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EXPONENTIAL INEQUALITIES FOR ELNQD RANDOM
VARIABLES WITH APPLICATIONS

Hyun-Chull Kim*

Abstract. In this paper we introduce the concept of extended
linear negative quadrant dependence and obtain some exponential
inequalities, complete convergence and almost sure convergence for
extended linear negative quadrant dependent random variables.

1. Introduction

Lehman(1966) introduced a natural definition of negative dependence
in the bivariate case. Two random variables X and Y are said to
be negatively quadrant dependent(NQD) if for all real numbers x, y,
P (X ≤ x, Y ≤ Y ) ≤ P (X ≤ x)P (Y ≤ y) or P (X > x, Y > Y ) ≤
P (X > x)P (Y > y). Joag-Dev and Proschan(1983) extended the con-
cept of negative quadrant dependence to the multivariate case. A se-
quence {Xi, 1 ≤ i ≤ n} of random variables is said to be negatively
upper orthant dependent(NUOD) if for all real numbers x1, · · · , xn,

(1.1) P (X1 > x1, · · · , Xn > xn) ≤
n∏

i=1

P (Xi > xi)

and it is said to be negatively lower orthant dependent(NLOD) if for all
real numbers x1, · · · , xn,

(1.2) P (X1 ≤ x1, · · · , Xn ≤ xn) ≤
n∏

i=1

P (Xi ≤ xi).

A sequence {Xi, 1 ≤ i ≤ n} of random variables is said to be negatively
orthant dependent(NOD) if it is both NUOD and NLOD.
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Based on the concept of negative quadrant dependence, another no-
tion of negative dependence was formulated by Newman(1984) as fol-
lows: A sequence {Xi, 1 ≤ i ≤ n} of random variables is said to be
linearly negative quadrant dependent(LNQD) if for any disjoint sub-
sets A and B of {1, · · · , n} and positive rj ’s,

∑
i∈A riXi,

∑
j∈B rjXj are

NQD.
Recently, Liu(2009) introduced the concept of extended negative de-

pendence in the multivariate case. A sequence {Xi, 1 ≤ i ≤ n} of
random variables is said to be extended negatively upper orthant depen-
dent(ENUOD) if for all real numbers x1, · · · , xn, there exists a constant
M > 0 such that

(1.3) P (X1 > x1, · · · , Xn > xn) ≤ M

n∏

i=1

P (Xi > xi)

and it is said to be extended negatively lower orthant dependent(ENLOD)
if for all real numbers x1, · · · , xn, there exists a constant M > 0 such
that

(1.4) P (X1 ≤ x1, · · · , Xn ≤ xn) ≤ M
n∏

i=1

P (Xi ≤ xi).

A sequence {Xi, 1 ≤ i ≤ n} of random variables is said to be extended
negatively orthant dependent(ENOD) if it is both ENUOD and ENLOD.

From Definitions of NQD and ENOD we consider the concept of
extended negative dependence in the bivariate case.

Definition 1.1. Two random variables X and Y are said to be ex-
tended negatively quadrant dependent(ENQD) if there exists a constant
M > 0 such that for all real numbers x, y,

(1.5) P (X ≤ x, Y ≤ Y ) ≤ MP (X ≤ x)P (Y ≤ y)

or

(1.6) P (X > x, Y > Y ) ≤ MP (X > x)P (Y > y).

Remark 1.2. (1.5) and (1.6) are equivalent.

Example 1.3. (Farlie(1960) Let random variables X and Y have the
Farlie-Gumber-Morgenstern bivariate distribution

H(x, y) = F (x)G(y)[1 + ρ(1− F (x))(1−G(y))], −1 ≤ ρ ≤ 1,

where H(x, y) is the joint distribution of X and Y and F (x), G(y) are
marginal distributions, respectively. When −1 ≤ ρ ≤ 0 it is clear that
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X and Y are ENQD as well as NQD, and when 0 ≤ ρ ≤ 1 they are
ENQD as well as PQD.

Recall that two random variables X and Y are called NQD if (1.5)
or (1.6) holds when M = 1, they are called positively quadrant depen-
dent(PQD) if the inequality (1.5) or (1.6) holds in the reverse direction
when M = 1. Obviously, an NQD sequence must be an ENQD se-
quence. On the other hand, for some PQD sequences, it is possible
to find a corresponding positive constant M such that (1.5) or (1.6)
holds(see Example, when 0 ≤ ρ ≤ 1). Therefore, the ENQD structure
is substantially more comprehensive than the NQD structure in that it
can reflect not only a negative dependence structure but also a positive
one, to some extent.

Based on the concepts of extended negative quadrant dependence
and linear negative quadrant dependence, another notion of extended
negative dependence can be formulated as follows:

Definition 1.4. A sequence {Xi, 1 ≤ i ≤ n} of random variables
is said to be extended linearly negative quadrant dependent(ELNQD)
if for any disjoint subsets A and B of {1, 2, · · · , n} and positive rj ’s,∑

i∈A riXi,
∑

j∈B rjXj are ENQD.

Remark 1.5. (i) NQD(LNQD) implies ENQD(ELNQD) and EL-
NQD implies ENQD.

(ii) ELNQD and ENQD do not imply each other.
The main purpose of this paper is to establish some exponential in-

equalities and complete convergence for the ELNQD random variables
and to extend and improve the results of Ko et al.(2007), Nooghabi and
Azarnoosh(2009) and Wang et al.(2010).

2. Some lemmas

Lemma 2.1. (Liu(2009) Let two random variables X and Y be ENQD,
then

(i) if f and g are both nondecreasing(or both nonincreasing) func-
tions, then f(X) and g(Y ) are ENQD,

(ii) if X and Y are nonnegative random variables, then there exists
a constant M > 0 such that E(XY ) ≤ MEXEY,

(iii) especially, there exists a constant M > 0 such that for any real

number h, E(eh(X+Y )) ≤ ME(ehX)E(ehY ).
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Lemma 2.2. Let {Xn, n ≥ 1} be a sequence of ELNQD random vari-
ables and t > 0. Then for each n ≥ 1, there exists a constant M > 0
such that

(2.1) E(
n∏

i=1

etXi) ≤ M
n∏

i=1

(EetXi).

Proof. For t > 0, it is easy to see that tXi and t
∑n

j=i+1 Xj are
ENQD by the definition of ELNQD, which implies that exp(tXi) and
exp(t

∑n
j=i+1 Xj) are also ENQD for i = 1, 2, · · · , n− 1, by Lemma 2.1

(i). It follows from Lemma 2.1 (iii) and Definition 1.2 that

E(
n∏

i=1

etXi) = E(exp(tX1) exp(t
n∑

j=2

Xj))

≤ M1E[exp(tX1)]E[exp(t
n∑

j=2

Xj)]

= M1E[exp(tX1)]E[exp(tX2) exp(t
n∑

j=3

Xj)]

≤ M1M2E[exp(tX1)]E[exp(tX2)]E[exp(t
n∑

j=3

Xj)]

≤
n−1∏

i=1

Mi

n∏

i=1

(EetXi) = M
n∏

i=1

(EetXi),

where M =
∏n−1

i=1 Mi.

The following Lemma is an extension of Theorem 2 in Hoeffding(1963)
to the ELNQD case.

Lemma 2.3. Let {Xn, n ≥ 1} be a sequence of ELNQD random vari-
ables with EXn = 0 for each n ≥ 1. If there exist two sequences
{an, n ≥ 1} and {bn, n ≥ 1} such that ai ≤ Xi ≤ bi for each i ≥ 1,
then for any ε > 0

(2.2) P (|Sn| ≥ nε) ≤ 2M exp{− 2n2ε2∑n
i=1(bi − ai)2

}.
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Proof. Note that E[exp(λXi)] ≤ exp[λ2(bi − ai)2/8] for λ > 0 (see
Lemma 3.1 in Devroye(1991)). Hence, it follows from Markov’s inequal-
ity and (2.1) that

(2.3) P (Sn > nε) = P (eλSn > eλnε)

≤ e−λnεE(eλSn)

≤ Me−λnε
n∏

i=1

E[exp(λXi)]

≤ M exp(λ
n∑

i=1

(bi − ai)2/8− λnε).

By minimizing(with respect to λ) the right-hand side of (2.3) we obtain

(2.4) P (Sn > nε) ≤ M exp[− 2n2ε2∑n
i=1(bi − ai)2

].

Since −Xn’s are still ELNQD by (2.4) we obtain

(2.5) P (Sn < −nε) = P (−Sn > nε) ≤ M exp[− 2n2ε2∑n
i=1(bi − ai)2

].

By (2.4) and (2.5) the desired result (2.2) follows.

3. Results

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of ELNQD random
variables with mean zero and finite variances. If there exists a positive
number c such that |Xi| ≤ cBn for each 1 ≤ i ≤ n, n ≥ 1, where
Bn =

∑n
i=1 EX2

i , then for any ε > 0 and n ≥ 1, there exists a constant
M > 0 such that

(3.1) P (Sn/Bn ≥ ε) ≤
{

M exp(− ε2

2 (1− εc
2 )), if εc ≤ 1

M exp(− ε
4c), if εc > 1.

Proof. For fixed n ≥ 1, take t > 0 such that tcBn ≤ 1. It is easy to
see that

|EXm
i | ≤ (cBn)m−2EX2

i , m ≥ 2.
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Therefore by Taylor expansion and EXi = 0 and the fact that 1+x ≤ ex

we obtain

(3.2) EetXi = 1 +
∞∑

m=2

tm

m!
EXm

i

≤ 1 +
t2

2
EX2

i (1 +
t

3
cBn +

t2

12
c2B2

n + · · · )

≤ 1 +
t2

2
EX2

i (1 +
t

2
cBn)

≤ exp(
t2

2
EX2

i (1 +
t

2
cBn)).

By Lemma 2.2 and (3.2)

EetSn = E(
n∏

i=1

etXi) ≤ M
n∏

i=1

E(etXi) ≤ M exp(
t2

2
B2

n(1 +
t

2
cBn))

which yields

(3.3) P (Sn/Bn ≥ ε) ≤ M exp(−tεBn +
t2

2
B2

n(1 +
t

2
cBn)).

By taking t = ε
Bn

when εc ≤ 1 and t = 1
cBn

when εc ≥ 1 we ob-
tain(3.1) from (3.3).

Theorem 3.2. Let {Xn, n ≥ 1} be a sequence of ELNQD random
variables with mean zero. If there exists a positive constant b such that
|Xn| ≤ b for each n ≥ 1, then for any ε > 0, there exists a constant
M > 0 such that

(3.4) P (|Sn| ≥ ε) ≤ 2M exp(− ε2

2(2B2
n + bε)

),

where B2
n =

∑n
i=1 EX2

i .

Proof. For any 0 < t ≤ 1/b clearly, |tXi| ≤ 1. Hence, by Taylor
expansion, EXi = 0, i ≥ 1 and the fact that 1 + x ≤ ex

(3.5) EetXi = 1 +
∞∑

m=2

E(tXi)m

m!
≤ 1 + t2EX2

i ≤ exp(t2EX2
i ).
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By Markov’s inequality, Lemma 2.2 and (3.5) we get

(3.6) P (Sn ≥ ε) ≤ e−tεE(etSn)

≤ Me−tε
n∏

i=1

E(etXi)

≤ M exp(−tε + t2B2
n)

≤ M exp(− ε2

2(2B2
n + bε)

)

by taking t = ε/(2B2
n + bε). Since {−Xn, n ≥ 1} is also a sequence of

ELNQD random variables it follows from (3.6) that

(3.7) P (Sn ≤ −ε) = P (−Sn ≥ ε) ≤ M exp(− ε2

2(2B2
n + bε)

).

From (3.6) and (3.7) we obtain

P (|Sn| ≥ ε) = P (Sn ≥ ε) + P (Sn ≤ −ε) ≤ 2M exp(− ε2

2(2B2
n + bε)

).

Theorem 3.3. Let {Xn, n ≥ 1} be a sequence of ELNQD random
variables with mean zero. If there exists a sequence {cn, n ≥ 1} of
positive numbers such that |Xi| ≤ ci, i ≥ 1, then for any t > 0, there
exists a constant M > 0 such that

(3.8) E exp(tSn) ≤ exp(
t2

2

n∑

i=1

etciEX2
i ).

Proof. From conditions EXi = 0 and |Xi| ≤ ci and the facts that
ex ≤ 1 + x + 1

2x2e|x| and 1 + x ≤ ex, we have

(3.9) EetXi ≤ 1 +
t2

2
E(X2

i et|Xi|)

≤ 1 +
t2

2
etciEX2

i

≤ exp(
1
2
t2etciEX2

i )

for any t > 0. By Lemma 2.2 and (3.9)

E exp(t
n∑

i=1

Xi) ≤ M
n∏

i=1

E(exp(tXi)) ≤ M exp(
t2

2

n∑

i=1

etciEX2
i ).
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Theorem 3.4. Let {Xn, n ≥ 1} be a sequence of ELNQD random
variables such that |Xi| ≤ cn, 1 ≤ i ≤ n, n ≥ 1, where {cn, n ≥ 1}
is a sequence of positive numbers. Then for any ε > 0 such that ε ≤
eB2

n/(2cn), n ≥ 1, there exists a constant M > 0 such that

(3.10) P (|Sn − ESn| ≥ ε) ≤ 2M exp(− ε2

2eB2
n

).

Proof. By Markov’s inequality and Theorem 3.3 we obtain that for
any t > 0, there exists a constant M > 0 such that

(3.11) P (Sn − ESn ≥ ε) ≤ Me−tεE[exp(t
n∑

i=1

(Xi − EXi))]

≤ M exp(−tε +
t2

2
e2tcnB2

n).

Take t = ε/(eB2
n) then 2tcn ≤ 1. Hence it follows from (3.11) that

(3.12) P (Sn − ESn ≥ ε) ≤ M exp(− ε2

2eB2
n

).

Let −Sn = Tn =
∑n

i=1(−Xn). Since {−Xn, n ≥ 1} is also a sequence of
ELNQD random variables we also have

(3.13) P (Sn − ESn ≤ −ε) = P (Tn − ETn ≥ ε) ≤ M exp(− ε2

2eB2
n

)

by (3.12). Combining (3.12) and (3.13) we get (3.10).

Corollary 3.5. Let {Xn, n ≥ 1} be a sequence of identically dis-
tributed ELNQD random variables. Assume that there exists a positive
integer n0 such that |Xi| ≤ cn, for each 1 ≤ i ≤ n, n ≥ n0, where
{cn, n ≥ 1} is a sequence of positive numbers. Then for any ε > 0 such
that ε ≤ eEX2

1/(2cn) and n ≥ n0, there exists a constant M > 0 such
that

(3.14) P (|Sn − ESn| ≥ nε) ≤ 2M exp(− nε2

2eEX2
1

).

Theorem 3.6. Let {Xn, n ≥ 1} be a sequence of identically dis-
tributed ELNQD random variables. Assume that there exists a positive
integer n0 such that |Xi| ≤ cn, for each 1 ≤ i ≤ n, n ≥ n0, where
{cn, n ≥ 1} is a sequence of positive numbers satisfying

0 < cn ≤ (
enEX2

1

8
)

1
3 .
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If εn = (2eEX2
1cn/n)

1
2 , then for n ≥ n0, there exists a constant M > 0

such that

(3.15) P (
1
n
|Sn − ESn| ≥ εn) ≤ 2Me−cn .

Proof. Clearly, 2εcn ≤ eEX2
1 and nε2n/(2eEX2

1 ) = cn.
By Corollary 3.5 we have that for n ≥ n0, there exists a constant

M > 0 such that

P (
1
n
|Sn − ESn| ≥ εn) ≤ 2M exp(− nε2n

2eEX2
1

) = 2Me−cn .

Hence the proof is complete.

Next, we consider the complete convergence and almost sure conver-
gence for ELNQD sequences.

Theorem 3.7. Let {Xn, n ≥ 1} be a sequence of ELNQD random
variables with EXi = 0 and |Xi| ≤ b, for each i ≥ 1, where b is a positive
constant. Then, for any r > 0

(3.16)
∞∑

n=1

P (|Sn| > nrε) < ∞.

Proof. Let B =
∑∞

n=1 EX2
n < ∞. For any ε > 0, it follows from

Theorem 3.2 that for a constant M > 0
∞∑

n=1

P (|Sn| > nrε) ≤ 2M
∞∑

n=1

exp(− n2rε2

2(2B + bnrε)
)

≤ 2M
∞∑

n=1

[exp(−c)]n
r

< ∞

where c is a positive number not depending on n, which implies (3.16).

Taking cn = δ ln n and δ > 1 in Theorem 3.7 we get the following
result.

Theorem 3.8. Let {Xn, n ≥ 1} be a sequence of identically dis-
tributed ELNQD random variables. Assume that there exists a positive
integer n0 such that |Xi| ≤ δ lnn, for each 1 ≤ i ≤ n, n ≥ n0 and some

δ > 1. Denote εn = (2δeEX1 lnn/n)
1
2 . Then

(3.17)
∞∑

n=1

P (
1
n
|Sn −ESn| ≥ εn) < ∞.
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Theorem 3.9. Let {Xn, n ≥ 1} be a sequence of ELNQD random
variables with |Xi| ≤ c < ∞, for each i ≥ 1, where c is a positive
constant. Then, for any r > 1

2

(3.18)
∞∑

n=1

P (|Sn −ESn| > nrε) < ∞.

Proof. From Lemma 2.3, for any ε > 0, there exists a constant M > 0
such that

∞∑

n=1

P (|Sn − ESn| > nrε) ≤ 2M
∞∑

n=1

[exp(− ε2

2c2
)]n

2r−1
< ∞,

which yields (3.18). Hence the proof is complete.
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