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ON IRREDUCIBILITY OF COMPOSITION
POLYNOMIALS

EunMi Choi*

Abstract. We investigate the irreducibility of iterate and com-
posite polynomials. For this purpose discriminant and resultant
are computed by means of the norm function.

1. Introduction

Let ft(x) = (f ◦ · · · ◦ f)(x) be the t-th iterate of a polynomial
f(x) ∈ K[x]. The question whether ft is factored into irreducible poly-
nomials over a field K is important in determining the Galois group of ft

over K [5]. Discriminant is one of the main tools for solving irreducibil-
ity of polynomials. It gives information on whether the roots of f are in
K or are in an extension field. As a companion of discriminant, the re-
sultant plays a classical algebraic role for determining whether a system
of polynomials have a common root without solving for the roots.

In this paper we investigate the irreducibility of the iterate and com-
posite polynomials. For this purpose we shall compute discriminant and
resultant by employing norm functions over fields, and apply the result
to determine whether the iterate of a quadratic polynomial is irreducible.

Let f(x) =
∑n

i=0 aix
i and g(x) =

∑m
j=0 bjx

j be polynomials over a
field K. Let αi and βj (1 ≤ i ≤ n; 1 ≤ j ≤ m) be roots of f and g
respectively in some splitting fields over K. The discriminant ∆(f) and
resultant R(f, g) are defined by

∆(f) = a2n−2
n

∏

1≤i<j≤n

(αi − αj)2, R(f, g) = am
n bn

m

n∏

i=1

m∏

j=1

(αi − βj).

Lemma 1.1. [6] R(f, g) = am
n

∏n
i=1 g(αi) = (−1)nmbn

m

∏m
j=1 f(βj).

And R(f, f ′) = (−1)n(n−1)/2an∆(f) for the derivative f ′ of f .
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When degf = 2, f has 2 real roots, a multiple real root, or is irre-
ducible according to ∆(f) > 0, ∆(f) = 0, ∆(f) < 0 respectively. When
degf = 3, f has three distinct real roots if ∆(f) > 0 while f has one real
root and two complex conjugate roots if ∆(f) < 0. If ∆(f) = 0 then f
may have either one real root of multiplicity 2 and another distinct sin-
gle real root, or one real root of multiplicity 3. The latter is equivalent
to that R(f, f ′) and R(f, f ′′) vanish.

In this paper, without mentioned otherwise, we assume degf = n,
degg = m with lc(f) = an, lc(g) = bm where lc stands for the leading
coefficient of polynomial.

2. Discriminant of composite polynomials

The computations for resultant and discriminant involve matrix de-
terminant that may be very large size. Though computer computation
is largely used recently in this area, we still need to develop effective
computation method for these.

Lemma 2.1. [2] Let h(x) ∈ K[x] with degh = t and lc(h) = ct. Then

R(f ◦ h, g ◦ h) =
[
cnm
t R(f, g)

]t
and R(fh, g) = R(f, g)R(h, g).

In this section we shall discuss ∆(g ◦ ft) in terms of ∆(f) and ∆(g).

Theorem 2.2. Let γi (1 ≤ i ≤ k) be all critical points of f . Then

(1) ∆(g ◦ f) = (−1)(
n
2)m2

a
m(mn−n−1)
n bn−1

m ∆(g)nR(g ◦ f, f ′)
= (−1)(

n
2)m2

a
m(mn−1)
n bn−1

m nmn∆(g)n
∏k

i=1 g(f(γi)).

(2) ∆(g◦f2) = a
m(mn3+mn2−2n2−n−1)
n bn2−1

m ∆(g)n2
R(g◦f, f ′)nR(g◦f2, f

′)
= a

m(mn3+mn2−n−1)
n bn2−1

m n2mn2
∆(g)n2 ∏k

i=1((g ◦ f)n(g ◦ f2))(γi)

= (−1)(
n
2)m2n2

a
m(mn3−n2−1)
n bn−1

m ∆(g ◦ f)nR(g ◦ f2, f
′).

Proof. Note deg(g ◦ f) = mn and lc(g ◦ f) = am
n bm. Since (g ◦ f)′ =

(g′ ◦ f)f ′, Lemma 1.1 and 2.1 give rise to

∆(g ◦ f) = (−1)
mn(mn−1)

2 (am
n bm)−1R(g ◦ f, g′ ◦ f)R(g ◦ f, f ′)

= (−1)
mn(mn−1)

2 (am
n bm)−1(am(m−1)

n R(g, g′))nR(g ◦ f, f ′)
= (−1)

mn(mn−1)
2 am(mn−n−1)

n b−1
m ((−1)

m(m−1)
2 bm∆(g))nR(g ◦ f, f ′)

= (−1)(
n
2)m2

am(mn−n−1)
n bn−1

m ∆(g)nR(g ◦ f, f ′),

since mn(mn−1)
2 − mn(m−1)

2 = m2n(n−1)
2 =

(
n
2

)
m2 by considering (−1)k =

(−1)−k for any k ∈ Z. Moreover since every critical points γi of f are



On irreducibility of composition polynomials 715

the roots of f ′,

R(g ◦ f, f ′) = (−1)mn(n−1)(nan)mn
k∏

i=1

(g ◦ f)(γi) = (nan)mn
k∏

i=1

g(f(γi))

for mn(n− 1) is even, thus we have

∆(g ◦ f) = (−1)(
n
2)m2

am(mn−1)
n bn−1

m nmn∆(g)n
k∏

i=1

g(f(γi)).

Now for ∆(g ◦ f2), note that deg(f2) = n2, lc(f2) = an+1
n , deg(g ◦ f2)

= mn2 and lc(g ◦ f2) = a
m(n+1)
n bm. Then

∆(g ◦ f2) = (−1)
mn2(mn2−1)

2 (am(n+1)
n bm)−1R(g ◦ f2, g

′ ◦ f2)R(g ◦ f2, f
′
2)

= (−1)
mn2(mn2−1)

2 (am(n+1)
n bm)−1((an+1

n )m(m−1)R(g, g′))n2
R(g ◦ f2, f

′
2)

= (−1)
mn2(mn2−1)

2 a
m(n+1)(mn2−n2−1)
n b−1

m R(g, g′)n2
R(g ◦ f2, f

′
2)

= (−1)
mn2(mn2−1)

2 a
m(n+1)(mn2−n2−1)
n b−1

m

· ((−1)
m(m−1)

2 bm∆(g))n2
R(g ◦ f2, f

′
2).

But (mn2(mn2−1)−mn2(m−1))
2 = (m2n2(n2−1))

2 =
(
n2

2

)
m2 is even and

R(g ◦ f2, f
′
2) = (amn(n−1)

n R(g ◦ f, f ′))nR(g ◦ f2, f
′),

so we have

∆(g ◦ f2) = am(mn3+mn2−2n2−n−1)
n bn2−1

m ∆(g)n2
R(g ◦ f, f ′)nR(g ◦ f2, f

′).

Furthermore, with respect to the critical points γi of f ,
R(g ◦ f, f ′) = (−1)mn(n−1)(nan)mn

∏
g ◦ f(γi) = (nan)mn

∏
g ◦ f(γi),

R(g◦f2, f
′) = (−1)mn2(n−1)(nan)mn2 ∏

g◦f2(γi) = (nan)mn2 ∏
g◦f2(γi)

since mn(n− 1) and mn2(n− 1) are even, so
∆(g ◦ f2) = a

m(mn3+mn2−2n2−n−1)
n bn2−1

m ∆(g)n2

· ((nan)mn ·∏k
i=1 g ◦ f(γi))n · (nan)mn2 ∏k

i=1 g ◦ f2(γi)

= a
m(mn3+mn2−n−1)
n bn2−1

m n2mn2
∆(g)n2 ∏k

i=1((g ◦ f)n(g ◦ f2))(γi).
On the other hand, considering (g ◦ f2)′ as ((g ◦ f)′ ◦ f)f ′, we have

∆(g ◦ f2)

= (−1)
mn2(mn2−1)

2 (am(n+1)
n bm)−1R((g ◦ f) ◦ f, (g ◦ f)′ ◦ f)R(g ◦ f2, f

′)

= (−1)
mn2(mn2−1)

2 (am(n+1)
n bm)−1(amn(mn−1)

n R(g◦f, (g◦f)′))nR(g◦f2, f
′)

= (−1)(
n
2)m2n2

a
m(mn3−n2−1)
n bn−1

m ∆(g ◦ f)nR(g ◦ f2, f
′).

We shall extend this to ∆(g ◦ ft) for any t ≥ 2.
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Theorem 2.3. If γi (1 ≤ i ≤ k) are critical points of f then

∆(g◦ft) = (−1)(
n
2)m2n2(t−1)

a
m(mn2t−1−nt−1)
n bn−1

m ∆(g◦ft−1)n R(g◦ft, f
′)

= (−1)(
n
2)m2n2(t−1)

a
m(mn2t−1−1)
n bn−1

m nmnt
∆(g◦ft−1)n

∏k
i=1 g(ft(γi)).

Proof. We note lc(ft) = anlc(ft−1)n = ant−1+···+n+1
n . And lc(g ◦ f) =

bmlc(f)m and lc(g ◦ ft) = bmlc(ft)m. Hence

∆(g ◦ ft) = (−1)
mnt(mnt−1)

2 lc(g ◦ ft)−1lc(f)mnt(mnt−1−1)

· [(−1)
mnt−1(mnt−1−1)

2 lc(g ◦ ft−1)∆(g ◦ ft−1)]n ·R(g ◦ ft, f
′).

But since 1
2(mnt(mnt − 1−mnt−1 + 1)) =

(
n
2

)
m2n2(t−1) and

lc(g ◦ ft)−1 · lc(f)mnt(mnt−1−1)lc(g ◦ ft−1)n

= (bmlc(ft)m)−1lc(f)mnt(mnt−1−1)(bmlc(ft−1)m)n = bn−1
m a

m(mn2t−1−nt−1)
n ,

we have

∆(g ◦ft) = (−1)(
n
2)m2n2(t−1)

am(mn2t−1−nt−1)
n bn−1

m ∆(g ◦ft−1)nR(g ◦ft, f
′).

Moreover since f ′(x) = nan
∏k

i=1(x− γi), we have
R(g ◦ ft, f

′) = (−1)mnt(n−1)(nan)mnt ∏k
i=1 g(ft(γi))

= (nan)mnt ∏k
i=1 g(ft(γi)),

so it follows that

∆(g ◦ ft)

= (−1)(
n
2)m2n2(t−1)

am(mn2t−1−1)
n bn−1

m nmnt
∆(g ◦ ft−1)n

k∏

i=1

g(ft(γi)).

3. Discriminant with norm function

Let L/K be a Galois extension and α ∈ L. The norm mapping
NL/K : L → K is defined by α 7→ ∏

σ∈Gal(L/K) σ(α), and is useful to
reduce elements in the extension field to ground field. We recall a basic
property about the norm map.

Lemma 3.1. [4] Let K < E < L and α, β ∈ L. Then NL/K(α) =
NE/K(NL/E(α)) and NL/K(αβ) = NL/K(α)NL/K(β). If α ∈ K then

NL/K(α) = α[L:K].

Lemma 3.2. Let K < L. If f = minK(β) ∈ K[x] is the monic minimal

polynomial of β ∈ L of degree n then ∆(f) = (−1)(
n
2)

∏
f(β)=0 f ′(β) =

(−1)(
n
2)NK(β)/Kf ′(β).
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Proof. For the roots β = β1, β2, · · · , βn of f in a splitting field,

∆(f) =
∏

i<j

(βi−βj)2 = (−1)(
n
2)

∏

i6=j

(βi−βj) = (−1)(
n
2)

n∏

i=1

n∏

i6=j=1

(βi−βj).

Since f(x) =
∏n

i=1(x− βi), we have f ′(x) =
∑n

k=1

∏n
k 6=j=1(x− βj) and

f ′(βi) =
n∑

k=1

n∏

k 6=j=1

(βi − βj) =
n∏

i6=j=1

(βi − βj),

thus

∆(f) = (−1)(
n
2)

n∏

i=1

f ′(βi) = (−1)(
n
2)

∏

f(β)=0

f ′(β).

On the other hand since |G| = |Gal(K(β)/K)| = deg(f) = n, if σi

(1 ≤ i ≤ n) are all elements in G then σi(β) is one of β1, · · · , βn thus

NK(β)/Kf ′(β) =
∏

σ∈G
σ(f ′(β)) =

∏

σ∈G
f ′(σ(β)) =

∏

f(β)=0

f ′(β),

hence ∆(f) = (−1)(
n
2)NK(β)/Kf ′(β).

Theorem 3.3. Let K < L, β ∈ L and f, g ∈ K[x]. If g◦ft = minK(β)
then g = minK(ft(β)) and g ◦ fi = minK(ft−i(β)) for all 1 ≤ i ≤ t. In
particular if ft = minK(β) ∈ K[x] then ft−1 = minK(f(β)).

Proof. Assume g ◦ ft(β) = 0. Write ft(β) = αt with g(αt) = 0. If
minK(αt) = h(x) ∈ K[x] then h(x)|g(x), and g = hh̃ for some 1 6= h̃ ∈
K[x]. Then

0 = g ◦ ft(β) = (hh̃) ◦ ft(β) = h(ft(β))h̃(ft(β)),

contradicts to g ◦ ft = minK(β), so h = minK(αt) = minK(ft(β)) = g.
Moreover for fi(β) = αi for 1 ≤ i ≤ t, it can be seen that

αi+1 = f(αi) and g ◦ fi(αt−i) = 0 for all 1 ≤ i < t.

If minK(αt−i) = h(x) ∈ K[x] then h(αt−i) = 0 and h|g ◦ fi, i.e.,
g ◦ fi = hh̃ for some 1 6= h̃ ∈ K[x]. Then 0 = g ◦ ft(β) = g ◦
fi(αt−i) = hh̃(αt−i) = h(ft−i(β))h̃(ft−i(β)), a contradiction. Thus
h = minK(αt−i) = minK(ft−i(β)) = g ◦ fi.

Theorem 3.4. Let degf = n, L = K(β) and ft = minK(β). Then

∆(ft) = (−1)(
n
2)n2(t−1)

∆(ft−1)n
∏

ft(β)=0

f ′(β).
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Proof. Note degft = nt. Lemma 3.2 is the case for t = 1 and f0 = 1.
Assume t = 2. Let β1 = β, β2, · · · , βn2 be all roots of f2(x) in a splitting
field. Since f ′2(x) = f ′(f(x))f ′(x), Lemma 3.1 and 3.2 imply that

∆(f2) = (−1)(
n2

2 )NL/Kf ′2(β) = (−1)(
n2

2 )NL/Kf ′(f(β)) ·NL/Kf ′(β).

Write α = f(β). Due to Theorem 3.3 we may consider minK(α) = f
and [K(α) : K] = [L : K(α)] = n. Hence due to Lemmas 3.1 and 3.2,

NL/Kf ′(f(β)) = NL/Kf ′(α) = NK(α)/K(NL/K(α)f
′(α))

= (NK(α)/Kf ′(α))n = ((−1)(
n
2)∆(f))n,

for f ′(α) ∈ K(α). On the other hand any σ ∈ Gal(L/K) = G maps β
to another zero βi (1 ≤ i ≤ n2) of f2(x), so

NL/Kf ′(β) =
∏

σ∈G
f ′(σ(β)) =

n2∏

i=1

f ′(βi) =
∏

f2(β)=0

f ′(β).

Therefore

∆(f2) = (−1)(
n2

2 )((−1)(
n
2)∆(f))n

∏

f2(β)=0

f ′(β)

= (−1)(
n
2)n∆(f)n

∏

f2(β)=0

f ′(β).

Similarly for t = 3, we let f(β) = α with f2(α) = 0. Then again due
to Theorem 3.3, minK(α) = f2, [L : K(α)] = n and

NL/Kf ′2(f(β)) = (NK(α)/Kf ′2(α))n = ((−1)(
n2

2 )∆(f2))n,

thus

∆(f3) = (−1)(
n3

2 )NL/Kf ′3(β) = (−1)(
n3

2 )NL/Kf ′2(f(β))NL/Kf ′(β)

= (−1)(
n3

2 )(−1)(
n2

2 )n∆(f2)nNL/Kf ′(β) = (−1)(
n
2)n4

∆(f2)n
∏

f3(β)=0

f ′(β).

Therefore with a root β such that ft = minK(β) it follows that

∆(ft) = (−1)(
n
2)n2(t−1)

∆(ft−1)n
∏

ft(β)=0

f ′(β).

We shall generalize this to ∆(g ◦ ft).
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Theorem 3.5. Let L = K(β) and g ◦ ft = minK(β) for f, g ∈ K[x]

of degree n, m. Then ∆(g ◦ ft) = (−1)(
nt

2 )m2
∆(g)nt ∏

g◦ft(β)=0 f ′t(β).

Proof. We begin with t = 1. Let β = β1, β2, · · · , βnm be all roots of
g ◦ f in a splitting field. Due to Lemma 3.1 and 3.2

∆(g ◦ f) = (−1)(
mn
2 )NL/Kg′(f(β)) ·NL/Kf ′(β).

If let f(β) = α with g(α) = 0 then K < K(α) < L with [L : K] = mn,
[K(α) : K] = m, and minK α = g by Theorem 3.3. Hence it follows that

NL/Kg′(f(β)) = NK(α)/Kg′(α)n =
(
(−1)(

m
2 )∆(g)

)n
,

while

NL/Kf ′(β) =
∏

σ∈G
σf ′(β) =

∏

σ∈G
f ′(σ(β)) =

mn∏

i=1

f ′(βi) =
∏

g◦f(β)=0

f ′(β),

(here G = Gal(L/K)), thus we have

∆(g ◦ f) = (−1)(
mn
2 )(−1)(

m
2 )n∆(g)n

∏

g◦f(β)=0

f ′(β)

= (−1)(
n
2)m2

∆(g)n
∏

g◦f(β)=0

f ′(β).

Now let t > 1 and ft(β) = αt with g(αt) = 0. Then g = minK(αt)
and K < K(αt) < L with [L : K(αt)] = nt, [K(αt) : K] = m. Since

NL/Kg′(ft(β)) = (NK(αt)/Kg′(αt))nt
=

(
(−1)(

m
2 )∆(g)

)nt

and
NL/Kf ′t(β) =

∏
σ∈G σ(f ′t(β)) =

∏
σ∈G f ′t(σ(β)) =

∏
g◦ft(β)=0 f ′t(β),

it follows from Lemma 3.2 that

∆(g ◦ ft) = (−1)(
mnt

2 )NL/Kg′(ft(β))NL/Kf ′t(β)

= (−1)(
mnt

2 )((−1)(
m
2 )∆(g))nt

∏

g◦ft(β)=0

f ′t(β)

= (−1)(
nt

2 )m2
∆(g)nt

∏

g◦ft(β)=0

f ′t(β).
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4. Discriminant of composition with norm function

In this section we shall investigate NL/Kf ′t(β) explicitly in order ex-
press ∆(g ◦ ft) by f ′(β) not by f ′t(β).

Lemma 4.1. With the same context in Theorem 3.5, for 1 ≤ i < t,

NK(αt−i)/Kf ′(αt−i) = (−1)(
n
2)m2n2(i−1)

∆(g ◦ fi−1)−n∆(g ◦ fi).

Proof. Note that f0 = 1. From fi(β) = αi, αi+1 = f(αi) (1 ≤ i < t)
due to Theorem 3.5. Clearly K < K(αt) < · · · < K(α1) < K(β) = L,
and [L : K(α1)] ≤ n and [K(αi) : K(αi+1)] ≤ n for 1 ≤ i < t. But since

nt = [L : K(αt)] = [L : K(α1)][K(α1) : K(α2)] · · · [K(αt−1) : K(αt)] ≤ nt,

we have [L : K(α1)] = [K(αi) : K(αi+1)] = n for 1 ≤ i < t. Moreover
αi are zeros of g ◦ ft−i and minK αi = g ◦ ft−i, thus

[K(αt) : K] = m = deg(g), [K(αt−i) : K] = mnt−i = deg(g ◦ ft−i),

and [L : K] = deg(g ◦ ft). So NK(αt)/Kg′(αt) = (−1)(
m
2 )∆(g) and

(−1)(
mn
2 )∆(g ◦ f) = NK(αt−1)/Kg′(f(αt−1)) ·NK(αt−1)/Kf ′(αt−1)

= NK(αt−1)/Kg′(αt) ·NK(αt−1)/Kf ′(αt−1)
= NK(αt)/KNK(αt−1)/K(αt)g

′(αt) ·NK(αt−1)/Kf ′(αt−1)
=

(
NK(αt)/Kg′(αt)

)n ·NK(αt−1)/Kf ′(αt−1)

= ((−1)(
m
2 )∆(g))n ·NK(αt−1)/Kf ′(αt−1),

so

NK(αt−1)/Kf ′(αt−1) = (−1)(
mn
2 )−(m

2 )n∆(g)−n∆(g ◦ f)

= (−1)(
n
2)m2

∆(g)−n∆(g ◦ f).

Similar to this,

(−1)(
mn2

2 )∆(g ◦ f2) = NK(αt−2)/Kg′(f2(αt−2))NK(αt−2)/Kf ′2(αt−2)
= NK(αt−2)/Kg′(f(αt−1))NK(αt−2)/Kf ′(f(αt−2))NK(αt−2)/Kf ′(αt−2)
= NK(αt−2)/Kg′(αt)NK(αt−2)/Kf ′(αt−1)NK(αt−2)/Kf ′(αt−2)

=
(
NK(αt)/Kg′(αt)

)n2 (
NK(αt−1)/Kf ′(αt−1)

)n
NK(αt−2)/Kf ′(αt−2)

= ((−1)(
m
2 )∆(g))n2

((−1)(
n
2)m2

∆(g)−n∆(g ◦ f))nNK(αt−2)/Kf ′(αt−2)

thus

NK(αt−2)/Kf ′(αt−2) = (−1)(
mn2

2 )−(m
2 )n2−(n

2)m2n∆(g ◦ f)−n∆(g ◦ f2)

= (−1)(
n
2)m2n2

∆(g ◦ f)−n∆(g ◦ f2).
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Furthermore since

(g ◦ f3)′(αt−3) = g′(f3(αt−3))f ′3(αt−3) = g′(αt)f ′2(f(αt−3))f ′(αt−3)

= g′(αt)f ′2(αt−2)f ′(αt−3) = · · · = g′(αt)
3∏

i=1

f ′(αt−i)

we have

(−1)(
mn3

2 )∆(g ◦ f3) = NK(αt−3)/Kg′(αt)
3∏

i=1

NK(αt−3)/Kf ′(αt−i)

=
(
(−1)(

m
2 )∆(g)

)n3 (
(−1)(

n
2)m2

∆(g)−n∆(g ◦ f)
)n2

(
(−1)(

n
2)m2n2

∆(g ◦ f)−n∆(g ◦ f2)
)n

NK(αt−3)/Kf ′(αt−3),

thus

NK(αt−3)/Kf ′(αt−3)

= (−1)(
mn3

2 )−(m
2 )n3−(n

2)m2n2−(n
2)m2n3

∆(g ◦ f2)−n∆(g ◦ f3)
= (−1)(

n
2)m2n4

∆(g ◦ f2)−n∆(g ◦ f3).

Continually, for 1 ≤ i < t, we have

NK(αt−i)/Kf ′(αt−i) = (−1)(
n
2)m2n2(i−1)

∆(g ◦ fi−1)−n∆(g ◦ fi).

Theorem 4.2. With the same context in Theorem 3.5,

∆(g ◦ ft) = (−1)(
n
2)m2n2(t−1)

NL/Kf ′(β)∆(g ◦ ft−1)n.

Proof. We keep the same notations as above. Since

f ′t(β) = f ′t−1(f(β)) f ′(β) = f ′t−2(f(α1)) f ′(α1) f ′(β)

= f ′(αt−1) f ′(αt−2) · · · f ′(α2) f ′(α1) f ′(β) = f ′(β)
t−1∏

i=1

f ′(αi)

we have

NL/Kf ′t(β) = NL/Kf ′(β)
t−1∏

i=1

NK(αi)/KNL/K(αi)f
′(αi)

= NL/Kf ′(β)
t−1∏

i=1

(NK(αi)/Kf ′(αi))ni

= NL/Kf ′(β)
t−1∏

i=1

((−1)(
n
2)m2n2(t−i−1)

∆(g ◦ ft−i−1)−n∆(g ◦ ft−i))ni



722 EunMi Choi

= (−1)(
nt−1

2 )m2n ·NL/Kf ′(β) ∆(g ◦ ft−1)n∆(g)−nt

Hence together with Theorem 3.5, we have

∆(g ◦ ft) = (−1)(
mnt

2 )NL/Kg′(ft(β)) ·NL/Kf ′t(β)

= (−1)(
mnt

2 )(−1)(
m
2 )nt

∆(g)nt
(−1)(

nt−1

2 )m2n

·NL/Kf ′(β)∆(g ◦ ft−1)n∆(g)−nt

= (−1)(
mnt

2 )(−1)(
m
2 )nt

(−1)(
nt−1

2 )m2n ·NL/Kf ′(β)∆(g ◦ ft−1)n

By considering (−1)k = (−1)−k for any k ∈ Z, since
(

mnt

2

)
−

(
m

2

)
nt−

(
nt−1

2

)
m2n = m2n2(t−1) n(n− 1)

2
=

(
n

2

)
m2n2(t−1),

we conclude that

∆(g ◦ ft) = (−1)(
n
2)m2n2(t−1)

NL/Kf ′(β)∆(g ◦ ft−1)n.

5. Irreducibility of composite polynomials

If β is a root of g(x) and θ is a root of f(x) − β then θ is a root of
g ◦ f . On the other hand if αi are roots of g ◦ f then f(αi) gives the
zeros of g(x) so the splitting field of f is contained in the splitting field
of g ◦ f . Thus if β be a root of g(x) then every root of f(x)−β is a root
of g(f(x)). Conversely if α is a root of g ◦ f then f(α) is a root of g(x).

Lemma 5.1. [3] g◦f is irreducible in K[x] if and only if g is irreducible
in K[x] and f − β is irreducible in K(β)[x] for every root β of g(x).

Theorem 5.2. Assume f(x) = ax2 +bx+c and g ◦ft−1 is irreducible
over K for t ≥ 2. Then g ◦ft is irreducible over K if one of the following
holds.

(1) N
K(
√

∆(h))/K

√
∆(h) 6∈ K2 for g ◦ ft−1(β) = 0 and h(x) = f(x) −

β ∈ K(β)[x].
(2) g ◦ ft(γ) 6∈ K2 for the critical point γ of f .

Proof. Because g ◦ ft−1 is irreducible over K, g ◦ ft = (g ◦ ft−1) ◦ f
is irreducible over K if and only if f(x)− β is irreducible over K(β) for
any root β of g ◦ ft−1. Let h = f − β ∈ K(β)[x]. Then h is irreducible
over K(β) is equivalent to that the zeros of h(x) are not belong to K(β),
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i.e. ∆(h) = −4a(− b2

4a + c− β) is not in K(β)2. Thus g ◦ ft is irreducible
over K if, at least, the norm NK(β)/K(∆(h)) is not in K2. Now

NK(β)/K∆(f − β) = NK(β)/K(−4a)NK(β)/K(− b2

4a
+ c− β)

= (−4a)m2t−1
∏

σ∈Gal(K(β)/K)

σ(− b2

4a
+ c− β)

for [K(β) : K] = deg(g ◦ ft−1) = m2t−1. Every σ maps β to another
root βi of g ◦ ft−1 (1 ≤ i ≤ m2t−1) with β = β1 and leaves K fixed, so

NK(β)/K(∆(f − β))

= (4a)m2t−1
(− b2

4a
+ c− β1)(− b2

4a
+ c− β2) · · · (− b2

4a
+ c− βm2t−1)

= (4a)m2t−1
m2t−1∏

i=1

(− b2

4a
+ c− βi) = (4a)m2t−1

∏

g◦ft−1(β)=0

(f(γ)− β)

since − b2

4a + c = f(− b
2a) = f(γ) with the critical point γ = − b

2a of f .
We note that, in some large enough extension field of K, we can write

f(x) =
∏

f(ω)=0(x− ω). Similar to this

g ◦ f(x) =
∏

g(ω)=0

(f(x)− ω) and g ◦ ft(x) =
∏

g◦ft−1(ω)=0

(f(x)− ω).

But since g ◦ ft−1(βi) = 0 for 1 ≤ i ≤ m2t−1,

g ◦ ft(x) =
∏

g◦ft−1(β)=0

(f(x)− β)

so
NK(β)/K(∆(f − β)) = (4a)m2t−1

(g ◦ ft)(γ).

If (4a)m2t−1
g ◦ft(γ) 6∈ K2, i.e., g ◦ft(− b

2a) 6∈ K2 then g ◦ft is irreducible
over K.

Corollary 5.3. Let f(x) = ax2 + bx + c. If ft−1 is irreducible for
some t ≥ 2 and ft(− b

2a) is not a square in K then ft is irreducible.

Proof. ft is irreducible over K if and only if f(x) − β is irreducible
over K(β) for any root β of ft−1, that is, b2 − 4ac + 4aβ is not a square
in K(β). Since

NK(β)/K(b2 − 4ac + 4aβ) = (−4a)2
t−1

∏

f t−1(β)=0

(− b2

4a
+ c)− β
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= (4a)2
t−1

ft−1(− b2

4a
+ c) = (4a)2

t−1
ft−1(f(− b

2a
)),

if ft(− b
2a) = ft−1f(− b

2a) = NK(β)/K(b2 − 4ac + 4aβ) is not a square in
K then (b2− 4ac+4aβ) is not in K(β)2, so ft is irreducible over K.
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