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LYAPUNOV FUNCTIONS FOR NONLINEAR
DIFFERENCE EQUATIONS

SunGc Kyu CHor*, YINHUA Cur**, AND NamJip Koo***

ABSTRACT. In this paper we study h-stability of the solutions of
nonlinear difference system via the notion of n..-summable similar-
ity between its variational systems. Also, we show that two concepts
of h-stability and h-stability in variation for nonlinear difference
systems are equivalent. Furthermore, we characterize h-stability
for nonlinear difference systems by using Lyapunov functions.

1. Introduction

Pinto [17] introduced the notion of h-stability for differential equa-
tions with the intention of obtaining results about for weakly stable
differential systems under some perturbations. Also, Medina and Pinto
[15] applied h-stability to obtain a uniform treatment for the various
stability notions in difference systems and extended the study of expo-
nential stability to a variety of reasonable systems called h-systems.

Choi et al. [2] investigated h-stability for the nonlinear differential
systems using the notions of Lyapunov functions and t..-similarity in-
troduced by Conti [10]. Trench [18] introduced summable similarity as a
discrete analog of Conti’s definition of ¢o,-similarity and investigated the
various stabilities of linear difference systems by using summable simi-
larity. Choi and Koo [3] studied the variational stability for nonlinear
difference systems by means of n.o-similarity. Also, see [4, 5, 6] for the
asymptotic property and h-stability of difference systems via discrete
similarities and comparison principle.
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In this paper we characterize h-stability of the solutions of the nonlin-
ear difference systems by using the notions of ns.-summable similarity
between variational systems and Lyapunov functions.

2. Main results

Let N(ng) = {ng,no +1,--- ,n9 + k,--- }, where ng is a nonnegative
integer and R?® the s-dimensional real Euclidean space. We consider the
nonlinear difference system

Ax(n) = f(n,z(n)), z(ng) = xo, (2.1)
where f: N(ng) x R®* — R®, f(n,0) =0, and A is the forward difference
operator with unit spacing; i.e., Az(n) = z(n + 1) — z(n). We assume
that f, = % exists and is continuous on N(ng) x RS. Let z(n) =
x(n,ng, xo) be the unique solution of (2.1) satisfying the initial condition
x(ng, ng, z9) = zo. Also, we consider its associated variational systems

Av(n) = fz(n,0)v(n) (2.2)

and
Az(n) = fz(n,z(n,no, x0))z(n), (2.3)
where I + fi(n,z(n)) is invertible on N(ng) x R® and I denotes the

identity matrix.
To establish our main results we will use the following lemma:

LEMMA 2.1. [16, Lemma 2.1] Assume that x(n, ng, xo) and x(n, ng, yo)
are the solutions of system (2.1) through (ng,zo) and (ng,yo), respec-
tively, which exist for n > ng and such that xy and yy belong to a convex
subset D of R®. Then for n > ny,

1
(0, 20) — 2(n, no, yo) = / B(n, no, 20 + (o — 0))dr - (o — 20).
0

To prove the discrete version of variation of parameters formula, we
need the following result on differentiability of solutions with respect to
initial values.

LEMMA 2.2. Assume that f : N(ng) x R® — R® possesses partial
derivatives on N(ng) x R® and f,(t,x(t,to,x0)) is regressive on N(ng).
Let z(n) = x(n,ng, xo) be the solution of (2.1), which exists for n > ny,
and let

df(n,z(n,no, o)) )

H(n7n07$0) = 856

(2.4)
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Then
0x(n,ng, xo)
®(n, ng, 20) = 2010, 70) 2.5
(n, no, 7o) e (2.5)
exists and is the solution of
A®P(n,ng,xg) = H(n,ng,x9)®(n,no,x0), n > no, (2.6)
®(no,no,z0) = 1. (2.7)
Proof. By differentiating (2.1) with respect to xy we have
OAz(n,ng,z9) _  Oz(n+1,ng,x0) 9dz(n,no,zo)
(91'0 - 8900 8.%'0
_ 9f(n,x(n)) 0x(n,no, xo)
N oz (n) dxo '
It follows from the definition of ® that ® satisfies (2.6). This completes
the proof. ]

It follows from Lemma 2.2 that the fundamental matrix solution
®(n,ng,0) of (2.2) is given by

0x(n,ng,0)
8330

and the fundamental matrix solution ®(n,ng,xo) of (2.3) is given by

®(n,np,0) =

®(n,ng, zo) = 636(”8’2(?’%)

or equivalently

1
z(n,ng, xo) = [/ d(n, no,swo)ds] x0. (2.8)
0
Consider the quasilinear difference system

Ay(n) = A(n)y(n) + f(n,y(n)), y(no) = vo, (2.9)

where I + A(n) is an s X s nonsingular matrix and f : N(ng) x R® — RR*.
We obtain the following result which is a slight modification of vari-
ation of constants formula in [11, Theorem 4.6.1].

THEOREM 2.3. The solution y(n, ng, yo) of (2.9) satisfies the equation

n—1
y(n) = q)(n7n0)y0 + Z q)(naj + 1)f(]7y(]))7 n 2> ng, (210)

Jj=no
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where ®(n,ng) satisfies the matrix equation
A®(n,ng) = A(n)®(n,ng). (2.11)
Proof. Let y(n,no,yo) = ®(n,np)c(n) with ¢(ng) = yo. Substituting
n (2.9), we obtain
Ay(n) = ®(n+1,n9)c(n+1) — ®(n,ng)c(n)
= A(n)®(n,no)c(n) + f(n,y(n))
= A®(n,no)e(n) + f(n,y(n))
= ®(n+ 1Lno)c(n) — ®(n,no)c(n) + f(n,y(n)),
since ®(n, ng) is the solution of (2.11). Therefore
Ac(n) = @ (n -+ 1, m0) f(n, y(n),

and

=0+ Z (G + 1,m0) f (G, v(5)).

J=no
It follows that
y() nn0y0+z n]"‘l (J)))nzn()v
Jj=no

since ®(n,ng)®1(j+1,n9) = ®(n,j+1). This completes the proof. [

The symbol | - | will be used to denote any convenient vector norm
in R*. Let V : N(ng) x R®* — R be a function with V(n,0) = 0 for
all n > ng. We denote the total difference of the function V' along the
solutions z of (2.1) by

A‘/(Zl)(n)x) = V(nJr 1,33(7”L+ 13”733))
— V(n,z(n,n,x)).
Conti [10] defined two m x m matrix functions A and B on R} to be

too-similar if there is an m X m matrix function .S defined on Ry such
that S’(t) is continuous, S(¢) and S~1(¢) are bounded on R, and

/ |S" + SB — AS|dt < .
0

Now, we introduce the notion of n,.-summable similarity which is
the corresponding t,.-similarity for the discrete case.

Let 9t denote the set of all s x s invertible matrices defined on N(ng)
and & be the subset of 9 consisting of those nonsingular bounded ma-
trices S(n) such that S~1(n) is also bounded.
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DEFINITION 2.4. [6, Definition 2.5] A matrix function A € M is neo-
summably similar to a matrix function B € 9 if there exists an s X s
matrix F'(n) absolutely summable over N(ngp), that is,

> IF(D)] < o0
l=ng
such that
AS(n) + S(n+1)B(n) — A(n)S(n) = F(n) (2.12)
for some S € 6.

For the example of ns-summable similarity, see [6].

REMARK 2.5. We can easily show that the ne.-summable similarity
is an equivalence relation by the similar manner of Trench in [18]. Also,
if A and B are noo-summably similar with F(n) = 0, then we say that
they are kinematically similar.

We recall some notions of A-stability for nonlinear difference systems
in [13, 15] that are needed in the sequel.

DEFINITION 2.6. System (2.1) is called an h-system if there exist a
positive function h : N(ng) — R and a constant ¢ > 1 such that

(12,10, x0)| < clo|A(n)h(n0) ™", 1= ng

for |zg| small enough (here h(n)~! = ﬁ)

Moreover, system (2.1) is said to be

(hS) h-stable if h is a bounded function in the definition of h-system,

(GhS) globally h-stable if system (2.1) is hS for every xy € D, where
D C R® is a region which includes the origin,

(hSV) h-stable in variation if system (2.3) is hS,

(GhSV) globally h-stable in variation if system (2.3) is GhS.

The various notions about h-stability given by Definition 2.6 include
several types of known stability properties such as uniform stability,
uniform Lipschitz stability and exponential asymptotic stability. See
[3, 12, 14, 15] for stability of nonlinear difference systems.

The next diagram illustrates the possible known implications among
various types of stability notions for nonlinear difference systems [15].

GhSV —— hSV — FASV —— ULSV

| Lol |

GhS — hS —< FAS —— ULS Us S
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Here ”<—” means an inclusion.
For the linear difference systems, Medina and Pinto [15] showed that

GhSV <= GhS <= hS <= hSV.

Also, the associated variational system inherits the property of AS from
the original nonlinear system. That is, the zero solution v = 0 of (2.2)
is hS when the zero solution x = 0 of (2.1) is AS in [15, Theorem 2].

Our purpose is to characterize the global stability in variation via
Neo-summable similarity and Lyapunov functions. To do this, we need
the following lemmas.

LEMMA 2.7. [15] The linear difference system
Ay(n) = A(n)y(n), y(no) = yo, (2.13)

where A(n) is an s X s matrix, is an h-system if and only if there exist
a constant ¢ > 1 and a positive function h defined on N(ng) such that
for every xg € R®,

|®(n,no, x0)| < ch(n)h(ng)™t, n > no,
where ® is a fundamental matrix solution of (2.13).
LEMMA 2.8. [9, Corollary 3.10] If two matrix functions A and B in

the set M are no- summably similar, then for n > ng, we have

n—1

®p(n,no) = S™Hn)[®a(n,n0)S(no) + Z D 4(n,s+1)F(s)®p(s,no)],

s=ng

where ® 4(n,ng) and ®p(n,ng) are fundamental matrix solutions of the
system (2.13) with the coefficient matrix functions A(n) and B(n), re-
spectively.

Medina and Pinto showed that ASV implies AS [15, Theorem 3]. Also,
they proved the converse when the condition

> i fultna o) — L0 <5020 (214
l=ng

for |zo| < 4, holds [15, Theorem 14].

In order to establish our main results, we will introduce the following
condition:

(H) fz(n,0) and f,(n,z(n,ng,zg)) are no-summably similar for n >
ng > 0 and |zo| < ¢ for some constant 6 > 0 and » 7 %\F(nﬂ <
oo with the positive function h(n) defined on N(ny).
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In the following theorem, we can show that AS implies hSV by as-
suming (H), instead of the above condition (2.14).

LEMMA 2.9. [8, Theorem 3.4] Assume that condition (H) is satisfied.
Then the variational system (2.2) is also an h-system if and only if the
variational system (2.3) is an h-system.

Proof. Suppose that v = 0 of (2.2) is an h-system. It follows from
Lemma 2.7 that there exist a constant ¢; > 1 and a positive function h
defined on N(ng) such that for every zg € R?,

|®(n,n9,0)| < crh(n)h(ng) ™, n > ng >0, (2.15)
where ®(n,ng,0) is a fundamental matrix solution of (2.2).
Since fz(n,0) and fz(n,x(n,ng, o)) are no-summably similar, from
Lemma 2.8, we have
®(n,no,w0) = S~ (n)[®(n, no,0)S(no)

n—1

Z n,s+1,0)F(s)®(s, no,x0)|, n > ng,

where ®(n,ng, o) denotes a fundamental matrix solution of (2.3).
In view of (2.15) and the boundedness of S(n) and S~!(n), there is
a positive constant co such that

|®(n,n0,z0)| < creah(n)h(ng)

n—1
+ a3 Ol

It follows that

1@(n,n0,20)| _ creo = () 12(1, g, 20|
h(n) Sh(lno)Jr 1CQZh(Hl)' D=0

Applying the discrete Bellman’s inequality [1], we have

n—1
|®(n, no, x0)| < dh(n)h(no)*l H <1+ h?(_fl_)l
l=ng

n—1
< dh(n)h(ng) ' exp Z D)

l=ng

< ch(n)h(ng)t,
where ¢ = dexp (Zloino héll(—&l-)l) |F(l)|> and d = cjco.
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Therefore we have
|®(n,ng, zo)| < ch(n)hil(no), n>mng >0,

for some positive constant ¢ > 1. Hence system (2.3) is an h-system by
Lemma 2.7.

The converse holds by the similar method. This completes the proof.

O

For nonlinear difference system (2.1), we can show that
GhSV < GhS, hS < hSV

by using the concept of no-summable similarity.

We study the relation between h-stability of the zero solution of sys-
tem (2.1) and the zero solutions of its variational systems (2.2) and (2.3)
by assuming condition (H) is satisfied.

THEOREM 2.10. [15, Theorem 2| Suppose that condition (H) is sat-
isfied. If = 0 of (2.1) is h-stable, then v =0 of (2.2) is h-stable.

Note that the converse of Theorem 2.10 does not hold in general. We
give the following example.

EXAMPLE 2.11. [6, Example 5.2] We consider the nonlinear difference
equation

Ax(n) = f(n,z(n)) = —%x(n) +2%(n), z(ng) —z0 =1  (2.16)
and its variational difference equation
Av(n) = fo(n, 0)v(n) = —%v(n), v(no) = o £ 0, (2.17)

where fy(n,z) = —% 4+ 2. Then v = 0 of (2.17) is h-stable, but z = 0
of (2.16) is not h-stable.

Proof. Since the fundamental solution is ¢(n) = ()" "0v for each

n > ng, (2.17) is h-stable with a positive bounded function h(n) = .
But (2.16) is not h-stable because there exists a unbounded solution

x(n,0,1) of (2.16) satisfying
z(n,0,1) =z(n) >n, n=1,2,---.

We obtain the following result from (2.8).

THEOREM 2.12. If z = 0 of (2.3) is h-stable, then x = 0 of (2.1) is
h-stable.
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We can obtain the following result by using Lemma 2.9 and Theorem
2.10.

THEOREM 2.13. Assume that x = 0 of (2.1) is h-stable. If condition
(H) holds, then z = 0 of (2.1) is h-stable in variation.

REMARK 2.14. For the nonlinear difference system (2.1), we show
that two concepts of h-stability and h-stability in variation are equivalent
under the condition that two variational systems (2.2) and (2.3) are no-
summably similar.

Choi et al. investigated Massera type converse theorems for nonlinear
difference system z(n+1) = f(n,x(n)) via n-similarity in [3, Theorem
5] and [4, Theorem 2.1]. Furthermore, they characterized h-stability in
variation for nonlinear difference system by using the notion of n..-
summable similarity in [6].

We obtain the following result that characterize h-stability for non-
linear difference system (2.1) via the notions of Lyapunov functions and
Neo-Summable similarity.

THEOREM 2.15. Assume that condition (H) is satisfied. Then (2.1) is
GhS if and only if there exists a function V (n,z) defined on N(ng) x R®
such that the following properties hold:

(i) V(n,z) is defined on N(ng) x R® and continuous with respect to
the second argument;
(i) |z| < V(n,x)| < c|z| for (n,z) € N(ng) x R?;
(i) |V(n,z1) — V(n,x2)| < c|z1 — x2| for n € N(ng) and z1, x5 € R5;
(iv) AV(n,2) < 5E2V(n,2) for (n,) € N(ng) x R°.
Proof. Necessity: Suppose that (2.1) is GhS. Then (2.1) is GhSV by
Theorem 2.13; i.e., there exist a constant ¢ > 1 and a positive bounded
function h defined on N(ng) such that

|®(n, no, zo)| < ch(n)h(no)*l, n > ng,

where @ is a fundamental matrix solution of (2.3). Define the function
V :N(ng) x R® — R, by

V(n,z) = sup |z(n+7,n,z)h(n+7)""h(n).
T€N(0)

Then, the rest of proof can be proved in a similar manner as that of
Theorem 2.1 of [4], so we omit the detail. O
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