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INTEGRAL DOMAINS WHICH ARE t-LOCALLY
NOETHERIAN

Hwankoo Kim* and Tae In Kwon**

Abstract. In this note, a module-theoretic characterization of t-
locally Noetherian domains is given. We also give some characteri-
zations of strong Mori domains via t-locally Noetherian domains.

1. Introduction

Strong Mori domains were introduced by Wang and McCasland in
[11]. It is well known that every strong Mori domain is t-locally Noe-
therian ([12]). However, as Example 2.1 shows, the converse is not true
in general. The aim of this note is to give a module-theoretic charac-
terization of t-locally Noetherian domains and some characterizations of
strong Mori domains via t-locally Noetherian domains. In order to do
so, we first review some notions and terminologies.

Throughout, let R be an integral domain with quotient field K. Let
F(R) be the set of nonzero fractional ideals of R. For an I ∈ F(R),
define I−1 = {x ∈ K | xI ⊆ R}. The v-operation on R is a mapping
on F(R) defined by I 7→ Iv = (I−1)−1. The t-operation on R is defined
by I 7→ It =

⋃{Jv | J is a nonzero finitely generated fractional subideal
of I}. Recall that an ideal J of R is called a Glaz-Vasconcelos ideal
(GV-ideal) if J is finitely generated and J−1 = R. We denote the set
of GV-ideals by GV (R). The w-operation on R is a mapping on F(R)
defined by I 7→ Iw = {x ∈ K | Jx ⊆ I for some J ∈ GV (R)}. An
I ∈ F(R) is said to be a v-ideal (resp., t-ideal, w-ideal) if Iv = I (resp.,
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It = I, Iw = I). A t-ideal (resp., w-ideal) M of R is called a maximal
t-ideal (resp., maximal w-ideal) if M is maximal among proper integral
t-ideals (resp., w-ideals) of R. Let t-Max(R) (resp., w-Max(R)) be the
set of maximal t-ideals (resp., maximal w-ideals) of R. It was shown
that t-Max(R) = w-Max(R) and the notion of t-invertibility is precisely
same as that of w-invertibility. An integral domain R is a strong Mori
domain (SM domain) if it satisfies the ascending chain condition (ACC)
on integral w-ideals of R ([12]).

Let M be a module over an integral domain R. Set r(M) := {x ∈
M | annR(x)w = R}. Following [8], the w-envelope of M is defined
by Mw = p−1(r(E(M)/M)), where E(M) denotes the injective envelope
(or injective hull) of M and p : E(M) → E(M)/M is the canonical
projection. Then it is easy to see that Mw = {x ∈ E(M) | Jx ⊆ M
for some J ∈ GV (R)}. M is said to be co-semi-divisorial if r(M) = 0;
equivalently, if whenever Jx = 0 for some J ∈ GV (R) and x ∈ M , we
have that x = 0. Any undefined terminology is standard, as in [4].

2. Main results

As the t-theoretic analog, an integral domain R is said to be t-locally
Noetherian if RP is a Noetherian domain for all maximal t-ideals P of
R. It is easy to verify that R is t-locally Noetherian if and only if RP

is Noetherian for all prime w-ideals P of R. Some ring-theoretic char-
acterizations of t-locally Noetherian domains are given in [2, Theorem
1,4]: R is t-locally Noetherian, if and only if R[X] is t-locally Noether-
ian, if and only if R[X]Nv is t-locally Noetherian, if and only if R[X]Nv

is locally Noetherian, where Nv = {f ∈ R[X] | C(f)v = R} and C(f) is
the content ideal generated by the coefficients of f .

Every SM domain is t-locally Noetherian. However, as the following
example shows, the converse is not true in general. Following [7, Section
IV], an integral domain R is called t-almost Dedekind domain if RM is
a rank-one discrete valuation domain for each maximal t-ideal M of R.

Example 2.1. Let R be a t-almost Dedekind domain which is not a
Krull domain. Then R is t-locally Noetherian, but not an SM domain
since a Krull domain is exactly an integrally closed SM domain.

Let M be an R-module. If M has a non-zero element c with the
following condition (∗), then we call M a cocyclic R-module.

(∗) For every R-module N , every R-homomorphism φ : M → N with
c 6∈ ker(φ) is monic.
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Then it is easily seen that M is a cocyclic R-module if and only
if every non-zero submodule of M contains c, i.e. Rc is the smallest
submodule of M .

Proposition 2.1. A co-semi-divisorial R-module M is cocyclic if and
only if M is an essential extension of R/P for some maximal w-ideal P
of R.

Proof. This follows from a slight modification of the proof of [10,
Proposition 1].

Lemma 2.2. Let R be a t-locally Noetherian domain and M be a
cocyclic co-semi-divisorial R-module. Then M has the structure of an
RP -module for some maximal w-ideal P of R.

Proof. This follows from a slight modification of the proof of [10,
Proposition 2] using Proposition 2.1.

Theorem 2.3. The following statements are equivalent for an inte-
gral domain R.

(1) R is a t-locally Noetherian domain.
(2) Every cocyclic co-semi-divisorial R-module satisfies the DCC on

submodules.
(3) For every maximal w-ideal P of R, E(R/P ) satisfies the DCC on

submodules.

Proof. (1) ⇒ (2) Let M be a cocyclic co-semi-divisorial R-module.
Then there exists a maximal w-ideal P of R such that R/P ⊆ M ⊆ E :=
E(R/P ). By Lemma 2.2, M has an RP -module structure. Since RP is
Noetherian, by [9, Proposition 3], M satisfies the DCC on submodules
as an RP -module, and hence as an R-module.

(2) ⇒ (3) This is trivial.
(3) ⇒ (1) Let P be a maximal w-ideal of R. By [10, Lemma 1],

E(R/P ) has an RP -module structure and hence E(R/P ) satisfies the
DCC on submodules as an RP -module. It follows from [6, Corollary
3.2] that E(R/P ) is faithfully injective as an RP -module. Thus by [6,
Theorem 4.1], RP satisfies the ACC on ideals, i.e. RP is Noetherian.

Let P be a prime ideal of R containing an ideal A of R. Then we
call P a Nagata prime of A if there exists a multiplicative system S of
R such that S ∩A = ∅ and such that PRS ⊇ ARS and PRS is maximal
with respect to being contained in the set of zero-divisors mod ARS . It
is clear that any prime ideal of R which is minimal with respect to the
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property of containing A is a Nagata prime of A and such prime ideals
are called minimal prime divisor of A.

In order to characterize SM domains via t-locally Noetherian do-
mains, we need a couple of lemmas.

Lemma 2.4. Let R be an integral domain which satisfies the ACC
on prime w-ideals and suppose that each w-finite ideal of R has only
finitely many minimal prime divisors. If P is any prime w-ideal of R,
then P is the unique minimal prime divisor of some w-finite ideal A of
R.

Proof. This follows from a slight modification of the proof of [1,
Lemma 1.1].

Corollary 2.5. Let R be an integral domain which satisfies the
ACC on prime w-ideals. Then R is an SM domain if and only if each
w-finite ideal A of R has only finitely many minimal prime divisors and√

A is w-finite.

Proof. (⇒) By [11, Theorem 4.9 and Proposition 1.6].
(⇐) Let P be a prime w-ideal of R. Then by Lemma 2.4, P is the

unique minimal prime of some w-finite ideal A of R. Thus P =
√

A and
P is w-finite. Thus by [11, Theorem 4.3], R is an SM domain.

Lemma 2.6. If R is a t-locally Noetherian domain, then R satisfies
the ACC on prime w-ideals (and hence on prime t-ideals).

Proof. Let P1 ⊆ P2 ⊆ · · · be a chain of prime w-ideals of R and
set P :=

⋃∞
i=1 Pi. Then P is a prime w-ideal of R (since w is of finite

character) and RP is Noetherian. Since P1RP ⊆ P2RP ⊆ · · · ⊆ PRP

is a chain of prime ideals of RP , there exists an integer n such that
PRP = Pn+iRP for each nonnegative integer i. Hence P = Pn+i for
each nonnegative integer i. Therefore, R satisfies the ACC on prime
w-ideals.

Let P be a prime ideal of R containing an ideal A of R. Then P is
called a Bourbaki prime (resp., Zariski-Samuel prime) of A if P = A :R x
(resp., P =

√
A :R x) for some x ∈ R. Finally we call P a weak-Bourbaki

prime of A if there exists x ∈ R such that P is a minimal prime ideal of
A :R x.

Theorem 2.7. The following conditions are equivalent for a t-locally
Noetherian domain R.

(1) R is an SM domain.
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(2) Each w-finite ideal of R may be expressed as a finite intersection
of primary w-ideals of R.

(3) Each w-finite ideal of R has only finitely many Bourbaki primes.
(4) Each w-finite ideal of R has only finitely many Zariski-Samuel

primes.
(5) Each w-finite ideal of R has only finitely many weak-Bourbaki

primes.
(6) Each w-finite ideal I of R has only finitely many minimal prime

divisors and
√

I is w-finite.

Proof. (1) ⇒ (2) [11, Theorem 4.11].
(2) ⇒ (3) Let I be a w-ideal of R, and let I = Q1 ∩ · · · ∩ Qn be a

primary decomposition. It is obvious that if P is a prime ideal of R
minimal over I, then P =

√
Qi for some Qi . Thus the number of such

P ’s is at most finite. Moreover P = I :R x for some x ∈ R ([11, Theorem
4.9])

(3) ⇒ (4) ⇒ (5) This follows from the fact that (weak-Bourbaki
prime)⇒ (Zariski-Samuel prime)⇒ (weak–Bourbaki prime) ([5, p.279]).

(5) ⇒ (1) This follows from a slight modification of the proof of (vi)
⇒ (i) in [3, Theorem 4.5].

(1) ⇔ (6) This follows from Corollary 2.5 and Lemma 2.6.
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[7] B. G. Kang, Prüfer v-multiplication domains and the ring R[X]Nv , J. Algebra
123 (1989), 151-170.



848 Hwankoo Kim and Tae In Kwon

[8] H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Al-
gebra 36 (2008), 1649-1670.

[9] E, Matlis, Modules with descending chain condition, Trans, Amer. Math. Soc.
97 (1960), 495-508.

[10] H. Uda, On a characterization of almost Dedekind domains, Hiroshima Math.
J. 2 (1972), 339-344.

[11] F. Wang and R. L. McCasland, On w-modules over strong Mori domains,
Comm. Algebra 25 (1997), 1285-1306.

[12] F. Wang and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra
135 (1999), 155-165.

*
Department of Information Security
Hoseo University
Asan 336-795, Republic of Korea
E-mail : hkkim@hoseo.edu

**
Department of Applied Mathematics
Changwon National University
Changwon, 641-773, Republic of Korea
E-mail : taekwon@changwon.ac.kr


