JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **24**, No. 4, December 2011

LYAPUNOV FUNCTIONS FOR NONLINEAR DIFFERENCE EQUATIONS

SUNG KYU CHOI*, YINHUA CUI**, AND NAMJIP KOO***

ABSTRACT. In this paper we study *h*-stability of the solutions of nonlinear difference system via the notion of n_{∞} -summable similarity between its variational systems. Also, we show that two concepts of *h*-stability and *h*-stability in variation for nonlinear difference systems are equivalent. Furthermore, we characterize *h*-stability for nonlinear difference systems by using Lyapunov functions.

1. Introduction

Pinto [17] introduced the notion of h-stability for differential equations with the intention of obtaining results about for weakly stable differential systems under some perturbations. Also, Medina and Pinto [15] applied h-stability to obtain a uniform treatment for the various stability notions in difference systems and extended the study of exponential stability to a variety of reasonable systems called h-systems.

Choi et al. [2] investigated h-stability for the nonlinear differential systems using the notions of Lyapunov functions and t_{∞} -similarity introduced by Conti [10]. Trench [18] introduced summable similarity as a discrete analog of Conti's definition of t_{∞} -similarity and investigated the various stabilities of linear difference systems by using summable similarity. Choi and Koo [3] studied the variational stability for nonlinear difference systems by means of n_{∞} -similarity. Also, see [4, 5, 6] for the asymptotic property and h-stability of difference systems via discrete similarities and comparison principle.

Received October 15, 2011; Accepted November 18, 2011.

²⁰¹⁰ Mathematics Subject Classification: Primary 39A10, 39A12.

Key words and phrases: n_{∞} -summable similarity, nonlinear difference systems, *h*-stability, variational systems, Lyapunov functions.

Correspondence should be addressed to Namjip Koo, njkoo@cnu.ac.kr.

This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(NRF-2010-0008835).

In this paper we characterize *h*-stability of the solutions of the nonlinear difference systems by using the notions of n_{∞} -summable similarity between variational systems and Lyapunov functions.

2. Main results

Let $\mathbb{N}(n_0) = \{n_0, n_0 + 1, \dots, n_0 + k, \dots\}$, where n_0 is a nonnegative integer and \mathbb{R}^s the s-dimensional real Euclidean space. We consider the nonlinear difference system

$$\Delta x(n) = f(n, x(n)), \ x(n_0) = x_0, \tag{2.1}$$

where $f: \mathbb{N}(n_0) \times \mathbb{R}^s \to \mathbb{R}^s$, f(n,0) = 0, and Δ is the forward difference operator with unit spacing; i.e., $\Delta x(n) = x(n+1) - x(n)$. We assume that $f_x = \frac{\partial f}{\partial x}$ exists and is continuous on $\mathbb{N}(n_0) \times \mathbb{R}^s$. Let $x(n) = x(n, n_0, x_0)$ be the unique solution of (2.1) satisfying the initial condition $x(n_0, n_0, x_0) = x_0$. Also, we consider its associated variational systems

$$\Delta v(n) = f_x(n,0)v(n) \tag{2.2}$$

and

$$\Delta z(n) = f_x(n, x(n, n_0, x_0))z(n),$$
(2.3)

where $I + f_x(n, x(n))$ is invertible on $\mathbb{N}(n_0) \times \mathbb{R}^s$ and I denotes the identity matrix.

To establish our main results we will use the following lemma:

LEMMA 2.1. [16, Lemma 2.1] Assume that $x(n, n_0, x_0)$ and $x(n, n_0, y_0)$ are the solutions of system (2.1) through (n_0, x_0) and (n_0, y_0) , respectively, which exist for $n \ge n_0$ and such that x_0 and y_0 belong to a convex subset D of \mathbb{R}^s . Then for $n \ge n_0$,

$$x(n, n_0, x_0) - x(n, n_0, y_0) = \int_0^1 \Phi(n, n_0, x_0 + \tau(y_0 - x_0)) d\tau \cdot (y_0 - x_0).$$

To prove the discrete version of variation of parameters formula, we need the following result on differentiability of solutions with respect to initial values.

LEMMA 2.2. Assume that $f : \mathbb{N}(n_0) \times \mathbb{R}^s \to \mathbb{R}^s$ possesses partial derivatives on $\mathbb{N}(n_0) \times \mathbb{R}^s$ and $f_x(t, x(t, t_0, x_0))$ is regressive on $\mathbb{N}(n_0)$. Let $x(n) = x(n, n_0, x_0)$ be the solution of (2.1), which exists for $n \ge n_0$, and let

$$H(n, n_0, x_0) = \frac{\partial f(n, x(n, n_0, x_0))}{\partial x}.$$
(2.4)

Then

$$\Phi(n, n_0, x_0) = \frac{\partial x(n, n_0, x_0)}{\partial x_0}$$
(2.5)

exists and is the solution of

$$\Delta\Phi(n, n_0, x_0) = H(n, n_0, x_0)\Phi(n, n_0, x_0), \ n \ge n_0, \qquad (2.6)$$

$$\Phi(n_0, n_0, x_0) = I. \tag{2.7}$$

Proof. By differentiating (2.1) with respect to x_0 we have

$$\frac{\partial \Delta x(n, n_0, x_0)}{\partial x_0} = \frac{\partial x(n+1, n_0, x_0)}{\partial x_0} - \frac{\partial x(n, n_0, x_0)}{\partial x_0}$$
$$= \frac{\partial f(n, x(n))}{\partial x(n)} \frac{\partial x(n, n_0, x_0)}{\partial x_0}.$$

It follows from the definition of Φ that Φ satisfies (2.6). This completes the proof.

It follows from Lemma 2.2 that the fundamental matrix solution $\Phi(n, n_0, 0)$ of (2.2) is given by

$$\Phi(n, n_0, 0) = \frac{\partial x(n, n_0, 0)}{\partial x_0}$$

and the fundamental matrix solution $\Phi(n, n_0, x_0)$ of (2.3) is given by

$$\Phi(n, n_0, x_0) = \frac{\partial x(n, n_0, x_0)}{\partial x_0}$$

or equivalently

$$x(n, n_0, x_0) = \left[\int_0^1 \Phi(n, n_0, sx_0) ds\right] x_0.$$
(2.8)

Consider the quasilinear difference system

$$\Delta y(n) = A(n)y(n) + f(n, y(n)), \ y(n_0) = y_0, \tag{2.9}$$

where I + A(n) is an $s \times s$ nonsingular matrix and $f : \mathbb{N}(n_0) \times \mathbb{R}^s \to \mathbb{R}^s$.

We obtain the following result which is a slight modification of variation of constants formula in [11, Theorem 4.6.1].

THEOREM 2.3. The solution $y(n, n_0, y_0)$ of (2.9) satisfies the equation

$$y(n) = \Phi(n, n_0)y_0 + \sum_{j=n_0}^{n-1} \Phi(n, j+1)f(j, y(j)), \ n \ge n_0, \qquad (2.10)$$

where $\Phi(n, n_0)$ satisfies the matrix equation

$$\Delta\Phi(n, n_0) = A(n)\Phi(n, n_0). \tag{2.11}$$

Proof. Let $y(n, n_0, y_0) = \Phi(n, n_0)c(n)$ with $c(n_0) = y_0$. Substituting in (2.9), we obtain

$$\begin{aligned} \Delta y(n) &= \Phi(n+1,n_0)c(n+1) - \Phi(n,n_0)c(n) \\ &= A(n)\Phi(n,n_0)c(n) + f(n,y(n)) \\ &= \Delta\Phi(n,n_0)c(n) + f(n,y(n)) \\ &= \Phi(n+1,n_0)c(n) - \Phi(n,n_0)c(n) + f(n,y(n)), \end{aligned}$$

since $\Phi(n, n_0)$ is the solution of (2.11). Therefore

$$\Delta c(n) = \Phi^{-1}(n+1, n_0) f(n, y(n)),$$

and

$$c(n) = y_0 + \sum_{j=n_0}^{n-1} \Phi^{-1}(j+1,n_0)f(j,y(j)).$$

It follows that

$$y(n) = \Phi(n, n_0)y_0 + \sum_{j=n_0}^{n-1} \Phi(n, j+1)f(j, y(j)), \ n \ge n_0,$$

since $\Phi(n, n_0)\Phi^{-1}(j+1, n_0) = \Phi(n, j+1)$. This completes the proof. \Box

The symbol $|\cdot|$ will be used to denote any convenient vector norm in \mathbb{R}^s . Let $V : N(n_0) \times \mathbb{R}^s \to \mathbb{R}_+$ be a function with V(n,0) = 0 for all $n \ge n_0$. We denote the total difference of the function V along the solutions x of (2.1) by

$$\Delta V_{(2,1)}(n,x) = V(n+1,x(n+1,n,x)) - V(n,x(n,n,x)).$$

Conti [10] defined two $m \times m$ matrix functions A and B on \mathbb{R}_+ to be t_{∞} -similar if there is an $m \times m$ matrix function S defined on \mathbb{R}_+ such that S'(t) is continuous, S(t) and $S^{-1}(t)$ are bounded on \mathbb{R}_+ , and

$$\int_0^\infty |S' + SB - AS| dt < \infty.$$

Now, we introduce the notion of n_{∞} -summable similarity which is the corresponding t_{∞} -similarity for the discrete case.

Let \mathfrak{M} denote the set of all $s \times s$ invertible matrices defined on $\mathbb{N}(n_0)$ and \mathfrak{S} be the subset of \mathfrak{M} consisting of those nonsingular bounded matrices S(n) such that $S^{-1}(n)$ is also bounded.

DEFINITION 2.4. [6, Definition 2.5] A matrix function $A \in \mathfrak{M}$ is n_{∞} summably similar to a matrix function $B \in \mathfrak{M}$ if there exists an $s \times s$ matrix F(n) absolutely summable over $\mathbb{N}(n_0)$, that is,

$$\sum_{l=n_0}^{\infty} |F(l)| < \infty$$

such that

$$\Delta S(n) + S(n+1)B(n) - A(n)S(n) = F(n)$$

$$\approx$$
(2.12)

for some $S \in \mathfrak{S}$.

For the example of n_{∞} -summable similarity, see [6].

REMARK 2.5. We can easily show that the n_{∞} -summable similarity is an equivalence relation by the similar manner of Trench in [18]. Also, if A and B are n_{∞} -summably similar with F(n) = 0, then we say that they are kinematically similar.

We recall some notions of h-stability for nonlinear difference systems in [13, 15] that are needed in the sequel.

DEFINITION 2.6. System (2.1) is called an *h*-system if there exist a positive function $h : \mathbb{N}(n_0) \to \mathbb{R}$ and a constant $c \geq 1$ such that

$$|x(n, n_0, x_0)| \le c |x_0| h(n) h(n_0)^{-1}, n \ge n_0$$

for $|x_0|$ small enough (here $h(n)^{-1} = \frac{1}{h(n)}$).

Moreover, system (2.1) is said to be

(hS) h-stable if h is a bounded function in the definition of h-system, (GhS) globally h-stable if system (2.1) is hS for every $x_0 \in D$, where $D \subset \mathbb{R}^s$ is a region which includes the origin,

(hSV) h-stable in variation if system (2.3) is hS,

(GhSV) globally h-stable in variation if system (2.3) is GhS.

The various notions about *h*-stability given by Definition 2.6 include several types of known stability properties such as uniform stability, uniform Lipschitz stability and exponential asymptotic stability. See [3, 12, 14, 15] for stability of nonlinear difference systems.

The next diagram illustrates the possible known implications among various types of stability notions for nonlinear difference systems [15].

Here " \hookrightarrow " means an inclusion.

For the linear difference systems, Medina and Pinto [15] showed that

$$GhSV \iff GhS \iff hS \iff hSV.$$

Also, the associated variational system inherits the property of hS from the original nonlinear system. That is, the zero solution v = 0 of (2.2) is hS when the zero solution x = 0 of (2.1) is hS in [15, Theorem 2].

Our purpose is to characterize the global stability in variation via n_{∞} -summable similarity and Lyapunov functions. To do this, we need the following lemmas.

LEMMA 2.7. [15] The linear difference system

$$\Delta y(n) = A(n)y(n), \ y(n_0) = y_0, \tag{2.13}$$

where A(n) is an $s \times s$ matrix, is an h-system if and only if there exist a constant $c \ge 1$ and a positive function h defined on $\mathbb{N}(n_0)$ such that for every $x_0 \in \mathbb{R}^s$,

$$|\Phi(n, n_0, x_0)| \le ch(n)h(n_0)^{-1}, n \ge n_0,$$

where Φ is a fundamental matrix solution of (2.13).

LEMMA 2.8. [9, Corollary 3.10] If two matrix functions A and B in the set \mathfrak{M} are n_{∞} - summably similar, then for $n \geq n_0$, we have

$$\Phi_B(n, n_0) = S^{-1}(n) [\Phi_A(n, n_0) S(n_0) + \sum_{s=n_0}^{n-1} \Phi_A(n, s+1) F(s) \Phi_B(s, n_0)],$$

where $\Phi_A(n, n_0)$ and $\Phi_B(n, n_0)$ are fundamental matrix solutions of the system (2.13) with the coefficient matrix functions A(n) and B(n), respectively.

Medina and Pinto showed that hSV implies hS [15, Theorem 3]. Also, they proved the converse when the condition

$$\sum_{l=n_0}^{\infty} \frac{h(l)}{h(l+1)} |f_x(l, n_0, x_0) - f_x(l, 0)| < \infty, \ n_0 \ge 0$$
(2.14)

for $|x_0| \leq \delta$, holds [15, Theorem 14].

In order to establish our main results, we will introduce the following condition:

(H) $f_x(n,0)$ and $f_x(n, x(n, n_0, x_0))$ are n_∞ -summably similar for $n \ge n_0 \ge 0$ and $|x_0| \le \delta$ for some constant $\delta > 0$ and $\sum_{n=n_0}^{\infty} \frac{h(n)}{h(n+1)} |F(n)| < \infty$ with the positive function h(n) defined on $\mathbb{N}(n_0)$.

In the following theorem, we can show that hS implies hSV by assuming (H), instead of the above condition (2.14).

LEMMA 2.9. [8, Theorem 3.4] Assume that condition (H) is satisfied. Then the variational system (2.2) is also an h-system if and only if the variational system (2.3) is an h-system.

Proof. Suppose that v = 0 of (2.2) is an *h*-system. It follows from Lemma 2.7 that there exist a constant $c_1 \ge 1$ and a positive function *h* defined on $\mathbb{N}(n_0)$ such that for every $x_0 \in \mathbb{R}^s$,

$$|\Phi(n, n_0, 0)| \le c_1 h(n) h(n_0)^{-1}, \ n \ge n_0 \ge 0, \tag{2.15}$$

where $\Phi(n, n_0, 0)$ is a fundamental matrix solution of (2.2).

Since $f_x(n,0)$ and $f_x(n, x(n, n_0, x_0))$ are n_∞ -summably similar, from Lemma 2.8, we have

$$\Phi(n, n_0, x_0) = S^{-1}(n) [\Phi(n, n_0, 0) S(n_0) + \sum_{s=n_0}^{n-1} \Phi(n, s+1, 0) F(s) \Phi(s, n_0, x_0)], n \ge n_0,$$

where $\Phi(n, n_0, x_0)$ denotes a fundamental matrix solution of (2.3).

In view of (2.15) and the boundedness of S(n) and $S^{-1}(n)$, there is a positive constant c_2 such that

$$\begin{aligned} |\Phi(n, n_0, x_0)| &\leq c_1 c_2 h(n) h(n_0)^{-1} \\ &+ c_1 c_2 \sum_{l=n_0}^{n-1} \frac{h(n)}{h(l+1)} |F(l)| |\Phi(l, n_0, x_0)| \end{aligned}$$

It follows that

$$\frac{|\Phi(n, n_0, x_0)|}{h(n)} \le \frac{c_1 c_2}{h(n_0)} + c_1 c_2 \sum_{l=n_0}^{n-1} \frac{h(l)}{h(l+1)} |F(l)| \frac{|\Phi(l, n_0, x_0)|}{h(l)}$$

Applying the discrete Bellman's inequality [1], we have

$$\begin{aligned} |\Phi(n, n_0, x_0)| &\leq dh(n)h(n_0)^{-1} \prod_{l=n_0}^{n-1} \left(1 + \frac{h(l)}{h(l+1)} |F(l)| \right) \\ &\leq dh(n)h(n_0)^{-1} \exp\left(\sum_{l=n_0}^{n-1} \frac{h(l)}{h(l+1)} |F(l)| \right) \\ &\leq ch(n)h(n_0)^{-1}, \end{aligned}$$
where $c = d \exp\left(\sum_{l=n_0}^{\infty} \frac{h(l)}{h(l+1)} |F(l)| \right)$ and $d = c_1 c_2.$

Sung Kyu Choi, Yinhua Cui, and Namjip Koo

Therefore we have

 $|\Phi(n, n_0, x_0)| \le ch(n)h^{-1}(n_0), \quad n \ge n_0 \ge 0,$

for some positive constant $c \ge 1$. Hence system (2.3) is an *h*-system by Lemma 2.7.

The converse holds by the similar method. This completes the proof.

For nonlinear difference system (2.1), we can show that

$$GhSV \Leftrightarrow GhS, hS \Leftrightarrow hSV$$

by using the concept of n_{∞} -summable similarity.

We study the relation between h-stability of the zero solution of system (2.1) and the zero solutions of its variational systems (2.2) and (2.3) by assuming condition (H) is satisfied.

THEOREM 2.10. [15, Theorem 2] Suppose that condition (H) is satisfied. If x = 0 of (2.1) is h-stable, then v = 0 of (2.2) is h-stable.

Note that the converse of Theorem 2.10 does not hold in general. We give the following example.

EXAMPLE 2.11. [6, Example 5.2] We consider the nonlinear difference equation

$$\Delta x(n) = f(n, x(n)) = -\frac{1}{2}x(n) + x^2(n), \ x(n_0) = x_0 = 1$$
 (2.16)

and its variational difference equation

$$\Delta v(n) = f_x(n,0)v(n) = -\frac{1}{2}v(n), \ v(n_0) = v_0 \neq 0, \tag{2.17}$$

where $f_x(n,x) = -\frac{1}{2} + 2x$. Then v = 0 of (2.17) is h-stable, but x = 0 of (2.16) is not h-stable.

Proof. Since the fundamental solution is $\phi(n) = (\frac{1}{2})^{n-n_0}v_0$ for each $n \ge n_0$, (2.17) is *h*-stable with a positive bounded function $h(n) = \frac{1}{2^n}$. But (2.16) is not *h*-stable because there exists a unbounded solution x(n, 0, 1) of (2.16) satisfying

$$x(n, 0, 1) = x(n) > n, \ n = 1, 2, \cdots$$

We obtain the following result from (2.8).

THEOREM 2.12. If z = 0 of (2.3) is h-stable, then x = 0 of (2.1) is h-stable.

We can obtain the following result by using Lemma 2.9 and Theorem 2.10.

THEOREM 2.13. Assume that x = 0 of (2.1) is h-stable. If condition (H) holds, then z = 0 of (2.1) is h-stable in variation.

REMARK 2.14. For the nonlinear difference system (2.1), we show that two concepts of h-stability and h-stability in variation are equivalent under the condition that two variational systems (2.2) and (2.3) are n_{∞} summably similar.

Choi et al. investigated Massera type converse theorems for nonlinear difference system x(n+1) = f(n, x(n)) via n_{∞} -similarity in [3, Theorem 5] and [4, Theorem 2.1]. Furthermore, they characterized h-stability in variation for nonlinear difference system by using the notion of n_{∞} summable similarity in [6].

We obtain the following result that characterize h-stability for nonlinear difference system (2.1) via the notions of Lyapunov functions and n_{∞} -summable similarity.

THEOREM 2.15. Assume that condition (H) is satisfied. Then (2.1) is GhS if and only if there exists a function V(n, x) defined on $\mathbb{N}(n_0) \times \mathbb{R}^s$ such that the following properties hold:

- (i) V(n,x) is defined on $\mathbb{N}(n_0) \times \mathbb{R}^s$ and continuous with respect to the second argument;
- (ii) $|x| \leq V(n,x)| \leq c|x|$ for $(n,x) \in \mathbb{N}(n_0) \times \mathbb{R}^s$;
- (iii) $|V(n, x_1) V(n, x_2)| \le c|x_1 x_2|$ for $n \in \mathbb{N}(n_0)$ and $x_1, x_2 \in \mathbb{R}^s$; (iv) $\Delta V(n, x) \le \frac{\Delta h(n)}{h(n)} V(n, x)$ for $(n, x) \in \mathbb{N}(n_0) \times \mathbb{R}^s$.

Proof. Necessity: Suppose that (2.1) is GhS. Then (2.1) is GhSV by Theorem 2.13; i.e., there exist a constant $c \ge 1$ and a positive bounded function h defined on $\mathbb{N}(n_0)$ such that

$$|\Phi(n, n_0, x_0)| \le ch(n)h(n_0)^{-1}, \ n \ge n_0,$$

where Φ is a fundamental matrix solution of (2.3). Define the function $V: \mathbb{N}(n_0) \times \mathbb{R}^s \to \mathbb{R}_+$ by

$$V(n,x) = \sup_{\tau \in \mathbb{N}(0)} |x(n+\tau,n,x)| h(n+\tau)^{-1} h(n).$$

Then, the rest of proof can be proved in a similar manner as that of Theorem 2.1 of [4], so we omit the detail.

Sung Kyu Choi, Yinhua Cui, and Namjip Koo

References

- R. P. Agarwal, Difference Equations and Inequalities, 2nd ed., Marcel Dekker, New York, 2000.
- [2] S. K. Choi, N. J. Koo, and H. S. Ryu, h-stability of differential systems via t_∞-similarity, Bull. Korean Math. Soc. 34 (1997), 371–383.
- [3] S. K. Choi and N. J. Koo, Variationally stable difference systems by n_{∞} -similarity, J. Math. Anal. Appl. **249** (2000), 553–568.
- [4] S. K. Choi, N. J. Koo, and Y. H. Goo, Variationally stable difference systems, J. Math. Anal. Appl. 256 (2001), 587–605.
- [5] S. K. Choi, N. J. Koo, and S. M. Song, *h*-stability for nonlinear perturbed difference systems, *Bull. Korean Math. Soc.* **41** (2004), 435-450.
- [6] S. K. Choi, Y. H. Goo, and N. J. Koo, Variationally asymptotically stable difference systems, Adv. Difference Equ. 2007, Article ID 35378, 21 pages.
- [7] S. K. Choi, W. Kang, N. Koo, and H. M. Lee, On *h*-stability of linear difference systems via n_∞-quasisimilarity, J. Chungcheong Math. Soc. 21 (2008), no. 2, 189-196.
- [8] S. K. Choi, W. Kang, and N. Koo, On *h*-stability of linear dynamic equations on time scales via u_{∞} -similarity, *J. Chungcheong Math. Soc.* **21** (2008), no. 3, 395-401.
- [9] S. K. Choi and N. Koo, On the stability of linear dynamic systems on time scales, J. Difference Equ. Appl. 15 (2009), no. 2, 167-183.
- [10] R. Conti, Sulla t_{∞} -similitudine tra matrici e la stabilità dei sistemi differenziali lineari, Atti. Acc. Naz. Lincei, Rend. Cl. Fis. Mat. Nat. 49 (1955), 247–250.
- [11] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, 2nd ed., Marcel Dekker, New York, 2002.
- [12] R. Medina, Asymptotic behavior of nonlinear difference systems, J. Math. Anal. Appl. 219 (1998), 294-311.
- [13] R. Medina, Stability results for nonlinear difference equations, Nonlinear Stud.
 6 (1999), 73-83.
- [14] R. Medina, Stability of nonlinear difference systems, Dynam. Systems Appl. 9 (2000), 1-14.
- [15] R. Medina and M. Pinto, Stability of nonlinear difference equations, Proc. Dynamic Systems and Appl. 2 (1996), 397-404.
- [16] R. Medina and M. Pinto, Variationally stable difference equations, *Nonlinear Anal.* **30** (1997), no. 2, 1141-1152.
- [17] M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), 161-175.
- [18] W. F. Trench, Linear asymptotic equilibrium and uniform, exponential, and strict stability of linear difference systems, *Comput. Math. Appl.* **36** (1998), no.(10-12), 261–267.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: sgchoi@cnu.ac.kr

**

Department of Applied Mathematics Paichai University Daejeon 302-735, Republic of Korea *E-mail*: yinhua_j@hotmail.com

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: njkoo@cnu.ac.kr