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ON TRREDUCIBILITY OF COMPOSITION
POLYNOMIALS

EunMi1 CHor*

ABSTRACT. We investigate the irreducibility of iterate and com-
posite polynomials. For this purpose discriminant and resultant
are computed by means of the norm function.

1. Introduction

Let fi(x) = (f o---0o f)(x) be the t-th iterate of a polynomial
f(x) € K[z]. The question whether f; is factored into irreducible poly-
nomials over a field K is important in determining the Galois group of f;
over K [5]. Discriminant is one of the main tools for solving irreducibil-
ity of polynomials. It gives information on whether the roots of f are in
K or are in an extension field. As a companion of discriminant, the re-
sultant plays a classical algebraic role for determining whether a system
of polynomials have a common root without solving for the roots.

In this paper we investigate the irreducibility of the iterate and com-
posite polynomials. For this purpose we shall compute discriminant and
resultant by employing norm functions over fields, and apply the result
to determine whether the iterate of a quadratic polynomial is irreducible.

Let f(z) = > " a2z’ and g(z) = >t bjz? be polynomials over a
field K. Let a; and B; (1 < i < n;1 < j < m) be roots of f and g
respectively in some splitting fields over K. The discriminant A(f) and
resultant R(f,g) are defined by

A(f)=al? T (ai—ay)? R(f.g9)=agvy, []]](ci — B)-
1<i<j<n i=1j=1

Levma L1 [6] R(f,9) = ap' [[iz 9(ai) = (=1)""bn [T, £(5)):
And R(f, ') = (—=1)"»=D/2q, A(f) for the derivative f’ of f.
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When degf = 2, f has 2 real roots, a multiple real root, or is irre-
ducible according to A(f) > 0, A(f) =0, A(f) < 0 respectively. When
degf = 3, f has three distinct real roots if A(f) > 0 while f has one real
root and two complex conjugate roots if A(f) < 0. If A(f) =0 then f
may have either one real root of multiplicity 2 and another distinct sin-
gle real root, or one real root of multiplicity 3. The latter is equivalent
to that R(f, f') and R(f, f") vanish.

In this paper, without mentioned otherwise, we assume degf = n,
degg = m with le(f) = ap, lc(g) = by, where lc stands for the leading
coefficient of polynomial.

2. Discriminant of composite polynomials

The computations for resultant and discriminant involve matrix de-
terminant that may be very large size. Though computer computation
is largely used recently in this area, we still need to develop effective
computation method for these.

LEMMA 2.1. [2] Let h(z) € K|x] with degh =t and Ic(h) = ¢;. Then
R(f oh,goh) = [ R(f.9)] and R(fh,g) = R(f,9)R(h.9).

In this section we shall discuss A(g o f;) in terms of A(f) and A(g).

THEOREM 2.2. Let v; (1 <14 < k) be all critical points of f. Then

(1) Algo f) = ()& Dy 1A g R(g o £, f)

m2 m(mn—1);n—1_mn n
= (=) ap Vet A (g) I, 9(f ().
gof2) = an T Ty Ay gof, go fa,
2)A f m(mn>+mn®—2n°—n l)bzf lA n2R ff/ nR f f/
m(mn3+mn?—n—1); 2 _1_2mn? n? 71k n
= an . by, ™™ A(g)™ TTiza((g 0 f)" (g 0 £2)) ()
= ()i IA (g o f)"R(g 0 o, ).
Proof. Note deg(go f) = mn and le(g o f) = all'by,. Since (go f) =
(¢’ o f)f', Lemma 1.1 and 2.1 give rise to
mn(mn—1)

A(go f)=(-1)"=2  (ay'bm)'R(go f,g o f)R(go f, f')

mn(mn—1)

= (=) = (abm) (™ VR(g, )" Rlgo f,[")

(—1)™ = gDt (1) "5, A(g))"R(g o £, f)

(—1) ) qrimn=n=1pn=IA(gy* R(g o f, '),

mn(mn—1) _ mn(m-1) _ m?n(n—1)

= (3)m? by considering (—1)F =

(—1)7% for any k € Z. Moreover since every critical points 7; of f are

since
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the roots of f/,

Rigo f.£) = (=1 D(na)™ [J(go ) = (an)™ [[o(7 ()

for mn(n — 1) is even, thus we have

A(go f) = (-1 gmimn=Dgn=tpmn A () TT g(£ ().
i=1
Now for A(go f2), note that deg(f2) = n?, le(f2) = at, deg(g o f2)

=mn? and Ic(go fo) = anm(nH)bm. Then

Algo f2) = (1) (@ V) 1 R(g 0 fag 0 f2)R(g 0 fo. f3)
= (1) @) T (@)D Rl ) R(g o fo £
_ (_l)m" (T;n l)am(n+1)(mn2_n2 1)b lR(g,g/)HQR(gOfg,fé)

mn2 mn
(—1) ?(mn?-1) L 1)am(n+1)(mn27n - )b_

()5 A9 Blg o /o, f2).
But (an(mnzflgfan(mfl)) _(m (2 -1)) _

mn? (mn2 —1)
2

(2 )m2 is even and

R(go fo, f5) = (@™ ™V R(go f, f'))"R(g o fa, f'),

so we have

(go f2) _ am(mn +mn —2n2—n—1)bzf—1A(g)n2R(g o f, f’)"R(go f2,f/)-

Furthermore, with respect to the critical points ~; of f,
Rlgo £, ) = (=)™ Dinan)™ [Ig 0 () = (nan)™ [Tg o f(7),
R(go fo, ') = (=)™ D(na,)™ [T go fa(v) = (nan)™ [T go f2(w)
since mn(n — 1) and mn?(n — 1) are even, so

A(go fo) = qmtmm*tmn?=2ni=n=1jyn—1 p (gyn?

((nan)™ Ty g0 f()" - (nan)™* 1Ly g 0 f2(7)
= apem e gt 2m A (g TR (g 0 )" (g 0 f2))(0)-
On the other hand, considering (g o f2)" as ((go f) o f)f’, we have
A(g o fa)

= ()™ @y, VI R(go f) o £y (g0 f)Y 0 f)R(g o fou f)

mn? (mn

= (-1 (@D, ) @D R(go £, (g0 £))) R(go fa, f)

— (—1)B)mn? grlmn®=n®=Dyn—iA (g o F)"R(g o fo, ). O

We shall extend this to A(g o f;) for any ¢ > 2.
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THEOREM 2.3. Ifv; (1 <i < k) are critical points of f then
Mm2p2t=1) m(mn2t—l-nt—-1),,_ n
Algofo = (DR it I Algo fir)” Rlgofo )
o )m2n2(= mn= " =1)1n—1_mnt n
= (-1 an ™I Ago fi)" Ty (i)

Proof. We note lc(f;) = aple(fi—1)" = a2t71+"'+n+1. And lc(go f) =
bnle(f)™ and le(g o fi) = by le(f;)™. Hence
Algo fi) = (~1)™ % le(g o fi) e fymn' o1

mn'” - (mn —1) n
[(-1) 2 le(go fi1)A(go fim1)]" - R(g o fi, [').
But since 2 (mn!(mn! —1 —mn!~1 +1)) = (g)anZ(t*U and
te(g o Ji) ™ -1e( /)™ 0 Die(g o f )" o
= (bl (fo)™) " e( ) D (byle( fia) )" = b ta T,
we have
Alge fi) = (1) gm0y A (go fia) " Rig o fir ).
Moreover since f'(x) = nay, Hle(ac —;), we have
R(ge fi f1) = (=)™ D(nan)" [ 9(£(3))
= (nan)™ [Ti=; 9(fe(0)),
so it follows that

A(go f) .
_ (_1)(g)m2n2(t—l)a:ln(mn%flfl)bgf;lnmntA(g o ft—l)n Hg(.ft(’)’z))

i=1

O]

3. Discriminant with norm function

Let L/K be a Galois extension and o € L. The norm mapping
Np/k : L — K is defined by o — HaeGal(L/K) o(a), and is useful to
reduce elements in the extension field to ground field. We recall a basic
property about the norm map.

LEmMMA 3.1. [4] Let K < E < L and o, 3 € L. Then N g(a) =
Ngjk(Np/p(e)) and Npj(af) = Npjx(a)Npk(8). If a € K then
NL/K(a) = Oé[L:K}.

LEMMA 3.2. Let K < L. If f = ming () € K|x] is the monic minimal
polynomial of 5 € L of degree n then A(f) = (—1)(3) 1150 f'(B) =

(—1)(Z)NK(5)/Kf'(5)-
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Proof. For the roots 8 = (1,082, -, 0, of f in a splitting field,

A =TT6-8)* = DB T[6-6) = O] T 8

i<j i] i=1i#tj=1

Since f(x) = [[}_;(z — i), we have f'(z) = >} [I},;—:(z — B;) and

Z H H (Bi = B)),

k=1 k#j= i#j=1

thus
Hf Bi) = H F'(s
f(B)=
On the other hand since \Q’\ = |Gal(K(8)/K)| = deg(f) =n, if o;
(1 <i<mn) are all elements in G then o;(3) is one of f1,--- , 3, thus
Nyl (8) =[G =] fe@n =11 r®

oeg oeg F(B)=0

hence A(f) = (1)) Nyes) /5 £/(8). O

THEOREM 3.3. Let K < L, 8 € L and f,g € K[x]. If gof; = ming ()
then g = ming (f;(3)) and g o f; = ming (f;—i(B)) for all 1 < i < t. In
particular if f; = ming (8) € K[z] then fi—; = ming (f(3)).

Proof. Assume g o fi(8) = 0. Write fi(8) = o with g(ay) = 0. If
ming (oy) = h(z) € K[z] then h(z)|g(x), and g = hh for some 1 # h
K|[z]. Then

0=go fi(B) = (hh) o fi(B) = h(f(B)A(f:(B)),

contradicts to g o fy = ming (), so h = ming (o) = ming (f(5)) = g.
Moreover for f;(3) = «; for 1 <1i <'t, it can be seen that

ait1 = f(a;) and go fi(ay—;) =0 forall 1 <i<t.
If ming(cu—;) = h(z) € Klz] then h(ap—;) = 0 and hlg o f;, ie.,
go fi = hh for some 1 # h € Ig[:c] Then 0 = go fi(B) = go
filaw—;) = hh(ai—;) = h(fi—i(B))h(fi—i(B)), a contradiction. Thus

h = ming (a;—;) = ming (fi—i(3)) = g o fi. O
THEOREM 3.4. Let degf =n, L = K(ﬂ) and f; = minK(ﬂ). Then
A(f) = (0 A T 76

ft(8)=0
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Proof. Note degf; = n'. Lemma 3.2 is the case for t = 1 and fy = 1.
Assume t = 2. Let 51 = 3, (2, -+ , B2 be all roots of fo(z) in a splitting
field. Since fi(x) = f'(f(x))f'(z), Lemma 3.1 and 3.2 imply that

A() = (1N £508) = (1) N e F(FB)) - Niyie /' (5):

Write o = f(3). Due to Theorem 3.3 we may consider ming () = f
and [K(«a) : K] =[L: K(a)] = n. Hence due to Lemmas 3.1 and 3.2,
f

N f'(f(8) = Npgf'(@) = Ngw)xk (N f (@)
= (Nl (@)" = (~D)EA(f)"

for f'(a) € K(a). On the other hand any ¢ € Gal(L/K) = G maps (3
to another zero 3; (1 < i < n?) of fo(x), so

n2

Nyl B) =[] ey =11r®) =[] re

oceg =1 f2(8)=0
Therefore
Alf2) = <—1><"5><< IR
f2(B
= (-1 11 r®.
J2(8)=0

Similarly for ¢t = 3, we let f(8) = a with fa(a) = 0. Then again due
to Theorem 3.3, ming () = fa, [L: K(a)] = n and

NoyiF5UHB) = (Vi fa(@)) = () A(f))",
thus
A(fs) = (DN £58) = (<13 Ny e S (B Ny (8)
= () )AL N f(B) = OO AL T 76
Therefore with a root 3 such that f; = ming(8) it follows ];3}(1[::0

A(f) = (D)E A T 16
fi(B)=0

We shall generalize this to A(go fi).
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THEOREM 3.5. Let L = K(f3) and g o f; = ming () for f,g € K|z]
of degree n, m. Then A(go fr) = (~1)(2)™ A(g)" TTop (50 F()-

Proof. We begin with t = 1. Let 8 = 31,82, -+, Bum be all roots of
go f in a splitting field. Due to Lemma 3.1 and 3.2
Algo f) = ()TN g (F(B) - Niywcf'(5):

If let f(8) = o with g(a) = 0 then K < K(«a) < L with [L : K| = mn,
[K () : K] =m, and ming a = g by Theorem 3.3. Hence it follows that

n

Neyxed (F(8)) = Nictoyrc' (@) = (-1)F)a(g)) ",
while
Nyl B =[]er@=11rCeo)=1][r6)= I r®,
o€g oeg i=1 gof(B)=0

(here G = Gal(L/K)), thus we have

mn

A(gof) = (0 nEragr T £6)

gof (B )
= (1) S I AT
g90f(8)=0
Now let ¢ > 1 and f;(3) = oy with g(ay) = 0. Then g = ming ()
and K < K (o) < L with [L: K(ay)] =n, [K(« ) K] = m. Since

Ni/id (F1(9) = Nic(ay/xd ()" = (( A ())nt

and

Nprf{(B) =1loego(fi(B)) = Iloeg fi(0(8)) = Tlyos.(5)=0 fi (B):

it follows from Lemma 3.2 that

Agof) = (DU INLwd (BN £1(8)

— U (E@Daeyt T #0)
goft(ﬁ)

gofi(8)=0
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4. Discriminant of composition with norm function

In this section we shall investigate Ny, f{(3) explicitly in order ex-
press A(g o f¢) by f'(B) not by f{(8).

LEMMA 4.1. With the same context in Theorem 3.5, for 1 <1i < t,
Ng(apy/i f (i) = (-1)E)m A(go fi-1) "Ago fi).

Proof. Note that fy = 1. From f;i(f) = a4, ait1 = f(a) (1 <i <)
due to Theorem 3.5. Clearly K < K() < --- < K(a1) < K(f) = L,
and [L: K(a1)] <nand [K(a;) @ K(it1)] <nfor 1 <i <t But since

(L K(a)] = [L: K(anlK (@) : K(az)] - [K(ar-1) : K(a)] <,
we have [L : K(a1)] = [K(o;) @ K(a41)] = n for 1 < i < t. Moreover
«; are zeros of g o f;_; and ming o; = g o f;_;, thus

[K () : K] =m = deg(g), [K(at—i): K] =mn'""" =deg(go fr),

and [L : K] = deg(go f;). S0 Ni(ay/xd (ar) = (~1)(2) A(g) and

(‘UQH)A(Q of)= NK(at_l)/Kg,(f(O‘t—l)) ) NK(at_l)/Kf/(at—l)
= Ng(ar1)/k9 (@) Ng(a, )/ f (Qe-1)
= NK(at)/KNK(at,l)/K(at)gl(Oét) ) NK(at,l)/Kf/(O‘tfl)
= (Nk(an/x9'(@)" - Nga,_ it (@r1)
= (-G Ag)"- Nk (ap_1y/i f (@i-1),

SO

2,,2(i—1)

Ny f (1) = (- 1>< 2)=(2)r A ()‘"A(gof)

Similar to this,

1)) A(g© ) = Niaq-2y8' (f2(01-2)) Ni(ar_oysclc-2)
= Nik(a, 2)/KY "(f(—1)) Nk (oo f' (f (e 2))NK(at /it (@i2)
= Nk(ar_s)/K9 (at)J\iK(at 2/ (@-1)Nic(a, o)k [ (0—2)
= (NK(at)/ ( ))n (NK(at_1 /Kf (at—l)) NK(at_Q /Kf (—2)
= (1) A) (=B A(g) ™ Alg 0 £))" Nic(ay_) i (t—2)

thus
Niaayif @) = (1))@ =Gm iAo fy=A(go i)
= (~)E" " A(go f) " A(g o fa).
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Furthermore since

(go f3)/(Oét—3) = Ql(fs(at—s))fé(at—:i) = gl(at)fé(f(Oét—:%))fl(Oét—S)

3

= g'(ar) falar—2) f'(au—3) = -+ = ¢'(ar) [ [ F'(u—s)
=1

we have

mn3

3
()" )A(go f3) = Ni(ars)/x9 (@) [] Nc(aes)yxf (i)

=1
3 2

= (1)®a@)" (CHE"a@)"age )"
((DE™ Ao 1) Ag o f2))" Nictay i (@r-3),
thus
Ni(a_s)/i S (t—3)

_ (_1)(:;3)257;)n3(721)m2n2(Z)m2n3A(gO fg)_"A(g o fS)
= (=)™ A(go fo) " Algo fy).

Continually, for 1 <14 < ¢, we have
n\, 2, 2(i—1) _n
Nictor_oicf (@) = (~1)6) Algo fi1) "Alg o f).

THEOREM 4.2. With the same context in Theorem 3.5,

")m2n2(t—1) n
Alge fi) = (~)E™ N e £ (9)A (g 0 fimr)™.
Proof. We keep the same notations as above. Since

RB) = H_(f(8) F1(B) = fia(f(en)) f(ar) 1'(B) »
= ) fllas) - fllaz) ) F(B) = F'B) [ ] ()

i1
we have
-1
Npxfi(B) = Npyi f'(8) HNK(ai)/KNL/K(ai)f/(ai)
i1
-1 .
= NL/Kf/(ﬁ)H(NK(ai)/Kf/(ai))nl
i1
il i—1 I3
= Nywf O [J0E™ ™ VAo fis1) " Algo fii)"

=1
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t—1

— (=) )™ N  F(B) Alg o fir)"Alg)

Hence together with Theorem 3.5, we have

Algo fi) = (-1 <'"5’t>NL/Kg/<ft<tﬁ>l> S\
= ()" ) (=1)E A (1) (" ImPn
NS (B)A(g o fiu1)"A(g)™

= ) @ )N (B A o fiy)”

By considering (—1)¥ = (—1)7* for any k € Z, since

mn' m\ (T, 2 o¢—nyn(n—1) nY\ o 93t-1)
O O e e U

we conclude that

Algo fi) = (=)™ VN F(B)Ag o fioa)™

5. Irreducibility of composite polynomials

If 3 is a root of g(z) and @ is a root of f(z) — [ then € is a root of
g o f. On the other hand if a; are roots of g o f then f(«;) gives the
zeros of g(x) so the splitting field of f is contained in the splitting field
of go f. Thus if 5 be a root of g(x) then every root of f(z)— [ is a root
of g(f(x)). Conversely if « is a root of go f then f(«) is a root of g(z).

LEMMA 5.1. [3] gof is irreducible in K|x] if and only if g is irreducible
in K[z] and f — (3 is irreducible in K(f3)[z] for every root (3 of g(x).

THEOREM 5.2. Assume f(z) = ax?+bzx+c and go f;_1 is irreducible
over K fort > 2. Then go f; is irreducible over K if one of the following
holds.

(1) NK(M)/K\/M ¢ K2 for go f;_1(8) = 0 and h(z) = f(z) —

B e K(P)x].
(2) go fi(y) & K? for the critical point v of f.

Proof. Because g o f;_; is irreducible over K, go f; = (go fi—1)o f
is irreducible over K if and only if f(z) — [ is irreducible over K () for
any root 3 of go f;_1. Let h = f — 3 € K(B)[z]. Then h is irreducible
over K(f3) is equivalent to that the zeros of h(x) are not belong to K(f3),
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ie. A(h) = —4a(—% +¢— ) is not in K(8)%. Thus go f; is irreducible
over K if, at least, the norm Ny g,k (A(h)) is not in K2. Now

b2
Nk(g)kA(f =B) = NK(g)/K(—ﬁla)NK(ﬁ)/K(_@_|_C_ﬁ)
t—1 b2
- a1 e

ceGal(K(8)/K)

for [K(B3) : K] = deg(g o fi—1) = m2!=!. Every o maps 8 to another
root B; of go fr—1 (1 <i < m2t*1) with 8 = 1 and leaves K fixed, so

NK(B)/K(A(JCQ_ B3))

b b2 b2
= T e )T dem ) (- e B
2 -
= (4a)™ H (—@ +c— ) = (4a)™ H (f(v) = 8)
i=1 gofi1(8)=0

since —% +c= f(—%) = f(v) with the critical point v = —% of f.
We note that, in some large enough extension field of K, we can write
f(@) =1 ()=o(z — w). Similar to this

gof@)= [] (f@)—w)andgo filz)= [[ (fla)-w).

9(w)=0 goft—1(w)=0
But since go f;_1(3;) = 0 for 1 <14 < m2i~1
gofile)= ][ (fl@)-5)

gofi—1(8)=0
SO
t—1
Nigy(A(f = B) = (4a)™ (g o fi) (7).
If (4a)m2tflgoft('y) Z K2 ie., goft(—%) ¢ K? then go f; is irreducible
over K. n

COROLLARY 5.3. Let f(x) = ax® + bz + c. If fi_y is irreducible for
some t > 2 and ft(—%) is not a square in K then f; is irreducible.

Proof. f; is irreducible over K if and only if f(z) — 3 is irreducible
over K (B3) for any root 3 of f;_1, that is, b*> — 4ac + 4af3 is not a square
in K(f). Since

_ b?
Nic(ayx (0 — dac +4ap) = (~4a)* " [ (~-+0) =5
ftil(ﬂ)zo
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- b? - b
= (40)*" fima(— -+ ) = (40)* fima (f(=5.),
if ft(—%) = ft,lf(—%) = NK(B)/K(bz — 4ac + 4af3) is not a square in
K then (b* — 4ac+ 4af3) is not in K(3)2, so f; is irreducible over K. [
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