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LYAPUNOV FUNCTIONS FOR NONLINEAR
DIFFERENCE EQUATIONS

Sung Kyu Choi*, Yinhua Cui**, and Namjip Koo***

Abstract. In this paper we study h-stability of the solutions of
nonlinear difference system via the notion of n∞-summable similar-
ity between its variational systems. Also, we show that two concepts
of h-stability and h-stability in variation for nonlinear difference
systems are equivalent. Furthermore, we characterize h-stability
for nonlinear difference systems by using Lyapunov functions.

1. Introduction

Pinto [17] introduced the notion of h-stability for differential equa-
tions with the intention of obtaining results about for weakly stable
differential systems under some perturbations. Also, Medina and Pinto
[15] applied h-stability to obtain a uniform treatment for the various
stability notions in difference systems and extended the study of expo-
nential stability to a variety of reasonable systems called h-systems.

Choi et al. [2] investigated h-stability for the nonlinear differential
systems using the notions of Lyapunov functions and t∞-similarity in-
troduced by Conti [10]. Trench [18] introduced summable similarity as a
discrete analog of Conti’s definition of t∞-similarity and investigated the
various stabilities of linear difference systems by using summable simi-
larity. Choi and Koo [3] studied the variational stability for nonlinear
difference systems by means of n∞-similarity. Also, see [4, 5, 6] for the
asymptotic property and h-stability of difference systems via discrete
similarities and comparison principle.
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In this paper we characterize h-stability of the solutions of the nonlin-
ear difference systems by using the notions of n∞-summable similarity
between variational systems and Lyapunov functions.

2. Main results

Let N(n0) = {n0, n0 + 1, · · · , n0 + k, · · · }, where n0 is a nonnegative
integer and Rs the s-dimensional real Euclidean space. We consider the
nonlinear difference system

∆x(n) = f(n, x(n)), x(n0) = x0, (2.1)

where f : N(n0)×Rs → Rs, f(n, 0) = 0, and ∆ is the forward difference
operator with unit spacing; i.e., ∆x(n) = x(n + 1) − x(n). We assume
that fx = ∂f

∂x exists and is continuous on N(n0) × Rs. Let x(n) =
x(n, n0, x0) be the unique solution of (2.1) satisfying the initial condition
x(n0, n0, x0) = x0. Also, we consider its associated variational systems

∆v(n) = fx(n, 0)v(n) (2.2)

and
∆z(n) = fx(n, x(n, n0, x0))z(n), (2.3)

where I + fx(n, x(n)) is invertible on N(n0) × Rs and I denotes the
identity matrix.

To establish our main results we will use the following lemma:

Lemma 2.1. [16, Lemma 2.1] Assume that x(n, n0, x0) and x(n, n0, y0)
are the solutions of system (2.1) through (n0, x0) and (n0, y0), respec-
tively, which exist for n ≥ n0 and such that x0 and y0 belong to a convex
subset D of Rs. Then for n ≥ n0,

x(n, n0, x0)− x(n, n0, y0) =
∫ 1

0
Φ(n, n0, x0 + τ(y0 − x0))dτ · (y0 − x0).

To prove the discrete version of variation of parameters formula, we
need the following result on differentiability of solutions with respect to
initial values.

Lemma 2.2. Assume that f : N(n0) × Rs → Rs possesses partial
derivatives on N(n0) × Rs and fx(t, x(t, t0, x0)) is regressive on N(n0).
Let x(n) = x(n, n0, x0) be the solution of (2.1), which exists for n ≥ n0,
and let

H(n, n0, x0) =
∂f(n, x(n, n0, x0))

∂x
. (2.4)
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Then

Φ(n, n0, x0) =
∂x(n, n0, x0)

∂x0
(2.5)

exists and is the solution of

∆Φ(n, n0, x0) = H(n, n0, x0)Φ(n, n0, x0), n ≥ n0, (2.6)
Φ(n0, n0, x0) = I. (2.7)

Proof. By differentiating (2.1) with respect to x0 we have

∂∆x(n, n0, x0)
∂x0

=
∂x(n + 1, n0, x0)

∂x0
− ∂x(n, n0, x0)

∂x0

=
∂f(n, x(n))

∂x(n)
∂x(n, n0, x0)

∂x0
.

It follows from the definition of Φ that Φ satisfies (2.6). This completes
the proof.

It follows from Lemma 2.2 that the fundamental matrix solution
Φ(n, n0, 0) of (2.2) is given by

Φ(n, n0, 0) =
∂x(n, n0, 0)

∂x0

and the fundamental matrix solution Φ(n, n0, x0) of (2.3) is given by

Φ(n, n0, x0) =
∂x(n, n0, x0)

∂x0

or equivalently

x(n, n0, x0) =
[∫ 1

0
Φ(n, n0, sx0)ds

]
x0. (2.8)

Consider the quasilinear difference system

∆y(n) = A(n)y(n) + f(n, y(n)), y(n0) = y0, (2.9)

where I +A(n) is an s× s nonsingular matrix and f : N(n0)×Rs → Rs.
We obtain the following result which is a slight modification of vari-

ation of constants formula in [11, Theorem 4.6.1].

Theorem 2.3. The solution y(n, n0, y0) of (2.9) satisfies the equation

y(n) = Φ(n, n0)y0 +
n−1∑

j=n0

Φ(n, j + 1)f(j, y(j)), n ≥ n0, (2.10)
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where Φ(n, n0) satisfies the matrix equation

∆Φ(n, n0) = A(n)Φ(n, n0). (2.11)

Proof. Let y(n, n0, y0) = Φ(n, n0)c(n) with c(n0) = y0. Substituting
in (2.9), we obtain

∆y(n) = Φ(n + 1, n0)c(n + 1)− Φ(n, n0)c(n)
= A(n)Φ(n, n0)c(n) + f(n, y(n))
= ∆Φ(n, n0)c(n) + f(n, y(n))
= Φ(n + 1, n0)c(n)− Φ(n, n0)c(n) + f(n, y(n)),

since Φ(n, n0) is the solution of (2.11). Therefore

∆c(n) = Φ−1(n + 1, n0)f(n, y(n)),

and

c(n) = y0 +
n−1∑

j=n0

Φ−1(j + 1, n0)f(j, y(j)).

It follows that

y(n) = Φ(n, n0)y0 +
n−1∑

j=n0

Φ(n, j + 1)f(j, y(j)), n ≥ n0,

since Φ(n, n0)Φ−1(j+1, n0) = Φ(n, j+1). This completes the proof.

The symbol | · | will be used to denote any convenient vector norm
in Rs. Let V : N(n0) × Rs → R+ be a function with V (n, 0) = 0 for
all n ≥ n0. We denote the total difference of the function V along the
solutions x of (2.1) by

∆V(2.1)(n, x) = V (n + 1, x(n + 1, n, x))
− V (n, x(n, n, x)).

Conti [10] defined two m×m matrix functions A and B on R+ to be
t∞-similar if there is an m ×m matrix function S defined on R+ such
that S′(t) is continuous, S(t) and S−1(t) are bounded on R+, and∫ ∞

0
|S′ + SB −AS|dt < ∞.

Now, we introduce the notion of n∞-summable similarity which is
the corresponding t∞-similarity for the discrete case.

Let M denote the set of all s× s invertible matrices defined on N(n0)
and S be the subset of M consisting of those nonsingular bounded ma-
trices S(n) such that S−1(n) is also bounded.
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Definition 2.4. [6, Definition 2.5] A matrix function A ∈ M is n∞-
summably similar to a matrix function B ∈ M if there exists an s × s
matrix F (n) absolutely summable over N(n0), that is,

∞∑

l=n0

|F (l)| < ∞

such that
∆S(n) + S(n + 1)B(n)−A(n)S(n) = F (n) (2.12)

for some S ∈ S.

For the example of n∞-summable similarity, see [6].

Remark 2.5. We can easily show that the n∞-summable similarity
is an equivalence relation by the similar manner of Trench in [18]. Also,
if A and B are n∞-summably similar with F (n) = 0, then we say that
they are kinematically similar.

We recall some notions of h-stability for nonlinear difference systems
in [13, 15] that are needed in the sequel.

Definition 2.6. System (2.1) is called an h-system if there exist a
positive function h : N(n0) → R and a constant c ≥ 1 such that

|x(n, n0, x0)| ≤ c|x0|h(n)h(n0)−1, n ≥ n0

for |x0| small enough (here h(n)−1 = 1
h(n)).

Moreover, system (2.1) is said to be
(hS) h-stable if h is a bounded function in the definition of h-system,
(GhS) globally h-stable if system (2.1) is hS for every x0 ∈ D, where

D ⊂ Rs is a region which includes the origin,
(hSV) h-stable in variation if system (2.3) is hS,
(GhSV) globally h-stable in variation if system (2.3) is GhS.

The various notions about h-stability given by Definition 2.6 include
several types of known stability properties such as uniform stability,
uniform Lipschitz stability and exponential asymptotic stability. See
[3, 12, 14, 15] for stability of nonlinear difference systems.

The next diagram illustrates the possible known implications among
various types of stability notions for nonlinear difference systems [15].
GhSV −−−−→ hSV ↪→ EASV −−−−→ ULSVy

y
y

y
GhS −−−−→ hS ↪→ EAS −−−−→ ULS −−−−→ US −−−−→ S
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Here ”↪→” means an inclusion.
For the linear difference systems, Medina and Pinto [15] showed that

GhSV ⇐⇒ GhS ⇐⇒ hS ⇐⇒ hSV.

Also, the associated variational system inherits the property of hS from
the original nonlinear system. That is, the zero solution v = 0 of (2.2)
is hS when the zero solution x = 0 of (2.1) is hS in [15, Theorem 2].

Our purpose is to characterize the global stability in variation via
n∞-summable similarity and Lyapunov functions. To do this, we need
the following lemmas.

Lemma 2.7. [15] The linear difference system

∆y(n) = A(n)y(n), y(n0) = y0, (2.13)

where A(n) is an s× s matrix, is an h-system if and only if there exist
a constant c ≥ 1 and a positive function h defined on N(n0) such that
for every x0 ∈ Rs,

|Φ(n, n0, x0)| ≤ ch(n)h(n0)−1, n ≥ n0,

where Φ is a fundamental matrix solution of (2.13).

Lemma 2.8. [9, Corollary 3.10] If two matrix functions A and B in
the set M are n∞- summably similar, then for n ≥ n0, we have

ΦB(n, n0) = S−1(n)[ΦA(n, n0)S(n0) +
n−1∑
s=n0

ΦA(n, s + 1)F (s)ΦB(s, n0)],

where ΦA(n, n0) and ΦB(n, n0) are fundamental matrix solutions of the
system (2.13) with the coefficient matrix functions A(n) and B(n), re-
spectively.

Medina and Pinto showed that hSV implies hS [15, Theorem 3]. Also,
they proved the converse when the condition

∞∑

l=n0

h(l)
h(l + 1)

|fx(l, n0, x0)− fx(l, 0)| < ∞, n0 ≥ 0 (2.14)

for |x0| ≤ δ, holds [15, Theorem 14].
In order to establish our main results, we will introduce the following

condition:
(H) fx(n, 0) and fx(n, x(n, n0, x0)) are n∞-summably similar for n ≥

n0 ≥ 0 and |x0| ≤ δ for some constant δ > 0 and
∑∞

n=n0

h(n)
h(n+1) |F (n)| <

∞ with the positive function h(n) defined on N(n0).
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In the following theorem, we can show that hS implies hSV by as-
suming (H), instead of the above condition (2.14).

Lemma 2.9. [8, Theorem 3.4] Assume that condition (H) is satisfied.
Then the variational system (2.2) is also an h-system if and only if the
variational system (2.3) is an h-system.

Proof. Suppose that v = 0 of (2.2) is an h-system. It follows from
Lemma 2.7 that there exist a constant c1 ≥ 1 and a positive function h
defined on N(n0) such that for every x0 ∈ Rs,

|Φ(n, n0, 0)| ≤ c1h(n)h(n0)−1, n ≥ n0 ≥ 0, (2.15)

where Φ(n, n0, 0) is a fundamental matrix solution of (2.2).
Since fx(n, 0) and fx(n, x(n, n0, x0)) are n∞-summably similar, from

Lemma 2.8, we have

Φ(n, n0, x0) = S−1(n)[Φ(n, n0, 0)S(n0)

+
n−1∑
s=n0

Φ(n, s + 1, 0)F (s)Φ(s, n0, x0)], n ≥ n0,

where Φ(n, n0, x0) denotes a fundamental matrix solution of (2.3).
In view of (2.15) and the boundedness of S(n) and S−1(n), there is

a positive constant c2 such that

|Φ(n, n0, x0)| ≤ c1c2h(n)h(n0)−1

+ c1c2

n−1∑

l=n0

h(n)
h(l + 1)

|F (l)||Φ(l, n0, x0)|.

It follows that

|Φ(n, n0, x0)|
h(n)

≤ c1c2

h(n0)
+ c1c2

n−1∑

l=n0

h(l)
h(l + 1)

|F (l)| |Φ(l, n0, x0)|
h(l)

.

Applying the discrete Bellman’s inequality [1], we have

|Φ(n, n0, x0)| ≤ dh(n)h(n0)−1
n−1∏

l=n0

(
1 +

h(l)
h(l + 1)

|F (l)|
)

≤ dh(n)h(n0)−1 exp




n−1∑

l=n0

h(l)
h(l + 1)

|F (l)|



≤ ch(n)h(n0)−1,

where c = d exp
(∑∞

l=n0

h(l)
h(l+1) |F (l)|

)
and d = c1c2.
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Therefore we have

|Φ(n, n0, x0)| ≤ ch(n)h−1(n0), n ≥ n0 ≥ 0,

for some positive constant c ≥ 1. Hence system (2.3) is an h-system by
Lemma 2.7.

The converse holds by the similar method. This completes the proof.

For nonlinear difference system (2.1), we can show that

GhSV ⇔ GhS, hS ⇔ hSV

by using the concept of n∞-summable similarity.
We study the relation between h-stability of the zero solution of sys-

tem (2.1) and the zero solutions of its variational systems (2.2) and (2.3)
by assuming condition (H) is satisfied.

Theorem 2.10. [15, Theorem 2] Suppose that condition (H) is sat-
isfied. If x = 0 of (2.1) is h-stable, then v = 0 of (2.2) is h-stable.

Note that the converse of Theorem 2.10 does not hold in general. We
give the following example.

Example 2.11. [6, Example 5.2] We consider the nonlinear difference
equation

∆x(n) = f(n, x(n)) = −1
2
x(n) + x2(n), x(n0) = x0 = 1 (2.16)

and its variational difference equation

∆v(n) = fx(n, 0)v(n) = −1
2
v(n), v(n0) = v0 6= 0, (2.17)

where fx(n, x) = −1
2 + 2x. Then v = 0 of (2.17) is h-stable, but x = 0

of (2.16) is not h-stable.

Proof. Since the fundamental solution is φ(n) = (1
2)n−n0v0 for each

n ≥ n0, (2.17) is h-stable with a positive bounded function h(n) = 1
2n .

But (2.16) is not h-stable because there exists a unbounded solution
x(n, 0, 1) of (2.16) satisfying

x(n, 0, 1) = x(n) > n, n = 1, 2, · · · .

We obtain the following result from (2.8).

Theorem 2.12. If z = 0 of (2.3) is h-stable, then x = 0 of (2.1) is
h-stable.
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We can obtain the following result by using Lemma 2.9 and Theorem
2.10.

Theorem 2.13. Assume that x = 0 of (2.1) is h-stable. If condition
(H) holds, then z = 0 of (2.1) is h-stable in variation.

Remark 2.14. For the nonlinear difference system (2.1), we show
that two concepts of h-stability and h-stability in variation are equivalent
under the condition that two variational systems (2.2) and (2.3) are n∞-
summably similar.

Choi et al. investigated Massera type converse theorems for nonlinear
difference system x(n+1) = f(n, x(n)) via n∞-similarity in [3, Theorem
5] and [4, Theorem 2.1]. Furthermore, they characterized h-stability in
variation for nonlinear difference system by using the notion of n∞-
summable similarity in [6].

We obtain the following result that characterize h-stability for non-
linear difference system (2.1) via the notions of Lyapunov functions and
n∞-summable similarity.

Theorem 2.15. Assume that condition (H) is satisfied. Then (2.1) is
GhS if and only if there exists a function V (n, x) defined on N(n0)×Rs

such that the following properties hold:

(i) V (n, x) is defined on N(n0) × Rs and continuous with respect to
the second argument;

(ii) |x| ≤ V (n, x)| ≤ c|x| for (n, x) ∈ N(n0)× Rs;
(iii) |V (n, x1)− V (n, x2)| ≤ c|x1 − x2| for n ∈ N(n0) and x1, x2 ∈ Rs;

(iv) ∆V (n, x) ≤ ∆h(n)
h(n) V (n, x) for (n, x) ∈ N(n0)× Rs.

Proof. Necessity: Suppose that (2.1) is GhS. Then (2.1) is GhSV by
Theorem 2.13; i.e., there exist a constant c ≥ 1 and a positive bounded
function h defined on N(n0) such that

|Φ(n, n0, x0)| ≤ ch(n)h(n0)−1, n ≥ n0,

where Φ is a fundamental matrix solution of (2.3). Define the function
V : N(n0)× Rs → R+ by

V (n, x) = sup
τ∈N(0)

|x(n + τ, n, x)|h(n + τ)−1h(n).

Then, the rest of proof can be proved in a similar manner as that of
Theorem 2.1 of [4], so we omit the detail.
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