GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC METRIC CONNECTION

Dae Ho Jin*

ABSTRACT. We study the geometry of half lightlike sbmanifolds M of a semi-Riemannian space form $\widetilde{M}(c)$ admitting a semi-symmetric metric connection subject to the conditions: (1) The screen distribution S(TM) is totally umbilical (geodesic) and (2) the co-screen distribution $S(TM^{\perp})$ of M is a conformal Killing one.

1. Introduction

H. A. Hayden [3] introduced the notion of a semi-symmetric metric connection on a Riemannian manifold. K. Yano [8] studied some properties of a Riemannian manifold endowed with a semi-symmetric metric connection. T. Imai [4] found some properties of a hypersurface of a Riemannian manifold with a semi-symmetric metric connection. Z. Nakao [7] studied submanifolds of a Riemannian manifold with semi-symmetric metric connections.

The objective of this paper is the study of half lightlike version of above classical results. We focus on the geometry of half lightlike submanifolds M of a semi-Riemannian space form $\widetilde{M}(c)$ admitting a semi-symmetric metric connection subject to the conditions: (1) The screen distribution S(TM) is totally umbilical and (2) the co-screen distribution $S(TM^{\perp})$ is a conformal Killing one. The reason for this geometric condition on M is due to the fact that such a class admits an integrable screen distribution and the induced Ricci tensor of M to be symmetric. In Section 2, we prove a classification theorem for such a class. This theorem shows that if the torsion vector field of \widetilde{M} is tangent to M, then the local second fundamental forms B and C of M and S(TM)

Received August 03, 2011; Accepted November 18, 2011.

²⁰¹⁰ Mathematics Subject Classification: Primary 53C25, 53C40, 53C50.

Key words and phrases: totally umbilical, conformal Killing distribution, semi-Riemannian space form with semi-symmetric metric connection.

respectively satisfy either B=0 or C=0. In Section 3, we study the geometry of half lightlike submanifolds M of a semi-Riemannian space form $\widetilde{M}(c)$ admitting a semi-symmetric metric connection such that S(TM) is totally geodesic and $S(TM^{\perp})$ is conformal Killing.

2. Semi-symmetric metric connection

Let $(\widetilde{M},\widetilde{g})$ be a semi-Riemannian manifold. A connection $\widetilde{\nabla}$ on \widetilde{M} is called a *semi-symmetric metric connection* [3] if it is metric, i.e., $\widetilde{\nabla}\widetilde{g}=0$ and its torsion tensor \widetilde{T} satisfies

(1.1)
$$\widetilde{T}(X,Y) = \pi(Y)X - \pi(X)Y,$$

for any vector fields X and Y of \widetilde{M} , where π is a 1-form defined by

$$\pi(X) = \widetilde{g}(X, \zeta),$$

and ζ is a vector field on \widetilde{M} , which called the torsion vector field.

It is well known [2] that the radical distribution $Rad(TM) = TM \cap TM^{\perp}$ of half lightlike submanifolds M of a semi-Rimannian manifold of codimension 2 is a subbundle of the tangent bundle TM and the normal bundle TM^{\perp} . Thus there exist complementary non-degenerate distributions S(TM) and $S(TM^{\perp})$ of Rad(TM) in TM and TM^{\perp} respectively, which called the screen and co-screen distribution on M;

(1.2)
$$TM = Rad(TM) \oplus_{orth} S(TM),$$
$$TM^{\perp} = Rad(TM) \oplus_{orth} S(TM^{\perp}),$$

where \oplus_{orth} denotes the orthogonal direct sum. We denote such a half lightlike submanifold by M=(M,g,S(TM)). Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of any vector bundle E over M. Consider the orthogonal complementary distribution $S(TM)^{\perp}$ to S(TM) in $T\widetilde{M}$. Certainly TM^{\perp} is a subbundle of $S(TM)^{\perp}$. As $S(TM^{\perp})$ is a non-degenerate subbundle of $S(TM)^{\perp}$, the orthogonal complementary distribution $S(TM^{\perp})^{\perp}$ to $S(TM^{\perp})$ in $S(TM)^{\perp}$ is also a non-degenerate distribution. Clearly Rad(TM) is a subbundle of $S(TM^{\perp})^{\perp}$. Choose $L \in \Gamma(S(TM^{\perp}))$ as a unit vector field with $\widetilde{g}(L,L) = \epsilon = \pm 1$. For any null section ξ of Rad(TM), there exists a uniquely defined null vector field $N \in \Gamma(S(TM^{\perp})^{\perp})$ satisfying

$$\widetilde{g}(\xi, N) = 1, \ \widetilde{g}(N, N) = \widetilde{g}(N, X) = \widetilde{g}(N, L) = 0, \ \forall X \in \Gamma(S(TM)).$$

Denote by ltr(TM) the vector subbundle of $S(TM^{\perp})^{\perp}$ locally spanned by N. Then we show that $S(TM^{\perp})^{\perp} = Rad(TM) \oplus ltr(TM)$. Let $tr(TM) = S(TM^{\perp}) \oplus_{orth} ltr(TM)$. We call N, ltr(TM) and tr(TM) the lightlike transversal vector field, lightlike transversal vector bundle and transversal vector bundle of M with respect to the screen distribution S(TM) respectively. Then $T\widetilde{M}$ is decomposed as follow:

(1.3)
$$T\widetilde{M} = TM \oplus tr(TM) = \{Rad(TM) \oplus tr(TM)\} \oplus_{orth} S(TM)$$

= $\{Rad(TM) \oplus ltr(TM)\} \oplus_{orth} S(TM) \oplus_{orth} S(TM^{\perp}).$

Let P be the projection morphism of TM on S(TM) with respect to the decomposition (1.2). The local Gauss and Weingarten formulas of M and S(TM) are given by

$$(1.4) \widetilde{\nabla}_X Y = \nabla_X Y + B(X, Y)N + D(X, Y)L,$$

(1.5)
$$\widetilde{\nabla}_X N = -A_N X + \tau(X) N + \rho(X) L,$$

(1.6)
$$\widetilde{\nabla}_X L = -A_L X + \phi(X) N,$$

(1.7)
$$\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,$$

(1.8)
$$\nabla_X \xi = -A_{\xi}^* X - \tau(X) \xi, \quad \forall X, Y \in \Gamma(TM)$$

respectively, where ∇ and ∇^* are induced connections on TM and S(TM) respectively, B and D are called the local second fundamental forms of M, C is called the local second fundamental form on S(TM). A_N , A_ξ^* and A_L are linear operators on TM and τ , ρ and ϕ are 1-forms on TM. We say that h(X,Y) = B(X,Y)N + D(X,Y)L is the second fundamental tensor of M. The induced connection ∇ on M is not metric and satisfies

$$(1.9) (\nabla_X g)(Y, Z) = B(X, Y)\eta(Z) + B(X, Z)\eta(Y),$$

for any $X, Y, Z \in \Gamma(TM)$, where η is a 1-form on TM such that

(1.10)
$$\eta(X) = \widetilde{g}(X, N), \ \forall X \in \Gamma(TM).$$

But the connection ∇^* is metric. Using (1.1) and (1.4), we show that

$$(1.11) T(X,Y) = \pi(Y)X - \pi(X)Y, \quad \forall X, Y \in \Gamma(TM),$$

and B and D are symmetric, where T is the torsion tensor with respect to ∇ . From (1.9) and (1.11), we show that the induced connection ∇ of M is a semi-symmetric non-metric connection of M. From the facts $B(X,Y)=\widetilde{g}(\widetilde{\nabla}_XY,\xi)$ and $D(X,Y)=\epsilon\widetilde{g}(\widetilde{\nabla}_XY,L)$, we know that B and D are independent of the choice of S(TM) and satisfy

$$(1.12) B(X,\xi) = 0, \ D(X,\xi) = -\epsilon \phi(X), \ \forall X \in \Gamma(TM).$$

The above three local second fundamental forms are related to their shape operators by

$$(1.13) \quad B(X,Y) = g(A_{\varepsilon}^*X,Y), \qquad \qquad \widetilde{g}(A_{\varepsilon}^*X,N) = 0,$$

$$(1.14) \quad C(X, PY) = g(A_N X, PY), \qquad \qquad \widetilde{g}(A_N X, N) = 0,$$

$$(1.15) \quad \epsilon D(X,Y) = g(A_L X,Y) - \phi(X)\eta(Y), \ \widetilde{g}(A_L X,N) = \epsilon \rho(X),$$

for all $X,Y\in\Gamma(TM)$. By (1.13) and (1.14), we show that A_ξ^* and A_N are $\Gamma(S(TM))$ -valued shape operators related to B and C respectively and A_ξ^* is self-adjoint on TM and

$$(1.16) A_{\varepsilon}^* \xi = 0.$$

Denote by \widetilde{R} , R and R^* the curvature tensors of the semi-symmetric metric connection $\widetilde{\nabla}$ on \widetilde{M} , the induced connection ∇ on M and the induced connection ∇^* on S(TM) respectively. Using the Gauss-Weingarten equations $(1.4)\sim(1.8)$ for M and S(TM), we obtain the Gauss-Codazzi equations for M and S(TM):

$$(1.17) \quad \widetilde{g}(\widetilde{R}(X,Y)Z,PW) = g(R(X,Y)Z,PW) + B(X,Z)C(Y,PW) - B(Y,Z)C(X,PW) + \epsilon \{D(X,Z)D(Y,PW) - D(Y,Z)D(X,PW)\},$$

(1.18)
$$\widetilde{g}(\widetilde{R}(X,Y)Z,\xi) = (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) + [\tau(X) - \pi(X)]B(Y,Z) - [\tau(Y) - \pi(Y)]B(X,Z) + \phi(X)D(Y,Z) - \phi(Y)D(X,Z),$$

$$(1.19) \quad \widetilde{g}(\widetilde{R}(X,Y)Z,N) = \widetilde{g}(R(X,Y)Z,N) + \epsilon \{\rho(Y)D(X,Z) - \rho(X)D(Y,Z)\},$$

$$(1.20) \quad \epsilon \widetilde{g}(\widetilde{R}(X,Y)Z,L) = (\nabla_X D)(Y,Z) - (\nabla_Y D)(X,Z) + \rho(X)B(Y,Z) - \rho(Y)B(X,Z) + \pi(Y)D(X,Z) - \pi(X)D(Y,Z),$$

(1.21)
$$\widetilde{g}(\widetilde{R}(X,Y)\xi, N) = g(A_{\xi}^*X, A_NY) - g(A_{\xi}^*Y, A_NX) - 2d\tau(X,Y) + \rho(X)\phi(Y) - \rho(Y)\phi(X),$$

(1.22)
$$g(R(X,Y)PZ, PW) = g(R^*(X,Y)PZ, PW) + C(X,PZ)B(Y,PW) - C(Y,PZ)B(X,PW),$$

(1.23)
$$\widetilde{g}(R(X,Y)PZ, N) = (\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ) + [\tau(Y) + \pi(Y)]C(X, PZ) - [\tau(X) + \pi(X)]C(Y, PZ),$$

for all $X, Y, Z, W \in \Gamma(TM)$.

The *Ricci curvature tensor*, denoted by \widetilde{Ric} , of \widetilde{M} is defined by

$$\widetilde{Ric}(X,Y) = trace\{Z \to \widetilde{R}(Z,X)Y\},$$

for any $X, Y \in \Gamma(T\widetilde{M})$. Let $\dim \widetilde{M} = m + 3$. Locally, \widetilde{Ric} is given by

(1.24)
$$\widetilde{Ric}(X,Y) = \sum \epsilon_i \, \widetilde{g}(\widetilde{R}(E_i,X)Y, E_i),$$

where $\{E_1, \ldots, E_{m+3}\}$ is an orthonormal frame field of $T\widetilde{M}$ and ϵ_i (= ± 1) denotes the causal character of respective vector field E_i . If the Ricci tensor \widetilde{Ric} is of the form

$$\widetilde{Ric} = \widetilde{\kappa}\widetilde{g}$$
, $\widetilde{\kappa}$ is a smooth function on \widetilde{M} ,

then \widetilde{M} is called to be an *Einstein manifold*. If \widetilde{M} is connected Einstein manifold with $\dim(\widetilde{M})=2$, then $\widetilde{\kappa}$ is a constant. A semi-Riemannian manifold \widetilde{M} of constant curvature c is called a *space form*, denote it by $\widetilde{M}(c)$. Then the curvature tensor \widetilde{R} of \widetilde{M} is given by

$$(1.25) \quad \widetilde{R}(X,Y)Z = c\{\widetilde{g}(Y,Z)X - \widetilde{g}(X,Z)Y\}, \quad \forall X, Y, Z \in \Gamma(T\widetilde{M}).$$

In general, S(TM) is not necessarily integrable. The following result gives equivalent conditions for the integrability of S(TM):

Theorem 2.1. Let M be a half lightlike submanifold of a semi-Riemannian manifold \widetilde{M} admitting a semi-symmetric metric connection. The following assertions are equivalent:

- (1) The screen distribution S(TM) is an integrable distribution.
- (2) C is symmetric, i.e., C(X,Y) = C(Y,X) for all $X,Y \in \Gamma(S(TM))$.
- (3) The shape operator A_N is self-adjoint with respect to g, i.e.,

$$g(A_N X, Y) = g(X, A_N Y), \quad \forall X, Y \in \Gamma(S(TM)).$$

Proof. First, note that a vector field X on M belongs to S(TM) if and only if we have $\eta(X)=0$. Next, by using (1.7) and (1.11), we have

$$C(X,Y) - C(Y,X) = \eta([X,Y]), \quad \forall X, Y \in \Gamma(S(TM)),$$

which implies the equivalence of (1) and (2). Finally, the equivalence of (2) and (3) follows from the first equation of (1.14) [denote $(1.14)_1$]. \square

3. Totally umbilical screen distributions

Let $R^{(0,2)}$ denote the induced Ricci type tensor on M given by

(2.1)
$$R^{(0,2)}(X,Y) = trace\{Z \to R(Z,X)Y\}, \quad \forall X, Y \in \Gamma(TM).$$

Consider the induced quasi-orthonormal frame $\{\xi; W_a\}$ on M, where $Rad(TM) = Span\{\xi\}$ and $S(TM) = Span\{W_a\}$ and let $\{\xi, W_a; L, N\}$ be the corresponding frame field on \widetilde{M} . Using (1.24) and (2.1), we get

(2.2)
$$\widetilde{Ric}(X,Y) = \sum_{a=1}^{m} \epsilon_a \, \widetilde{g}(\widetilde{R}(W_a, X)Y, W_a) + \widetilde{g}(\widetilde{R}(\xi, X)Y, N) + \epsilon \, \widetilde{g}(\widetilde{R}(L, X)Y, L) + \widetilde{g}(\widetilde{R}(N, X)Y, \xi).$$

(2.3)
$$R^{(0,2)}(X,Y) = \sum_{a=1}^{m} \epsilon_a g(R(W_a, X)Y, W_a) + \widetilde{g}(R(\xi, X)Y, N).$$

Substituting (1.17) and (1.19) in (2.2) and using (1.13) \sim (1.15) and (2.3), for any $X, Y \in \Gamma(TM)$, we obtain

$$(2.4) \qquad R^{(0,\,2)}(X,Y) = \widetilde{Ric}(X,Y) + B(X,Y)trA_N + D(X,Y)trA_L \\ - g(A_NX,\,A_\xi^*Y) - \epsilon\,g(A_LX,\,A_LY) + \rho(X)\phi(Y) \\ - \,\widetilde{g}(\widetilde{R}(\xi,Y)X,\,N) - \epsilon\,\widetilde{g}(\widetilde{R}(L,Y)X,\,L).$$

This shows that $R^{(0,2)}$ is not symmetric. $R^{(0,2)}$ is called the *induced* Ricci tensor, denoted by Ric, of M if it is symmetric.

Using (1.21), (2.4) and the first Bianchi's identity, we obtain

$$R^{(0,2)}(X, Y) - R^{(0,2)}(Y, X) = 2d\tau(X, Y).$$

THEOREM 3.1. [5]. Let M be a half lightlike submanifold of a semi-Riemannian manifold \widetilde{M} admitting a semi-symmetric metric connection. Then the Ricci type tensor $R^{(0,2)}$ is symmetric if and only if the 1-form τ is closed, i.e., $d\tau = 0$, on any $\mathcal{U} \subset M$.

If \widetilde{M} is a semi-Riemannian space form $\widetilde{M}(c)$, then we have

$$\widetilde{R}(\xi, Y)X = c\widetilde{g}(X, Y)\xi, \quad \widetilde{R}(L, X)Y = c\widetilde{g}(X, Y)L$$

and $\widetilde{Ric}(X,Y)=(m+2)c\,\widetilde{g}(X,Y)$. Thus we obtain

(2.5)
$$R^{(0,2)}(X,Y) = mcg(X,Y) + B(X,Y)trA_N + D(X,Y)trA_L - g(A_N X, A_{\xi}^*Y) - \epsilon g(A_L X, A_L Y) + \rho(X)\phi(Y).$$

A vector field X on \widetilde{M} is said to be a conformal Killing vector field [5] if $\widetilde{\mathcal{L}}_X \widetilde{g} = 2\alpha \widetilde{g}$ for any smooth function α , where $\widetilde{\mathcal{L}}_X$ denotes the Lie derivative with respect to X, that is,

$$(\widetilde{\mathcal{L}}_{\boldsymbol{X}}\widetilde{\boldsymbol{g}})(\boldsymbol{Y},\boldsymbol{Z}) = \boldsymbol{X}(\widetilde{\boldsymbol{g}}(\boldsymbol{Y},\boldsymbol{Z})) - \widetilde{\boldsymbol{g}}([\boldsymbol{X},\boldsymbol{Y}],\boldsymbol{Z}) - \widetilde{\boldsymbol{g}}(\boldsymbol{Y},[\boldsymbol{X},\boldsymbol{Z}]),$$

for all $X,Y,Z \in \Gamma(T\widetilde{M})$. In particular, if $\alpha = 0$, then X is called a Killing vector field. A distribution \mathcal{G} on \widetilde{M} is called a conformal Killing (or Killing) distribution if each vector field belonging to \mathcal{G} is a conformal Killing (or Killing) vector field.

Theorem 3.2. [5]. Let M be a half lightlike submanifold of a semi-Riemannian manifold \widetilde{M} admitting a semi-symmetric metric connection. If $S(TM^{\perp})$ is a conformal Killing distribution, then there exists a smooth function $\delta = -\{\alpha + \pi(L)\}$ such that

(2.6)
$$D(X,Y) = \epsilon \delta g(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

Moreover, if $S(TM^{\perp})$ is a Killing distribution, then the equation (2.6) holds and the function δ is given by $\delta = -\pi(L)$.

DEFINITION 3.3. We say that the screen distribution S(TM) of M is totally umbilical [2] in M if, on any coordinate neighborhood $\mathcal{U} \subset M$, there is a smooth function γ such that

(2.7)
$$C(X, PY) = \gamma g(X, Y), \quad \forall X, Y \in \Gamma(TM).$$

In case $\gamma = 0$ on \mathcal{U} , we say that S(TM) is totally geodesic in M.

For the rest of this paper, by M is screen totally umbilical we shall mean the screen distribution S(TM) is totally umbilical in M.

Theorem 3.4. Let M be a screen totally umbilical half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}(c)$ admitting a semi-symmetric metric connection and a conformal Killing co-screen distribution. Then $R^{(0,2)}$ is a symmetric Ricci tensor of M.

Proof. Assume that $S(TM^{\perp})$ is a conformal Killing distribution. From $(1.12)_2$ and (2.6), we show that $\phi=0$. From this result, (2.5) and the facts $A_NX=\gamma PX$ and A_{ξ}^* is self-adjoint, we deduce that $R^{(0,2)}$ is a symmetric Ricci tensor of M.

Assume that S(TM) is totally umbilical in M and $S(TM^{\perp})$ is conformal Killing on \widetilde{M} . Then (1.18) and (1.20) reduce to

(2.8)
$$(\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) = B(X, Z)\{\tau(Y) - \pi(Y)\}\$$

 $- B(Y, Z)\{\tau(X) - \pi(X)\},$

(2.9)
$$(\nabla_X D)(Y, Z) - (\nabla_Y D)(X, Z) = \rho(Y)B(X, Z) - \rho(X)B(Y, Z) - \pi(Y)D(X, Z) + \pi(X)D(Y, Z).$$

Applying ∇_Z to (2.7) and using (1.9), we have

$$(\nabla_X C)(Y, PZ) = X[\gamma]g(Y, PZ) + \gamma B(X, PZ)\eta(Y).$$

Substituting this equation into (1.23) and using (2.7), we get

$$\widetilde{g}(R(X,Y)PZ, N) = \gamma \{B(X,PZ)\eta(Y) - B(Y,PZ)\eta(X)\}$$

$$+ \{X[\gamma] - \gamma \tau(X) - \gamma \pi(X)\}g(Y,PZ)$$

$$- \{Y[\gamma] - \gamma \tau(Y) - \gamma \pi(Y)\}g(X,PZ).$$

Substituting this result, (1.25) and (2.6) into (1.19), we obtain

$$\begin{split} \{X[\gamma] - \gamma \tau(X) - \gamma \pi(X) - \delta \rho(X) - c \eta(X)\} g(Y, PZ) \\ - \{Y[\gamma] - \gamma \tau(Y) - \gamma \pi(Y) - \delta \rho(Y) - c \eta(Y)\} g(X, PZ) \\ = \gamma \{B(Y, PZ) \eta(X) - B(X, PZ) \eta(Y)\}, \quad \forall X, Y, Z \in \Gamma(TM). \end{split}$$

Replacing Y by ξ to this equation and using $(1.12)_1$, we have

$$(2.10) \qquad \gamma B(X,Y) = \{\xi[\gamma] - \gamma \tau(\xi) - \gamma \pi(\xi) - \delta \rho(\xi) - c\}g(X,Y).$$

THEOREM 3.5. Let M be a screen totally umbilical half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}^{m+3}(c), m > 2$, admitting a semi-symmetric metric connection and a conformal Killing co-screen distribution. If the torsion vector field ζ of \widetilde{M} is tangent to M, then the local second fundamental forms B and C of M and S(TM) respectively satisfy either B = 0 or C = 0 on any $U \subset M$. Moreover we show that

- (1) C = 0 on any $\mathcal{U} \subset M$ implies that S(TM) is a totally geodesical distribution,
- (2) B = 0 on any $\mathcal{U} \subset M$ implies that M is totally umbilical immersed in $\widetilde{M}(c)$ and the induced connection ∇ on M is a semi-symmetric metric connection.

Proof. Assume that $\gamma \neq 0$: As ζ is tangent to M, (2.10) reduce to

$$(2.11) B(X,Y) = \beta q(X,Y), \ \forall X, Y \in \Gamma(TM),$$

where $\beta = \gamma^{-1}(\xi[\gamma] - \gamma \tau(\xi) - \delta \rho(\xi) - c)$. Since S(TM) is totally umbilical in M, by Theorem 2.1 S(TM) is integrable. Let M^* be a leaf of S(TM) and Ric^* be the symmetric Ricci tensor of M^* . From (1.17), (1.22), (1.25), (2.6), (2.7) and (2.11), we have

$$R^{*}(X,Y)Z = (c + 2\beta\gamma + \epsilon\delta^{2})\{g(Y,Z)X - g(X,Z)Y\},\$$

$$Ric^{*}(X,Y) = (c + 2\beta\gamma + \epsilon\delta^{2})(m-1)g(X,Y).$$

Thus M^* is an Einstein semi-Riemannian manifold of constant curvature $(c+2\beta\gamma+\epsilon\delta^2)$ as m>2. Differentiating (2.6) and (2.11) and using (2.8) and (2.9), for any $X, Y, Z \in \Gamma(S(TM))$, we have

$$\{X[\beta] + \beta \tau(X) - \beta \pi(X) - \beta^2 \eta(X)\} g(Y, Z) = \{Y[\beta] + \beta \tau(Y) - \beta \pi(Y) - \beta^2 \eta(Y)\} g(X, Z),$$

$$\{X[\delta] + \epsilon \beta \rho(X) - \delta \pi(X) - \beta \delta \eta(X)\} g(Y, Z)$$

$$= \{Y[\delta] + \epsilon \beta \rho(Y) - \delta \pi(Y) - \beta \delta \eta(Y)\} g(X, Z).$$

From (2.11) and the last two equations, we have

$$\xi[\beta] = \beta^2 - \beta \tau(\xi), \quad \xi[\delta] = \beta \delta - \epsilon \beta \rho(\xi), \quad \xi[\gamma] = \beta \gamma + \gamma \tau(\xi) + \delta \rho(\xi) + c,$$

due to $\pi(\xi) = 0$. Since $(c + 2\beta\gamma + \epsilon\delta^2)$ is a constant, we get

$$0 = \xi[c + 2\beta\gamma + \epsilon\delta^2] = 2\beta(c + 2\beta\gamma + \epsilon\delta^2).$$

As $(c+2\beta\gamma+\epsilon\delta^2)$ is a constant, we have $\beta=0$ or $c+2\beta\gamma+\epsilon\delta^2=0$. If $c+2\beta\gamma+\epsilon\delta^2=0$, then M^* is a semi-Euclidean space. As the second fundamental form C of the totally umbilical semi-Euclidean space M^* as a submanifold of the semi-Riemannian space form $\widetilde{M}(c)$ vanishes [1, Section 2.3], we get $\gamma=0$. It is a contradiction to $\gamma\neq 0$. Thus $\beta=0$, i.e., B=0. In this case, from (2.6) and (2.11), the second fundamental tensor h of M is given by $h=\mathcal{H}g$, where $\mathcal{H}=\beta N+\epsilon\delta L=\epsilon\delta L$ is the curvature vector field on M. Thus M is totally umbilical. As B=0, we have $\nabla_X g=0$ by (1.9). From this result and (1.11), we see that the induced connection ∇ on M is a semi-symmetric metric connection. \square

4. Totally geodesic screen distributions

Theorem 4.1. Let M be a screen totally geodesic half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}(c)$ admitting a semi-symmetric metric connection and a conformal Killing co-screen distribution. Then $c + \delta \rho(\xi) = 0$ and M is an Einstein manifold. Moreover if m > 1, then the function δ , given by (2.6), is a constant.

Proof. As C=0, we have $\widetilde{g}(R(X,Y)PZ,\,N)=0$ due to (1.23). Using this, (1.19) and (2.6), we have

$$\widetilde{g}(\widetilde{R}(X,Y)PZ,\,N) = \delta\{g(X,PZ)\rho(Y) - g(Y,PZ)\rho(X)\}.$$

By Theorem 3.1 and Theorem 3.3, we get $d\tau = 0$ on TM. Thus we have $\widetilde{g}(\widetilde{R}(X,Y)\xi,N) = 0$ due to (1.21). From the above results, we deduce the following equation

(3.1)
$$\widetilde{g}(\widetilde{R}(X,Y)Z,N) = \delta\{g(X,Z)\rho(Y) - g(Y,Z)\rho(X)\}.$$

Replacing X by ξ and Z by X to (3.1) and using (1.25), we have

$${c + \delta \rho(\xi)}g(X, Y) = 0, \quad \forall X, Y \in \Gamma(TM).$$

Thus we have $c + \delta \rho(\xi) = 0$. Substituting the relations $\phi = A_N = 0$, $tr A_L = m\delta + \epsilon \rho(\xi)$ and $A_L X = \delta P X + \epsilon \rho(X) \xi$ into (2.5) and using $c + \delta \rho(\xi) = 0$, we obtain

$$R^{(0,2)}(X,Y) = (m-1)(c+\epsilon\delta^2) g(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

Thus M is Einstein manifold and δ is constant as dim M=m+1>2.

Theorem 4.2. Let M be a screen totally geodesic half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}(c)$ admitting a semi-symmetric metric connection and a Killing co-screen distribution. If the torsion vector field ζ of \widetilde{M} is tangent to M, then c=0, and M is a space of constant curvature 0, i.e., M is a flat manifold.

Proof. Assume that ζ is tangent to M. Then we have $\pi(L)=0$. Thus the conformal factor α is equal to $-\delta$. As $S(TM^{\perp})$ is a Killing distribution, we have $\alpha=0$. Thus $\delta=0$ and c=0 due to $c+\delta\rho(\xi)=0$. From (1.17), (1.19) and the fact C=D=0, we have

$$g(R(X,Y)Z, W) = 0, \quad \widetilde{g}(R(X,Y)Z, N) = 0.$$

The Riemannian curvature tensor R of M is given by

$$R(X,Y)Z = \sum_{a=1}^{m} \epsilon_a g(R(X,Y)Z, W_a)W_a + \widetilde{g}(R(X,Y)Z, N)\xi = 0.$$

Therefore M is a space of constant curvature 0, i.e., M is flat. \square

Theorem 4.3. Let M be a screen totally geodesic half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}^{m+3}(c)$, m>1, admitting a semi-symmetric metric connection and a conformal Killing co-screen distribution. If $\delta \neq 0$, then the torsion vector field ζ belongs to $S(TM)^{\perp}$ and the 1-form π satisfies $\pi(X) = \pi(\xi)\eta(X)$ for all $X \in \Gamma(TM)$.

Proof. As m > 1, δ is constant. Comparing (1.25) and (3.1), we get

$$\{c\eta(X) + \delta\rho(X)\}g(Y, Z) = \{c\eta(Y) + \delta\rho(Y)\}g(X, Z),$$

for all $X, Y, Z \in \Gamma(TM)$. Taking X = PX, Y = PY and Z = PZ in this equation and using the fact S(TM) is non-degenerate, we have

$$\delta \rho(PX) PY = \delta \rho(PY) PX, \quad \forall X, Y \in \Gamma(TM).$$

Suppose there exists a vector field $X_o \in \Gamma(TM_{|_{\mathcal{U}}})$ such that $\delta \rho(PX_o) \neq 0$ at a point $p \in M$. It follows that all vectors from the fibre $S(TM)_p$ are

collinear with $(PX_o)_p$. It is a contradiction as m > 1. Thus we have $\delta \rho(PX) = 0$ for any $X \in \Gamma(TM)$ and

(3.2)
$$\delta \rho(X) = \delta \rho(PX + \eta(X)\xi) = \delta \rho(\xi)\eta(X) = -c.$$

Assume that δ does not vanishes. Then we have $\rho(PX) = 0$ and

$$\rho(X) = -(c/\delta)\eta(X), \quad \forall X \in \Gamma(TM).$$

Substituting (2.6) into (2.9) and using the fact δ is a constant, we have

(3.3)
$$\{\delta\eta(Y) - \epsilon\rho(Y)\}B(X,Z) - \{\delta\eta(X) - \epsilon\rho(X)\}B(Y,Z)$$

$$= \delta\{\pi(X)g(Y,Z) - \pi(Y)g(X,Z)\}, \quad \forall X, Y, Z \in \Gamma(TM).$$

Taking X = PX, Y = PY and Z = PZ in this equation and using the facts $\rho(PX) = 0$, $\delta \neq 0$ and S(TM) is non-degenerate, we have

$$\pi(PX) PY = \pi(PY) PX, \quad \forall X, Y \in \Gamma(TM).$$

As m > 1, $\pi(PX) = 0$ and $\pi(X) = \pi(PX + \eta(X)\xi) = \pi(\xi)\eta(X)$ for any $X \in \Gamma(TM)$. From the decomposition (1.3), the torsion vector field ζ is decomposed by

$$\zeta = \omega + \pi(N)\xi + \pi(\xi)N + \epsilon\pi(L)L,$$

where ω is a smooth vector field on S(TM) and $\pi(N)\xi + \pi(\xi)N + \epsilon\pi(L)L \in \Gamma(S(TM)^{\perp})$. Taking the scalar product with X to the last equation and using $\pi(X) = \pi(\xi)\eta(X)$, we get $g(\omega, X) = 0$ for all $X \in \Gamma(TM)$. As S(TM) is non-degenerate, we have $\omega = 0$. This implies that ζ belongs to $S(TM)^{\perp}$.

COROLLARY 4.4. Let M be a screen totally geodesic half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}^{m+3}(c)$, m>1, admitting a semi-symmetric metric connection and a conformal Killing co-screen distribution with non-vanishing conformal factor. If the torsion vector field ζ is tangent to M, then the 1-form π vanishes identically on TM.

Proof. If ζ is tangent to M, then we have $\pi(\xi) = g(\zeta, \xi) = 0$. Thus $\pi(X) = 0$ for all $X \in \Gamma(TM)$ due to $\pi(X) = \pi(\xi)\eta(X)$. In case ζ is tangent to M, we know that $\alpha = -\delta$. Thus if the conformal factor α does not vanishes, then we have $\delta \neq 0$.

The type number $t^*(x)$ of M at any point x is the rank of A_{ξ}^* .

Theorem 4.5. Let M be a screen totally geodesic half lightlike submanifold of a semi-Riemannian space form $\widetilde{M}^{m+3}(c)$, m > 1, admitting a semi-symmetric metric connection and a conformal Killing co-screen

distribution. If the torsion vector field ζ is tangent to M and the type number t^* satisfies $t^*(x) \geq 1$ for any $x \in M$, then M is a flat manifold.

Proof. Under the assumption of this theorem, we have

(3.4)
$$g(R(X,Y)Z, PW) = (c + \epsilon \delta^2) \{ g(Y,Z)g(X, PW) - g(X,Z)g(Y, PW) \},$$

(3.5)
$$\widetilde{g}(R(X,Y)Z, N) = \{c\eta(X) + \delta\rho(X)\}g(Y,Z) - \{c\eta(Y) + \delta\rho(Y)\}g(X,Z).$$

for all $X, Y, Z, W \in \Gamma(TM)$. Due to (3.2), we have $\widetilde{g}(R(X, Y)Z, N) = 0$. Replacing Y by ξ to (3.3), we obtain

$$\{\delta - \epsilon \rho(\xi)\}B(X, Y) = 0, \quad \forall X, Y \in \Gamma(TM).$$

As δ is a constant and $c + \delta \rho(\xi) = 0$, $\rho(\xi)$ and $\delta - \epsilon \rho(\xi)$ are constants. Assume that $t^*(x) \geq 1$ for any $x \in M$. Then we have $\delta - \epsilon \rho(\xi) = 0$. This implies $c + \epsilon \delta^2 = 0$ due to $c + \delta \rho(\xi) = 0$. From this and (3.4). we get g(R(X,Y)Z,PW) = 0. Thus M is a flat manifold.

DEFINITION 4.6. M is said to be *irrotational* [6] if $\widetilde{\nabla}_X \xi \in \Gamma(TM)$ for any $X \in \Gamma(TM)$, i.e., $D(X, \xi) = 0 = \phi(X)$ for all $X \in \Gamma(TM)$.

REMARK 4.7. Instead of the condition $S(TM^{\perp})$ is conformal Killing distribution of Theorem 4.1 ~ 4.4, even though we use the condition M is irrotational of Definition 4.6 given above, it is easy to find that we can establish the same results Theorem 4.1 ~ 4.4 except Theorem 4.2.

References

- [1] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
- K. L. Duggal and D. H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ. 22 (1999), 121-161.
- [3] H. A. Hayden, Subspace of a space with torsion, Proc. London Math. Soc. **34** (1932), 27-50.
- [4] T. Imai, Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection, Tensor, N. S., 23, 1972, 300-306.
- [5] D. H. Jin and J. W. Lee, Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric metric connection, to appear Mediterranean J. of Mathematics.
- [6] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
- [7] Z. Nakao, Submanifolds of a Riemannian manifold with semi-symmetric metric connection, Proc. Amer. Math. Soc. **54** (1976), 261-266.
- [8] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.

*

Department of Mathematics Dongguk University Gyeongju 780-714, Republic of Korea *E-mail*: jindh@dongguk.ac.kr