}} (x_1)$$

$$= (q - 1) [\alpha]_q \int_{\mathbb{Z}_p} [x + x_1]_{q^{\alpha}}^{n+1} q^{x_1(h-\alpha-1)} d\mu_{-q^{\beta}} (x_1)$$

$$+ \int_{\mathbb{Z}_p} [x + x_1]_{q^{\alpha}}^n q^{x_1(h-\alpha-1)} d\mu_{-q^{\beta}} (x_1)$$

Therefore, we obtain the following theorem:

THEOREM 8. For $h \in \mathbb{Z}$, $\alpha, \beta \in \mathbb{N}$ and $n \in \mathbb{Z}_+$. We get

$$(4.3) \quad q^{\alpha x} \widetilde{G}_{n+1,q}^{(\alpha,\beta)}(h,1 \mid x) \\ = \frac{n+1}{n+2} (q-1) \left[\alpha\right]_{q} \widetilde{G}_{n+2,q}^{(\alpha,\beta)}(h-\alpha,1 \mid x) + \widetilde{G}_{n+1,q}^{(\alpha,\beta)}(h-\alpha,1 \mid x)$$

It is simple to indicate

$$(4.4) \widetilde{G}_{n+1,q}^{(\alpha,\beta)}(h,1 \mid x) = (n+1) \int_{\mathbb{Z}_p} [x+x_1]_{q^{\alpha}}^n d\mu_{-q^{\beta}}(x_1)$$

$$= q^{-\alpha x} \sum_{l=0}^n \binom{n+1}{l+1} [x]_{q^{\alpha}}^{n+1-(l+1)} q^{\alpha(l+1)x} \widetilde{G}_{l+1,q}^{(\alpha,\beta)}(h,1)$$

$$= q^{-\alpha x} \left(q^{\alpha x} \widetilde{G}_q^{(\alpha,\beta)}(h,1) + [x]_{q^{\alpha}} \right)^{n+1}, \text{ for } n \ge 0,$$

with usual the convention about replacing $\left(\widetilde{G}_{q}^{(\alpha,\beta)}\left(h,1\right)\right)^{n}$ by $\widetilde{G}_{n,q}^{(\alpha,\beta)}\left(h,1\right)$. By $qI_{-q}\left(f_{1}\right)+I_{-q}\left(f\right)=\left[2\right]_{q}f\left(0\right)$ where $f_{1}\left(x\right)=f\left(x+1\right)$. We get,

(4.5)
$$q^{\beta+h-1} \int_{\mathbb{Z}_p} [x + x_1 + 1]_{q^{\alpha}}^n q^{(h-1)x_1} d\mu_{-q^{\beta}} (x_1)$$

$$+ \int_{\mathbb{Z}_p} [x + x_1]_{q^{\alpha}}^n q^{(h-1)x_1} d\mu_{-q^{\beta}} (x_1)$$

$$= [2]_{q^{\beta}} [x]_{q^{\alpha}}^n.$$

From (4.1) and (4.5), we simply see,

$$(4.6) \qquad \frac{q^{\beta+h-1}}{n+1} \widetilde{G}_{n+1}^{(\alpha,\beta)}(h,1\mid x) + \frac{1}{n+1} \widetilde{G}_{n+1}^{(\alpha,\beta)}(h,1\mid x) = [2]_{q^{\beta}} [x]_{q^{\alpha}}^{n}.$$

For x = 0 into (4.6), we obtain

$$\frac{q^{\beta+h-1}}{n+1}\widetilde{G}_{n+1}^{(\alpha,\beta)}\left(h,1\mid x\right) + \frac{1}{n+1}\widetilde{G}_{n+1}^{(\alpha,\beta)}\left(h,1\mid x\right) = \begin{cases} [2]_{q^{\beta}}, & \text{if } n=0\\ 0, & \text{if } n\neq 0. \end{cases}$$

From the fermionic p-adic q-integral on \mathbb{Z}_p , we simply get,

$$\widetilde{G}_{1,q}^{\left(\alpha,\beta\right)}\left(h,1\mid x\right)=\int_{\mathbb{Z}_{p}}q^{x_{1}\left(h-1\right)}d\mu_{-q^{\beta}}\left(x_{1}\right)=\frac{\left[2\right]_{q^{\beta}}}{\left[2\right]_{q^{h+\beta-1}}}.$$

By (4.1), we see that,

$$\frac{\widetilde{G}_{n+1,q^{-1}}^{(\alpha,\beta)}(h,1\mid 1-x)}{n+1} = \int_{\mathbb{Z}_p} [1-x+x_1]_{q^{-\alpha}}^n q^{-(h-1)x_1} d\mu_{-q^{-\beta}}(x_1)$$

$$= (-1)^n q^{n\alpha+h-1} \left(\frac{[2]_{q^{\beta}}}{(1-q^{\alpha})^n} \sum_{l=0}^n \binom{n}{l} (-1)^l \frac{q^{\alpha lx}}{1+q^{\alpha l+h-1+\beta}} \right)$$

$$= (-1)^n q^{n\alpha+h-1} \frac{\widetilde{G}_{n+1,q}^{(\alpha,\beta)}(h,1\mid x)}{n+1}$$

Therefore, we obtain the following theorem,

THEOREM 9. For $h \in \mathbb{Z}$, $\alpha, \beta \in \mathbb{N}$ and $n \in \mathbb{Z}_+$. We get

$$\widetilde{G}_{n+1,q^{-1}}^{(\alpha,\beta)}\left(h,1\mid 1-x\right)=(-1)^{n}\,q^{n\alpha+h-1}\widetilde{G}_{n+1,q}^{(\alpha,\beta)}\left(h,1\mid x\right)$$

Assume that $d \in \mathbb{N}$ with $d \equiv 1 \pmod{2}$. Then we have

$$(4.7) \int_{\mathbb{Z}_{p}} [dx + x_{1}]_{q^{\alpha}}^{n} q^{x_{1}(h-1)} d\mu_{-q^{\beta}}(x_{1})$$

$$= \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q^{\beta}}} \sum_{q=0}^{d-1} q^{ha} (-1)^{a} \int_{\mathbb{Z}_{p}} \left[x + \frac{a}{d} + x_{1} \right]_{q^{\alpha d}}^{n} q^{d(h-1)x_{1}} d\mu_{\left(-q^{\beta}\right)^{d}}(x_{1})$$

Thus, from (4.7) we obtain the following theorem,

THEOREM 10. For $h \in \mathbb{Z}$, $d \equiv 1 \pmod{2}$, $\alpha, \beta \in \mathbb{N}$ and $n \in \mathbb{Z}_+$. We get

$$\widetilde{G}_{n+1,q}^{(\alpha,\beta)}\left(h,1\mid dx\right) = \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q^{\beta}}}\sum_{n=0}^{d-1}q^{ha}\left(-1\right)^{a}\widetilde{G}_{n+1,q^{d}}^{(\alpha,\beta)}\left(h,1\mid x+\frac{a}{d}\right).$$

5. Polynomials $\widetilde{G}_{n,q}^{(\alpha,\beta)}(k,k\mid x)$

In (2.1), we know that

(5.1)
$$\frac{\widetilde{G}_{n+k,q}^{(\alpha,\beta)}(h,k\mid x)}{k!\binom{n+k}{k}}$$

$$= \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x+x_1+\cdots+x_k]_{q^{\alpha}}^n q^{\sum_{j=1}^k (h-j)x_j}$$

$$d\mu_{-q^{\beta}}(x_1)\cdots d\mu_{-q^{\beta}}(x_k)$$

As well as we get,

(5.2)
$$\frac{\widetilde{G}_{n+k,q}^{(\alpha,\beta)}(h,k\mid x)}{k!\binom{n+k}{k}} \\
= \left[2\right]_{q^{\beta}}^{k} \left(\frac{1}{1-q^{\alpha}}\right)^{n} \sum_{l=0}^{n} \binom{n}{l} \left(-1\right)^{l} \frac{q^{lx}}{\left(-q^{\alpha l+h-k+\beta};q\right)_{k}}$$

and

$$(5.3) \ q^{h+\beta-1} \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left[x + 1 + x_1 + \cdots + x_k \right]_{q^{\alpha}}^n \times$$

$$q^{\sum_{j=1}^k (h-j)x_j} d\mu_{-q^{\beta}}(x_1) \cdots d\mu_{-q^{\beta}}(x_k)$$

$$= \left(-\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left[x + x_1 + \cdots + x_k \right]_{q^{\alpha}}^n q^{\sum_{j=1}^k (h-j)x_j} d\mu_{-q^{\beta}}(x_1) \cdots d\mu_{-q^{\beta}}(x_k) \right)$$

$$+ \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left[x + x_1 + \cdots + x_k \right]_{q^{\alpha}}^n q^{\sum_{j=2}^k (h-j)x_j} d\mu_{-q^{\beta}}(x_2) \cdots d\mu_{-q^{\beta}}(x_k) \right) .$$

From (5.1) and (5.3), we obtain the following theorem.

THEOREM 11. For $h \in \mathbb{Z}$, $\alpha, k, \beta \in \mathbb{N}$ and $n \in \mathbb{Z}_+$. We get

$$\begin{split} q^{h+\beta-1} \widetilde{G}_{n+k}^{(\alpha,\beta)}\left(h,k\mid x+1\right) + \widetilde{G}_{n+k}^{(\alpha,\beta)}\left(h,k\mid x\right) \\ &= (n+k)\,\widetilde{G}_{n+k-1}^{(\alpha,\beta)}\left(h-1,k-1\mid x\right) \end{split}$$

Assume that $d \in \mathbb{N}$ with $d \equiv 1 \pmod{2}$. Then we obtain

$$\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left[x + \sum_{j=1}^k x_j \right]_{q^{\alpha d}}^n q^{\sum_{j=1}^k (h-j)x_j} d\mu_{-q^{\beta}}(x_1) \cdots d\mu_{-q^{\beta}}(x_k)$$

$$= \frac{[d]_{q^{\alpha}}^n}{[d]_{-q^{\beta}}^n} \sum_{a_1, \dots, a_k=0}^{d-1} q^{h \sum_{j=1}^k a_j - \sum_{j=2}^k (j-1)a_j} (-1)^{\sum_{j=1}^k a_j} \times$$

$$= \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} \left[\frac{x + \sum_{j=1}^{k} a_{j}}{d} + \sum_{j=1}^{k} x_{j} \right]_{q^{\alpha d}}^{n} q^{d \sum_{j=1}^{k} (h-j)x_{j}} d\mu_{\left(-q^{\beta}\right)^{d}}(x_{1}) \cdots d\mu_{\left(-q^{\beta}\right)^{d}}(x_{k})$$

Thus, we obtain the following theorem.

THEOREM 12. For $h \in \mathbb{Z}$, $\alpha, k, \beta \in \mathbb{N}$, $n \in \mathbb{Z}_+$ with $d \equiv 1 \pmod{2}$. We get

$$\begin{split} \widetilde{G}_{n+k,q}^{(\alpha,\beta)}\left(h,k\mid x\right) \\ &= \frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q^{\beta}}^{n}} \sum_{a_{1},\cdots,a_{k}=0}^{d-1} q^{h\sum_{j=1}^{k} a_{j} - \sum_{j=2}^{k} (j-1)a_{j}} (-1)^{\sum_{j=1}^{k} a_{j}} \\ &\times \widetilde{G}_{n+k,q^{d}}^{(\alpha,\beta)}\left(h,k\mid \frac{x+\sum_{j=1}^{k} a_{j}}{d}\right) \end{split}$$

Assume that $\widetilde{G}_{n,q}^{(\alpha,\beta)}\left(k,k\mid x\right)=\widetilde{G}_{n,q}^{(\alpha,\beta)}\left(k\mid x\right).$ Then we obtain

(5.4)
$$\frac{\widetilde{G}_{n+k,q}^{(\alpha,\beta)}(k\mid x)}{k!\binom{n+k}{k}} = \frac{[2]_{q^{\beta}}^{k}}{(1-q^{\alpha})^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \frac{q^{lx}}{(-q^{\alpha l+\beta};q)_{k}}$$

and

(5.5)
$$\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [k - x + x_1 + x_2 + \cdots + x_k]_{q^{-\alpha}}^n \times$$

$$q^{-((k-1)x_1 + \cdots + (k-k)x_k)} d\mu_{-q^{-\beta}} (x_1) \cdots d\mu_{-q^{-\beta}} (x_k)$$

$$= (-1)^n q^{n\alpha + \binom{k}{2}} \frac{[2]_{q^{\beta}}^k}{(1 - q^{\alpha})^n} \sum_{l=0}^n \binom{n}{l} (-1)^l \frac{q^{\alpha lx}}{(-q^{\alpha l + \beta}; q)_k}$$

$$= (-1)^n q^{n\alpha + \binom{k}{2}} \frac{\widetilde{G}_{n+k,q}^{(\alpha,\beta)} (k \mid x)}{k! \binom{n+k}{k}}$$

By (5.5), we get the following theorem.

THEOREM 13. For $h \in \mathbb{Z}$, $\alpha, k, \beta \in \mathbb{N}$ and $n \in \mathbb{Z}_+$. We get

$$\widetilde{G}_{n+k,q^{-1}}^{(\alpha,\beta)}\left(k-x\mid x\right)=\left(-1\right)^{n}q^{n\alpha+\binom{k}{2}}\widetilde{G}_{n+k,q}^{(\alpha,\beta)}\left(k\mid x\right)$$

By simple calculation, we get

$$\sum_{l=0}^{n} (q-1)^{l} \left[\alpha\right]_{q}^{l} \binom{n}{l} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} \left[x_{1} + \cdots + x_{k}\right]_{q^{\alpha}}^{n} q^{\sum_{l=1}^{k} (k-l)x_{l}} d\mu_{-q^{-\beta}} \left(x_{1}\right) \cdots d\mu_{-q^{-\beta}} \left(x_{k}\right)$$

$$= \frac{\left[2\right]_{q^{\beta}}^{k}}{\left(-q^{\alpha l+\beta};q\right)_{k}}$$

and

$$\frac{\widetilde{G}_{n+k,q}^{(\alpha,\beta)}(k\mid x)}{k!\binom{n+k}{k}}$$

$$= \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} [x + x_1 + \cdots + x_k]_{q^{\alpha}}^n q^{(k-1)x_1 + \cdots + (k-k)x_k}$$

$$d\mu_{-q^{\beta}}(x_1) \cdots d\mu_{-q^{\beta}}(x_k)$$

$$= \sum_{l=0}^n \binom{n}{l} q^{\alpha l x} [x]_{q^{\alpha}}^{n-l} \frac{\widetilde{G}_{l+k,q}^{(\alpha,\beta)}(k\mid 0)}{k!\binom{l+k}{k}}.$$

References

- [1] S. Araci, D. Erdal, and D-J. Kang, Some New Properties on the q-Genocchi numbers and Polynomials associated with q-Bernstein polynomials, Honam Mathematical J. 33 (2011), no. 2, 261-270.
- [2] S. Araci, and M. Acikgoz, Some identities concerning the (h, q)-Genocchi numbers and polynomials via the p-adic q-integral on \mathbb{Z}_p and q-Bernstein polynomials, (Submitted)
- [3] S. Araci, J. J. Seo, and D. Erdal, New Construction weighted (h,q)Genocchi numbers and Polynomials Related to Zeta Type Functions, Discrete Dynamics in Nature and Society 2011, Article ID 487490, 7 pages,
 doi:10.1155/2011/487490.
- [4] S. Araci, D. Erdal, and J. J. Seo, A study on the fermionic p-adic q-integral representation on \mathbb{Z}_p Associated with weighted q-Bernstein and q-Genocchi polynomials, Abstract and Applied Analysis(in press).
- [5] S. H. Rim, J. H. Jin, E. J. Moon, and S. J. Lee, Some Identities on the q-Genocchi polynomials of Higher-Order and q-Stirling Numbers by the Fermionic p-adic q-integral, International Journal of Mathematics and Mathematical Sciences 2010, Article ID 860280, 14 pages, doi:10.1155/2010/860280.
- [6] A. Bayad, and T. Kim, Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. 20 (2010), no. 2, 247-253

- [7] H. Jolany, and H. Sahrifi, Some Results for the Apostol-Genocchi polynomials of Higher Order, Accepted in Bulletin of the Malaysian Mathematical Sciences Society, arXiv:1104.1501v1 [math. NT].
- [8] K. W. Hwang, D. V. Dolgy, S. H. Lee, and T. Kim, On the Higher-Order q-Euler numbers and polynomials with weight α, Discrete Dynamics in Nature and Society, 2011, Article ID 354329, 12 pages, doi:10.1155/2011/354329.
- [9] S. H. Rim, and J. H. Jong, A note on the modified q-Euler numbers and polynomials with weight α, International Mathematical Forum 6 (2011), no. 65, 3245-3250.
- [10] H. Y. Lee, N. S. Jung, and C. S. Ryoo, Some identities of the twisted q-Genocchi numbers and polynomials with weight α and q-Bernstein polynomials with weight α , Abstract and Applied Analysis(in press)
- [11] L. C. Jang, A note on some properties of the weighted q-Genocchi numbers and polynomials, Journal of Applied Mathematics(in press).
- [12] T. Kim, A note on q-Bernstein polynomials, Russ. J. Math. Phys. 18 (2011), 41-50.
- [13] T. Kim, B. Lee, J. Choi, and Y. H. Kim, A new approach of q-Euler numbers and polynomials, Proc. Jangjeon Math. Soc. 14 (2011), no. 1, 7-14.
- [14] T. Kim, and J. Choi, On The q-Bernoulli numbers and polynomials with weight α, Abstract and Applied Analysis(in press).
- [15] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007), 1458-1465.
- [16] T. Kim, On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (2008), 481-486. arXiv:0801.0978v1 [math.NT]
- [17] T. Kim, On the weighted q-Bernoulli numbers and polynomials, Advanced Studies in Contemporary Mathematics **21** (2011), no. 2, 207-215, http://arxiv.org/abs/1011.5305.
- [18] T. Kim, q-Volkenborn integration, Russ. J. Math. phys. 9 (2002), 288-299.
- [19] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), no. 1, 15-27.
- [20] T. Kim, New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys. 17 (2010), no. 2, 218-225.
- [21] T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_p , Russ. J. Math. Phys. **16** (2009), no. 4,484-491.
- [22] C. S. Ryoo, A note on the weighted q-Euler numbers and polynomials, Advan. Stud. Contemp. Math. 21 (2011), 47-54.

*

Department of Applied Mathematics Pukyong National University Busan 608-737, Republic of Korea *E-mail*: seo2011@pknu.ac.kr

**

Faculty of Science and Arts, Department of Mathematics University of Gaziantep 27310 Gaziantep, Turkey

 $E ext{-}mail:$ mtsrkn@hotmail.com