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h-STABILITY OF THE NONLINEAR PERTURBED
DIFFERENTIAL SYSTEMS VIA t∞-SIMILARITY

Yoon Hoe Goo* and Seung Bum Yang**

Abstract. In this paper, we investigate h-stability of the non-
linear perturbed differential systems using the the notion of t∞-
similarity

1. Introduction

As is traditional in a pertubation theory of nonlinear differential
equations, the behavior of solutions of a perturbed equation is deter-
mined in terms of the behavior of solutions of an unperturbed equation.
There are three useful methods for studying the qualitative behavior
of the solutions of perturbed nonlinear system of differential equations:
the method of variation of constants formula, the second method of
Lyapunov and the use of integral inequalities.

Pinto[13,15] introduced h-stability(hS) which is an important exten-
tion of the notions of exponential asymptotic stability and uniform Lip-
schitz stability. Also, he obtained some properties about asymptotic
behavior of solutions of perturbed differential systems, some general re-
sults about asymptotic integration and gave some important examples
in [14].

Choi and Ryu [3] dealt with hS of the solutions of the various differ-
ential systems and Volterra integro-differential systems. Recently, Choi
et al. [4] and Goo and Ry [7,8] obtained results for hS of nonlinear dif-
ferential systems via t∞-similarity. Goo et al.[9,10] investigated hS for
the nonlinear Volterra integro-differential system.

In this paper, we investigate h-stability of the nonlinear perturbed
differential systems using the the notion of t∞-similarity.
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2. Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

where f ∈ C[R+ × Rn,Rn], R+ = [0,∞) and Rn is the Euclidean n-
space. We assume that the Jacobian matrix fx = ∂f/∂x exists and is
continuous on R+ × Rn and f(t, 0) = 0.

Let x(t) = x(t, t0, x0) denote the unique solution of (2.1) through
(t0, x0) in R+×Rn such that x(t0, t0, x0) = x0. Also, we consider the as-
sociated variational systems around the zero solution of (2.1) and around
x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.2)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.3)

The fundamental matrix solution Φ(t, t0, x0) of (2.3) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix solution of (2.2). The symbol
|.| denotes arbitrary vector norm in Rn.

We recall some notions of h-stability [13] and the notion of t∞-
similarity [5].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1))
is called an h-system if there exist a constant c ≥ 1, and a positive
continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t) h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough (here h(t)−1 = 1
h(t)).

Definition 2.2. The system (2.1) (the zero solution x = 0 of (2.1))
is called h-stable (hS) if there exist δ > 0 such that (2.1) is an h-system
for |x0| ≤ δ and h is bounded.

Let M denote the set of all n×n continuous matrices A(t) defined on
R+ and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C1 with the property that S(t) and S−1(t) are
bounded. The notion of t∞-similarity in M was introduced by Conti
[5].
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Definition 2.3. A matrix A(t) ∈M is t∞-similar to a matrix B(t) ∈
M if there exists an n × n matrix F (t) absolutely integrable over R+,
i.e., ∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(2.4)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of
all n × n continuous matrices on R+, and it preserves some stability
concepts [4, 11].

We give some related properties that we need in the sequal.

Lemma 2.4. [15] The linear system

x′ = A(t)x, x(t0) = x0,(2.5)

where A(t) is an n × n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist c ≥ 1 and a positive and continuous
(respectively bounded) function h defined on R+ such that

|φ(t, t0)| ≤ c h(t) h(t0)−1(2.6)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (2.5).

Theorem 2.5. [3] If the zero solution of (2.1) is hS, then the zero
solution of (2.2) is hS.

Theorem 2.6. [7] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. Then the solution
v = 0 of (2.2) is hS if and only if the solution z = 0 of (2.3) is hS.

3. Main results

In this section, we investigate hS for the nonlinear perturbed differ-
ential systems.

Now, we examine the properties of hS for the perturbed system

(3.1) y′ = f(t, y) +
∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0,

where g ∈ C[R+ × Rn × Rn,Rn] , g(t, 0, 0) = 0 and T : C(R+,Rn) →
C(R+,Rn) is a continuous operater .
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Theorem 3.1. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution x = 0
of (2.1) is hS with the increasing function h, and g in (3.1) satisfies
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ ≤ a(s)|y(s)|+ b(s)
∫ s

t0

c(τ)|y(τ)|dτ, t ≥ t0 ≥ 0,

where a, b, c ∈ C(R+,R+) and
∫∞
t0

[a(s) + b(s)
∫ s
t0

c(τ)dτ ]ds < ∞. Then,

the solution y = 0 of (3.1) is hS.

Proof. Using a slight variant of the nonlinear variation of constants
formula of Alekseev[1], any solution y(t) = y(t, t0, x0) of (3.1) passing
through (t0, x0) is given by
(3.2)

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s))
∫ s

t0

g(τ, y(τ), Ty(τ))dτds,

where x(t) = x(t, t0, x0) is a solution of (2.1) passing through (t0, x0).
By Theorem 2.5, since the solution x = 0 of (2.1) is hS, the solution
v = 0 of (2.2) is hS. Therefore, by Theorem 2.6, the solution z = 0
of (2.3) is hS. Applying Lemma 2.4 and the increasing property of the
function h, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ds

≤ c1|y0|h(t) h(t0)−1

+
∫ t

t0

c2h(t) [a(s)|y(s)|h(s)−1 + b(s)
∫ s

t0

c(τ)|y(τ)|h(τ)−1dτ ]ds.

Set u(t) = |y(t)|h(t)−1. Then, by Gronwall’s inequality, we obtain

|y(t)| ≤ c1|y0|h(t) h(t0)−1e
c2

∫ t
t0

[a(s)+b(s)
∫ s

t0
c(τ)]ds

≤ c|y0|h(t) h(t0)−1, c = c1e
c2

∫∞
t0

[a(s)+b(s)
∫ s

t0
c(τ)]ds

It follows that y = 0 of (3.1) is hS. Hence, the proof is complete.

Remark 3.1. Letting g(s, y(s), T y(s)) = g(s, y(s)), b(s) = 0 in The-
orem 3.1, we obtain the same result as that of Theorem 3.3 in [8].

Remark 3.2. In the linear case, we can obtain that if the zero solu-
tion x = 0 of (2.5) is hS, then the perturbed system

y′ = A(t)y +
∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0,
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is also hS under the same hypotheses in Theorem 3.1 except the condi-
tion of t∞-similarity.

We need the following lemma for hS of (3.1).

Lemma 3.2. Let u, p, q, w, r ∈ C(R+,R+) and suppose that, for some
c ≥ 0, we have
(3.3)

u(t) ≤ c +
∫ t

t0

p(s)
∫ s

t0

[q(τ)u(τ) + w(τ)
∫ τ

t0

r(a)u(a)da]dτds, t ≥ t0.

Then

(3.4) u(t) ≤ c exp(
∫ t

t0

p(s)
∫ s

t0

[q(τ) + w(τ)
∫ τ

t0

r(a)da]dτds), t ≥ t0.

Proof. Setting v(t) = c+
∫ t
t0

p(s)
∫ s
t0

[q(τ)u(τ)+w(τ)
∫ τ
t0

r(a)u(a)da]dτds,
we have v(t0) = c and

(3.5)

v′(t) = p(t)
∫ t

t0

[q(s)u(s) + w(s)
∫ s

t0

r(a)u(a)da]ds

≤ p(t)
∫ t

t0

[q(s) + w(s)
∫ s

t0

r(a)da]v(s)ds

≤ [p(t)
∫ t

t0

[q(s) + w(s)
∫ s

t0

r(a)da]ds]v(t), t ≥ t0,

since v(t) is nondecreasing and u(t) ≤ v(t). It follows from the Gronwall
inequality that (3.5) yields the estimate (3.4).

Theorem 3.3. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
x = 0 of (2.1) is an h-system with a positive continuous function h and
g in (3.1) satisfies

|g(t, y, Ty)| ≤ λ(t)|y|+ β(t)
∫ t

t0

γ(s)|y(s)|ds, t ≥ t0, y ∈ Rn,

where λ, β, γ : R+ → R+ are continuous with

(3.6)
∫ ∞

t0

1
h(s)

∫ s

t0

[h(τ)λ(τ) + β(τ)
∫ τ

t0

h(r)γ(r)dr]dτds < ∞,

for all t0 ≥ 0, then the solution y = 0 of (3.1) is an h-system.

Proof. It is known that the solutions of (2.1) and (3.1) with the same
initial values are represented by the integral equation (3.2). By Theorem
2.5, since the solution x = 0 of (2.1) is an h-system, the solution v = 0
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of (2.2) is an h-system. Therefore, by Theorem 2.6, the solution z = 0
of (2.3) is an h-system. Using (2.6) and (3.2), we obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ), T y(τ))|dτds

≤ c1|y0|h(t)h(t0)−1

+
∫ t

t0

c2
h(t)
h(s)

[
∫ s

t0

h(τ)λ(τ)
|y(τ)|
h(τ)

+ β(τ)
∫ τ

t0

h(r)γ(r)
|y(r)|
h(r)

drdτ ]ds.

Applying Lemma 3.2 with u(t) = |y(t)|h(t)−1 and using (3.6), we obtain

|y(t)| ≤ c1|y0|h(t) h(t0)−1e
c2

∫ t
t0

1
h(s)

∫ s
t0

[h(τ)λ(τ)+β(τ)
∫ τ

t0
h(r)γ(r)dr]dτds

≤ c|y0|h(t) h(t0)−1, t ≥ t0,

where c = c1e
c2

∫∞
t0

1
h(s)

∫ s
t0

[h(τ)λ(τ)+β(τ)
∫ τ

t0
h(r)γ(r)dr]dτds. It follows that

y = 0 of (3.1) is an h-system. Hence, the proof is complete.

Remark 3.3. In the linear case, we can obtain that if the zero solu-
tion x = 0 of (2.5) is an h-system, then the perturbed system

y′ = A(t)y +
∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0,

is also an h-system under the same hypotheses in Theorem 3.3 except
the condition of t∞-similarity.

Theorem 3.4. For the system (3.1), suppose that∣∣∣∣
∫ t

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ ≤ r(t, |y|, |Ty|),

where r ∈ C[R+ × R+ × R+,R+] is strictly increasing in u,v for each
fixed t ≥ t0 ≥ 0 with r(t, 0, 0) = 0. Assume also that z = 0 of (2.3)
is hS with the nonincreasing function h. Consider the scalar differential
equation

u′ = cr(t, u, Tu), u(t0) = u0 = c|y0|.(3.7)

If u = 0 of (3.7) is hS, then y = 0 of (3.1) is also hS whenever
u0 = c|y0|.

Proof. Using the nonlinear variation of constants formula of Alek-
seev[1], the solutions of (2.1) and (3.1) with the same initial values are
related by

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s))
∫ s

t0

g(τ, y(τ), T y(τ))dτds.
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Then, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ds,

where Φ(t, s, y(s)) is the fundamental matrix of (2.3). Then, the rest
of proof can be proved in the similar manner as that of Theorem 3.4 of
[8], so we omit the details.
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