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GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS
OF A SEMI-RIEMANNIAN SPACE FORM WITH A
SEMI-SYMMETRIC METRIC CONNECTION

DAE Ho Jin*

ABSTRACT. We study the geometry of half lightlike sbmanifolds M
of a semi-Riemannian space form M (c) admitting a semi-symmetric
metric connection subject to the conditions: (1) The screen distri-
bution S(T'M) is totally umbilical (geodesic) and (2) the co-screen
distribution S(TM™) of M is a conformal Killing one.

1. Introduction

H. A. Hayden [3] introduced the notion of a semi-symmetric metric
connection on a Riemannian manifold. K. Yano [8] studied some prop-
erties of a Riemannian manifold endowed with a semi-symmetric metric
connection. T. Imai [4] found some properties of a hypersurface of a Rie-
mannian manifold with a semi-symmetric metric connection. Z. Nakao
[7] studied submanifolds of a Riemannian manifold with semi-symmetric
metric connections.

The objective of this paper is the study of half lightlike version of
above classical results. We focus on the geometry of half lightlike sub-
manifolds M of a semi-Riemannian space form M (c) admitting a semi-
symmetric metric connection subject to the conditions: (1) The screen
distribution S(T'M) is totally umbilical and (2) the co-screen distribu-
tion S(TM+) is a conformal Killing one. The reason for this geometric
condition on M is due to the fact that such a class admits an integrable
screen distribution and the induced Ricci tensor of M to be symmetric.
In Section 2, we prove a classification theorem for such a class. This
theorem shows that if the torsion vector field of M is tangent to M,
then the local second fundamental forms B and C' of M and S(T'M)
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respectively satisfy either B = 0 or C' = 0. In Section 3, we study
the geometry of half lightlike submanifolds M of a semi-Riemannian
space form M (c) admitting a semi-symmetric metric connection such
that S(T'M) is totally geodesic and S(T M) is conformal Killing.

2. Semi-symmetric metric connection

Let (M,§) be a semi-Riemannian manifold. A connection ¥ on M is

called a semi-symmetric metric connection [3] if it is metric, i.e., Vg = 0
and its torsion tensor 1" satisfies

(1.1) T(X,)Y)=7n(YV)X — n(X)Y,
for any vector fields X and Y of M , where 7 is a 1-form defined by
m(X) = g(X, (),

and ( is a vector field on M , which called the torsion vector field.

It is well known [2] that the radical distribution Rad(T'M) = TM N
T M+ of half lightlike submanifolds M of a semi-Rimannian manifold of
codimension 2 is a subbundle of the tangent bundle TM and the normal
bundle TM~+. Thus there exist complementary non-degenerate distribu-
tions S(TM) and S(TM~) of Rad(TM) in TM and T M+ respectively,
which called the screen and co-screen distribution on M ;

(1.2) TM = Rad(TM) @oper, S(TM),
TM* = Rad(TM) ©opp, S(TM™),

where @, denotes the orthogonal direct sum. We denote such a
half lightlike submanifold by M = (M, g,S(T'M)). Denote by F(M)
the algebra of smooth functions on M and by I'(F) the F(M) mod-
ule of smooth sections of any vector bundle E over M. Consider the
orthogonal complementary distribution S(TM)* to S(TM) in TM.
Certainly TM* is a subbundle of S(TM)+. As S(TM*') is a non-
degenerate subbundle of S(T'M)*, the orthogonal complementary dis-
tribution S(TM+)* to S(TM*) in S(TM)* is also a non-degenerate
distribution. Clearly Rad(TM) is a subbundle of S(TM*)*. Choose
L € T(S(TM%)) as a unit vector field with g(L, L) = ¢ = +1. For any
null section & of Rad(T'M), there exists a uniquely defined null vector
field N € I'(S(TM~*)1) satisfying

g, N)=1, g(N,N)=g(N,X)=g(N,L)=0, VX € I'(S(TM)).
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Denote by Itr(T M) the vector subbundle of S(TM*)~ locally spanned
by N. Then we show that S(TM*)* = Rad(TM) @ ltr(TM). Let
tr(TM) = S(TM*)@ o ltr(TM). We call N, Itr(TM) and tr(TM) the
lightlike transversal vector field, lightlike transversal vector bundle and
transversal vector bundle of M with respect to the screen distribution
S(T'M) respectively. Then T'M is decomposed as follow :

(1.3) TM = TM & tr(TM) = {Rad(TM) & tr(TM)} ®opn S(TM)
= {Rad(TM) ® ltr(TM)} Gortn S(TM) Born S(TM™).

Let P be the projection morphism of 7'M on S(TM) with respect to
the decomposition (1.2). The local Gauss and Weingarten formulas of
M and S(T'M) are given by

(1.4) VxY = VxY + B(X,Y)N + D(X,Y)L,
(1.5) VxN = —A,X +7(X)N + p(X)L,

(1.6) VxL = —A, X + ¢(X)N,

(1.7) VxPY = V4PY +C(X,PY),

(1.8) Vxé = —AIX —7(X)¢, VX, Y eD(TM)

respectively, where V and V* are induced connections on T'M and
S(TM) respectively, B and D are called the local second fundamental
forms of M, C' is called the local second fundamental form on S(TM).
Ay, AZ and A, are linear operators on TM and 7, p and ¢ are 1-forms
on TM. We say that h(X,Y) = B(X,Y)N + D(X,Y)L is the second
fundamental tensor of M. The induced connection V on M is not metric
and satisfies

(1.9) (Vxg)(V,2) = B(X,Y)n(Z) + B(X, Z)(Y),
for any X, Y, Z € (T M), where n is a 1-form on T'M such that
(1.10) n(X)=9(X,N), VX e I'(TM).

But the connection V* is metric. Using (1.1) and (1.4), we show that
(1.11) TX,Y)=7nYV)X —n(X)Y, VX, Y eI'(TM),

and B and D are symmetric, where 7" is the torsion tensor with respect
to V. From (1.9) and (1.11), we show that the induced connection V
of M is a semi-symmetric non-metric connection of M. From the facts
B(X,Y)=9(VxY,§) and D(X,Y) = eg(VxY, L), we know that B and
D are independent of the choice of S(T'M) and satisfy

(1.12) B(X,£) =0, D(X,£) = —ep(X), VX € T(TM).
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The above three local second fundamental forms are related to their
shape operators by

(1.13) B(X,Y) = g(4A:X,Y), Z]’(AZX, N) =0,

(1.14) C(X,PY)=g(A,X,PY), g(AyX,N) =0,

(115) eD(X,Y) = g(4,X,Y) = 6(X)n(Y), §(A, X, N) = ep(X),

for all X, Y € I'(TM). By (1.13) and (1.14), we show that A7 and A,

are I'(S(T'M))-valued shape operators related to B and C' respectively
and A is self-adjoint on T'M and

(1.16) Az =0,

Denote by E, R and R” the curvature tensors of the semi-symmetric
metric connection V on M, the induced connection V on M and the in-
duced connection V* on S(T'M) respectively. Using the Gauss-Weingarten
equations (1.4)~(1.8) for M and S(T'M), we obtain the Gauss-Codazzi
equations for M and S(T'M):

(1.17) §(R(X,Y)Z, PW) = g(R(X,Y)Z, PW)

+ B(X,2)C(Y,PW) - B(Y,Z)C(X,PW)
+ e{D(X,Z)D(Y,PW) - D(Y,Z)D(X,PW)},

(118) G(R(X,Y)Z, &) = (VxB)(Y,Z) - (VyB)(X, Z)

+ [7(X) = 7(X)B(Y, 2) - [7(Y) = 7(YV)]B(X, 2)
+o(X)D(Y, Z) - o(Y)D(X, 2),

(1.19) g(R(X,Y)Z, N) = §(R(X,Y)Z, N)
+e{p(Y)D(X, Z) — p(X)D(Y, 2)},

(120) eg(R(X,Y)Z, L) = (VxD)(Y,Z) - (VyD)(X, Z)
+p(X)B(Y, 2) - p(Y)B(X, Z)
+7(Y)D(X,Z) — (X)D(Y,Z),

(1.21) G(R(X,Y)E, N) = g(A{X, AY) — g(AfY, A, X)

— 2d7(X,Y) 4+ p(X)o(Y) — p(Y)p(X),

(1.22) g(R(X,Y)PZ, PW) = g(R*(X,Y)PZ, PW)

+C(X,PZ)B(Y,PW)—-C(Y,PZ)B(X,PW),

(1.23) g(R(X,Y)PZ, N) = (Vx )(Y, PZ)— (VyC)(X,PZ)

+ [7(Y) + 7(V)]C(X, PZ) — [(X) + 7(X)]C(Y, P2),
forall X, Y, Z, W e I'(TM).
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The Ricci curvature tensor, denoted by Ei/c, of M is defined by
Ric(X,Y) = trace{Z — R(Z,X)Y},
for any X, Y € F(TM). Let dim M = m + 3. Locally, Ric is given by
(1.24) Ric(X,Y) =Y e §(R(E;, X)Y, Ey),

where {F1, ..., En43} is an orthonormal frame field of TM and ¢; (=
+1) denotes the causal character of respective vector field E;. If the

Ricci tensor Ric is of the form

Ric = Kg, K is a smooth function on M,
then M is called to be an Einstein manifold. It M is connected Einstein
manifold with dim(M) = 2, then ¥ is a constant. A semi-Riemannian
manifold M of constant curvature c is called a space form, denote it by
M (c). Then the curvature tensor R of M is given by
(1.25) R(X,Y)Z =c{g(V,2)X —g(X,2)Y}, VXY Z¢€ F(TM).

In general, S(T'M) is not necessarily integrable. The following result
gives equivalent conditions for the integrability of S(7TM):

THEOREM 2.1. Let M be a half lightlike submanifold of a semi-
Riemannian manifold M admitting a semi-symmetric metric connection.
The following assertions are equivalent :

(1) The screen distribution S(T'M) is an integrable distribution.

(2) C is symmetric, i.e., C(X,Y) = C(Y,X) forall X, Y € T'(S(T'M)).

(3) The shape operator A, is self-adjoint with respect to g, i.e.,

(A X,Y) =g(X,A,Y), VX,Y eT(S(TM)).

Proof. First, note that a vector field X on M belongs to S(TM) if
and only if we have n(X) = 0. Next, by using (1.7) and (1.11), we have

CX,)Y)-CY,X)=n(X,Y]), VX, Yel(S(TM)),

which implies the equivalence of (1) and (2). Finally, the equivalence of
(2) and (3) follows from the first equation of (1.14) [denote (1.14);]. O

3. Totally umbilical screen distributions

Let R 2 denote the induced Ricci type tensor on M given by
2.1)  ROD(X,)Y) =trace{Z — R(Z,X)Y}, VX,Y eD(TM).
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Consider the induced quasi-orthonormal frame {&;W,} on M, where
Rad(TM) = Span{¢} and S(TM) = Span{W,} and let {&, Wy; L, N}
be the corresponding frame field on M. Using (1.24) and (2.1), we get

(22)  Rie(X,Y) = cad(R(Wa, X)Y, Wa) + G(R(E X)Y, N)
a=1

+eg(R(L,X)Y, L) + §(R(N,X)Y, ¢).

Ms

(2.3)  RO2(X,Y) €a g(R(Wo, X)Y, Wa) + g(R(, X)Y, N).

a=1

Substituting (1.17) and (1.19) in (2.2) and using (1.13)~(1.15) and (2.3),
for any X, Y € I'(T'M), we obtain

(24)  ROI(X)Y) = Ric(X,Y)+ B(X,Y)trA, + D(X,Y)trA,
—g9(Ay X, A§ ) —eg(A, X, A Y) + p(X)o(Y)
_g( (f,Y)X, N)—eﬁ(é(L,Y)X, L)'

This shows that R(®? is not symmetric. R(®? is called the induced
Ricci tensor, denoted by Ric, of M if it is symmetric.
Using (1.21), (2.4) and the first Bianchi’s identity, we obtain

ROD(X,v) - ROA(Y, X) =2dr(X,Y).

THEOREM 3.1. [5]. Let M be a half lightlike submanifold of a semi-
Riemannian manifold M admitting a semi-symmetric metric connec-
tion. Then the Ricci type tensor R(?) is symmetric if and only if the
1-form 7 is closed, i.e., dT =0, on any U C M.

If M is a semi-Riemannian space form M (c), then we have
R(EY)X = cg(X,Y)E, R(L,X)Y =c§(X,Y)L
and Ric(X,Y) = (m+ 2)c§(X,Y). Thus we obtain
(2.5) ROD(X,Y) = meg(X,Y)+ B(X,Y)trA, + D(X,Y)trA,
—9(Ay X, AY) —eg(A, X, AY) + p(X)o(Y).

A vector field X on M is said to be a conformal Killing vector field
[5] if L 9 = 2ag for any smooth function «, where E denotes the Lie
derivative with respect to X, that is,

(L )Y, Z) = X(G(Y,2)) - §(X,Y), Z) - §(V,[X, Z)),
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for all X,Y,Z € F(TM). In particular, if o = 0, then X is called a

Killing vector field. A distribution G on M is called a conformal Killing
(or Killing) distribution if each vector field belonging to G is a conformal
Killing (or Killing) vector field.

THEOREM 3.2. [5]. Let M be a half lightlike submanifold of a semi-

Riemannian manifold M admitting a semi-symmetric metric connec-
tion. If S(TM™) is a conformal Killing distribution, then there exists a
smooth function 6 = —{a+ w(L)} such that

(2.6) D(X,Y) =5 g(X,Y), VX,Y eTI(TM).
Moreover, if S(TM™) is a Killing distribution, then the equation (2.6)
holds and the function ¢ is given by 6 = —w(L).

DEFINITION 3.3. We say that the screen distribution S(TM) of M
is totally umbilical[2] in M if, on any coordinate neighborhood U C M,
there is a smooth function v such that

(2.7) C(X,PY)=~g(X,Y), VX,Y eD(TM).
In case v = 0 on U, we say that S(T'M) is totally geodesic in M.

For the rest of this paper, by M is screen totally umbilical we shall
mean the screen distribution S(TM) is totally umbilical in M.

THEOREM 3.4. Let M be a screen totally umbilical half lightlike sub-
manifold of a semi-Riemannian space form M/(c) admitting a semi-
symmetric metric connection and a conformal Killing co-screen distri-
bution. Then R2 is a symmetric Ricci tensor of M.

Proof. Assume that S(T' M) is a conformal Killing distribution. From
(1.12) and (2.6), we show that ¢ = 0. From this result, (2.5) and the
facts Ay X = yPX and A is self-adjoint, we deduce that R(:2) ig a
symmetric Ricci tensor of M. O
Assume that S(T'M) is totally umbilical in M and S(T'M 1) is conformal
Killing on M. Then (1.18) and (1.20) reduce to
(2.8) (VxB)(Y,2) = (VyB)(X, Z) = B(X, Z){7(Y) —n(Y)}

= B(Y, 2){r(X) - 7(X)},
(29) (VxD)(Y,Z) — (VyD)(X, 2) = p(Y)B(X, Z) — p(X)B(Y, 2)
— 7(Y)D(X, Z) + n(X)D(Y, Z).
Applying V7 to (2.7) and using (1.9), we have
(VxC)Y,PZ) = X[y]g(Y, PZ) +yB(X,PZ)n(Y).
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Substituting this equation into (1.23) and using (2.7), we get
J(R(X,Y)PZ, N) = H{B(X,PZ)n(Y) - B(Y,PZ)n(X)}
+{X 0] = 7(X) = y7(X)}g(Y, PZ)
—{Y[] =7 (Y) =7 (V) }g(X, PZ).
Substituting this result, (1.25) and (2.6) into (1.19), we obtain
{X[Y] = 7(X) = 97 (X) = 0p(X) — en(X)}g(Y, PZ)
YD =7(Y) =7(Y) = 6p(Y) — en(Y) }9(X, PZ)
= y{B(Y,PZ)n(X)—-B(X,PZ)n(Y)}, VX,Y, ZecT(TM).
Replacing Y by & to this equation and using (1.12);, we have
(210)  B(X,Y) = {0y —7(&) — 7 (&) = p(§) — c}g(X,Y).
THEOREM 3.5. Let M be a screen totally umbilical half lightlike sub-
manifold of a semi-Riemannian space form M™3(c),m > 2, admitting
a semi-symmetric metric connection and a/\c/onformal Killing co-screen
distribution. If the torsion vector field ¢ of M 1is tangent to M, then the

local second fundamental forms B and C' of M and S(T'M) respectively
satisfy either B=0 or C =0 on anyUd C M. Moreover we show that

(1) C =0 on any U C M implies that S(TM) is a totally geodesical
distribution,
(2) B=0 on anyU C M implies that M is totally umbilical immersed

in M(c) and the induced connection V on M is a semi-symmetric
metric connection.

Proof. Assume that vy # 0: As ( is tangent to M, (2.10) reduce to
(2.11) B(X,Y) = Bg(X,Y), VX, Y € (T M),
where 3 = vy~ (&[y]—7(€) —p(€) —c). Since S(T M) is totally umbilical
in M, by Theorem 2.1 S(T'M) is integrable. Let M* be a leaf of S(T'M)

and Ric* be the symmetric Ricci tensor of M*. From (1.17), (1.22),
(1.25), (2.6), (2.7) and (2.11), we have

R(X.Y)Z = (e + 289 + ) {g(Y. 2)X — g(X.Z)V).
Ric*(X,Y) = (c+ 28y + e5*)(m — 1)g(X,Y).
Thus M* is an Einstein semi-Riemannian manifold of constant curvature
(c+2Bv+€6%) as m > 2. Differentiating (2.6) and (2.11) and using (2.8)
and (2.9), for any X, Y, Z € I'(S(T'M)), we have
{X[6] + B7(X) = pr(X) — Fn(X)}g(Y, Z)
= {Y[B] +p7(Y) = Br(Y) - B*n(Y)}9(X, Z),
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{X[0] + eB8p(X) — om(X) — Bon(X)}g(Y, Z)
= {Y[0] + €Bp(Y) — 6m(Y) — Bon(Y)}g(X, Z).

From (2.11) and the last two equations, we have

£[6) = 87— B7(€),  €[6] = B0 —eBp(€), El] = By +7(E) +0p(€) +c,
due to 7(&) = 0. Since (¢ + 2037 + €6?) is a constant, we get

0= &[c+ 207 + €6%] = 28(c + 267 + €5?).

As (c+ 287y + €6?) is a constant, we have 3 = 0 or ¢ + 23y + €62 = 0.
If ¢+ 237 + €62 = 0, then M* is a semi-Euclidean space. As the second
fundamental form C' of the totally umbilical semi-Euclidean space M*
as a submanifold of the semi-Riemannian space form M (c) vanishes [1,
Section 2.3, we get v = 0. It is a contradiction to v # 0. Thus § = 0,
i.e., B =0. In this case, from (2.6) and (2.11), the second fundamental
tensor h of M is given by h = H g, where H = BN + edL = e¢dL is the
curvature vector field on M. Thus M is totally umbilical. As B = 0,
we have V, g =0 by (1.9). From this result and (1.11), we see that the
induced connection V on M is a semi-symmetric metric connection. [J

4. Totally geodesic screen distributions

THEOREM 4.1. Let M be a screen totally geodesic half lightlike sub-
manifold of a semi-Riemannian space form M/(c) admitting a semi-
symmetric metric connection and a conformal Killing co-screen distri-
bution. Then ¢+ dp(€) = 0 and M is an Einstein manifold. Moreover
if m > 1, then the function §, given by (2.6), is a constant.

Proof. As C =0, we have g(R(X,Y)PZ, N) = 0 due to (1.23). Using
this, (1.19) and (2.6), we have

G(E(X,Y)PZ, N) = {g(X, PZ)p(Y) — g(Y, PZ)p(X)}.
By Theorem 3.1 and Theorem 3.3, we get d7 = 0 on T'M. Thus we have

g(R(X,Y)¢, N) =0 due to (1.21). From the above results, we deduce
the following equation

(1) GRX.Y)Z N) = 6{g(X. 2)p(Y) = (Y. Z)p(X)}.
Replacing X by & and Z by X to (3.1) and using (1.25), we have

{c+6p(E)g(X,Y) =0, VX,Y eI(TM).
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Thus we have ¢ + dp(§) = 0. Substituting the relations ¢ = Ay = 0,
trA, = md+ep(§) and A, X = §PX + ep(X)¢ into (2.5) and using
c+dp(§) = 0, we obtain

ROD(XY)=(m—-1)(c+e?)g(X,Y), VX,Y eTl(TM).
Thus M is Einstein manifold and ¢ is constant as dimM = m +1 >
2. O

THEOREM 4.2. Let M be a screen totally geodesic half lightlike sub-
manifold of a semi-Riemannian space form M(C) admitting a semi-
symmetric metric connection and a Killing co-screen distribution. If
the torsion vector field 0f]\7 s tangent to M, then ¢ =0, and M is a
space of constant curvature 0, i.e., M is a flat manifold.

Proof. Assume that ¢ is tangent to M. Then we have w(L) = 0.
Thus the conformal factor a is equal to —J. As S(TM™) is a Killing
distribution, we have aw = 0. Thus § = 0 and ¢ = 0 due to ¢+ dp(§) = 0.
From (1.17), (1.19) and the fact C' = D = 0, we have

g(R(X,Y)Z, W) =0, G(R(X,Y)Z, N)=0.

The Riemannian curvature tensor R of M is given by
R(X,Y)Z =) eag(R(X,Y)Z, Wa)Wa + G(R(X,Y)Z,N)¢ = 0.
a=1

Therefore M is a space of constant curvature 0, i.e., M is flat. O

THEOREM 4.3. Let M be a screen totally geodesic half lightlike sub-
manifold of a semi-Riemannian space form M™3(c), m > 1, admitting
a semi-symmetric metric connection and a conformal Killing co-screen
distribution. If § # 0, then the torsion vector field ¢ belongs to S(T M)+
and the 1-form 7 satisfies m(X) = w(E)n(X) for all X € T(TM).

Proof. As m > 1, ¢ is constant. Comparing (1.25) and (3.1), we get

{en(X) +0p(X)19(Y, 2) = {en(Y) + 6p(Y)}9(X, 2),

for all X, Y, Z € T(TM). Taking X = PX,Y = PY and Z = PZ in
this equation and using the fact S(7'M) is non-degenerate, we have

5p(PX)PY = 6p(PY)PX, VX,Y eT(TM).

Suppose there exists a vector field X, € I'(T'M,,) such that 5p(PX,) # 0
at a point p € M. It follows that all vectors from the fibre S(T'M), are
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collinear with (PX,),. It is a contradiction as m > 1. Thus we have
dp(PX) =0 for any X € I'(T'M) and

(3:2) op(X) = dp(PX +n(X)§) = dp(§)n(X) = —c.
Assume that § does not vanishes. Then we have p(PX) = 0 and
p(X) = —(e/8)(X), VX eT(TM).
Substituting (2.6) into (2.9) and using the fact J is a constant, we have
(3.3)  {m(Y) —ep(Y)}B(X, Z) — {on(X) — ep(X)}B(Y, 2)
= 5{m(X)g(Y, Z) - n(Y)g(X,2)}, VX,Y,ZeD(TM).

Taking X = PX, Y = PY and Z = PZ in this equation and using the
facts p(PX) =0, § # 0 and S(TM) is non-degenerate, we have

m(PX)PY = n(PY)PX, VX,Y e€T(TM).

Asm > 1, 7(PX)=0and n(X) = 7(PX +n(X)§) = n(§)n(X) for any
X e I'(T'M). From the decomposition (1.3), the torsion vector field ¢ is
decomposed by

(=w+n(N)E+ ()N +en(L)L,

where w is a smooth vector field on S(T'M) and w(N)& + 7(§)N +
em(L)L € T(S(TM)*). Taking the scalar product with X to the last
equation and using m(X) = w({)n(X), we get g(w, X) = 0 for all
X € I'(TM). As S(T'M) is non-degenerate, we have w = 0. This
implies that ¢ belongs to S(TM)=,. O

COROLLARY 4.4. Let M be a screen totally geodesic half lightlike sub-
manifold of a semi-Riemannian space form M™3(c), m > 1, admitting
a semi-symmetric metric connection and a conformal Killing co-screen
distribution with non-vanishing conformal factor. If the torsion vector
field ¢ is tangent to M, then the 1-form m vanishes identically on T M .

Proof. If { is tangent to M, then we have 7(§) = ¢g(¢, §) = 0. Thus
m(X) =0 for all X € T'(TM) due to m(X) = 7({)n(X). In case ( is
tangent to M, we know that a« = —¢§. Thus if the conformal factor «
does not vanishes, then we have § # 0. O

The type number t*(z) of M at any point z is the rank of Ag.

THEOREM 4.5. Let M be a screen totally geodesic half lightlike sub-
manifold of a semi-Riemannian space form M™T3(c), m > 1, admitting
a semi-symmetric metric connection and a conformal Killing co-screen
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distribution. If the torsion vector field ¢ is tangent to M and the type
number t* satisfies t*(x) > 1 for any x € M, then M is a flat manifold.

Proof. Under the assumption of this theorem, we have

(3.4) g(R(X,Y)Z, PW) = (c+e6*){g(Y, Z)g(X, PW)
—g(X, Z)g(Y, PW)}v
(3.5) J(R(X,Y)Z, N) = {en(X) + ép(X)}9(Y, Z)

—{en(Y) +6p(Y)}9(X, Z).
forall X,Y,Z, W € I'(TM). Due to (3.2), we have g(R(X,Y)Z, N) = 0.
Replacing Y by & to (3.3), we obtain

{6 —€ep(§)}B(X,Y) =0, VX,Y el (TM).

As § is a constant and ¢+ Jp(&) = 0, p(§) and § — ep(§) are constants.
Assume that t*(x) > 1 for any x € M. Then we have § — ep(§) = 0.
This implies ¢ + €§? = 0 due to ¢ + dp(¢) = 0. From this and (3.4). we
get g(R(X,Y)Z, PW) =0. Thus M is a flat manifold. O

DEFINITION 4.6. M is said to be irrotational [6] if Vx& € T'(T'M) for
any X € I'(TM), ie., D(X,£) =0=¢(X) for all X € I'(T'M).

REMARK 4.7. Instead of the condition S(T' M=) is conformal Killing
distribution of Theorem 4.1 ~ 4.4, even though we use the condition M
is irrotational of Definition 4.6 given above, it is easy to find that we
can establish the same results Theorem 4.1 ~ 4.4 except Theorem 4.2.
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