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NOTE ON CLASS NUMBER OF
REAL CYCLOTOMIC FUNCTION FIELD

HwaNYUP JUNG*

ABSTRACT. We prove that for any positive integer g > 3, there are
)
> q29 real cyclotomic function fields whose conductor has degree

< [ and ideal class number is divisible by m.

1. Introduction

For an integer m > 2, the divisibility of class number A of the
maximal real subfield Q(¢,, + ¢,) of m-th cyclotomic field Q(¢,) has
been studied by many authors ([1, 5, 6, 7, 9, 10]). Many results are
obtained by studying the class number of quadratic, cubic, or cyclic
subfield of Q({, + ¢). In this paper, we study the class number of
maximal real subfield of cyclotomic function field by adapting Osada’s
methods in [7].

Let g be a power of an prime number p. Let k = F,(T) be a rational
function field over the finite field F; and A = Fy[T]. For any monic
polynomial N € A, we denote by K the N-th cyclotomic function field
and K]‘\*} be its maximal real subfield, which is also called the N-th real
cyclotomic function field. Let (9;{, be the integral closure of A in Kf{,
and h} be the ideal class number of (’);\r,. For more details on the theory
of cyclotomic function field, we refer Rosen’s book ([8, chapter 12]).

In this paper, we shall prove the following theorem.

l
THEOREM 1.1. For any positive integer g > 3, there are > q2¢ real
cyclotomic function fields K]'G such that deg N < [ and hj([ is divisible

by gcdé,g) ’
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2. Genus theory in function field

In this section we recall genus theory in function field ([2]) and prove
a proposition which will play an important role in the proof of Theorem
1.1. Let oo be the place of k associated to 1/T and k., the completion
of k at 0o. Put C := keo(*/=1/T). In the following we mean by an
extension of k, a separable extension of k for which any of its embedding
into k% lies in C viewing as a subfield of k2. In particular, any finite
abelian extension F' of k is contained in some cyclotomic function field.
In this case the monic polynomial N of minimal degree such that Ky
contains F' is called the the conductor N. We say that an extension F
of k is real if oo splits completely in F'. Let Of be the integral closure
of A in F and CI(F) be the ideal class group of Op, h(F') = |CI(F)],
which is called the ideal class number of F'.

Let ¢ be a prime number and F' be a real cyclic extension of degree
£ of k. The ordinary Hilbert class field Hr of F' is the maximal abelian
extension of F' in which every infinite primes of F' split completely. Then
ordinary genus field G(F/k) of F/k is defined as the maximal abelian
extension of k inside Hp. The narrow Hilbert class field H;“ of F'is
the maximal abelian extension of F inside C' and the narrow genus
field GT(F/k) is defined as the maximal abelian extension of k inside
H}. The Galois groups &(F/k) = Gal(G(F/k)/F) and &1 (F/k) =
Gal(GT(F/k)/F) are called the genus group and narrow genus group of
F/k, respectively. In the case £|(g — 1), any real cyclic extension F' of
degree £ of k is a Kummer extension, so it can be written as F' = k(v/N),
where N € A is an ¢-th power free monic polynomial and deg N divisible
by £.

The following lemmas will be used to prove proposition 2.4.

LEMMA 2.1. Assume that { is a prime divisor of ¢ — 1. Let F' =
kE(v/N) be a real cyclic extension of degree £ of k, where N € A is an
{-th power free monic polynomial with monic irreducible factorization
N = P[*---P[*. Set Pf = (—1)4&Pip,. Then the narrow genus field
GT(F/k) is given as

G (F/k) =k(YP},..../P}).
Proof. See [2, §1]. O
LEMMA 2.2. If ¢4 (q — 1), then we have G(F/k) = GT(F/k) .

Proof. See [2, Proposition 2.3]. O
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LEMMA 2.3. The narrow genus group &1 (F/k) is an elementary
abelian ¢-group of rank t — 1, where t is the number of finite places
of k ramifying in F.

Proof. See [2, Theorem 3.10]. O

PROPOSITION 2.4. Let £ be a prime number and F be a real cyclic
extension of degree ¢ of k. If Ny is the conductor of F, then the ideal
class group CZ(K]\LIO) has a subgroup which is isomorphic to Cl(F)*.

Proof. We first assume that £ is a prime divisor of ¢ — 1. Then
F = k(v/N) for some ¢-th power free monic polynomial N € A of degree
deg N divisible by ¢. Let N = P/*--- P;* be the monic irreducible fac-
torization of N and write Ny = P, - - - P;. Then Ny is the conductor of F
and GT(F/k) = k({/Pf,...,¥/P}) (see Lemma 2.1). Hence, we can see
that Gal(GT (F/k)/F) is an elementary abelian ¢-group of rank t—1. Let
M = G*(F/k) N Hp. Let H be the subgroup of CI(F) which is isomor-
phic to Gal(Hp/M) under the Artin isomorphism CI(F') = Gal(Hp/F).
Since Gal(G*(F/k)/F) is isomorphic to (Z/¢Z)!~, CI(F)/H is an el-
ementary ableian f-group. Hence, CI(F)¢ is contained in H. Since
G*(F/k) is contained in Ky,, M is contained in K7 . Since G*(F/k)
is the narrow genus field of F//k, we have KZJ{,O N Hp = M. Hence the
compositum KX,OH r of K;{,O and Hp is an unramified abelian exten-
sion of K]J\F,O in which all infinite primes of K]*\} splits completely, and
Gal(K;(,OHF/K;{,O) is isomorphic to Gal(Hr/M). Since Gal(Hpr/M) is
isomorphic to H which is a subgroup CI(F)?, Gal(K]J\r,OHF/K]J{,O) has a
subgroup which is isomorphic to CI(F)*. Hence CI (Kj(,o) has a subgroup
which is isomorphic to CI(F)*.

Next, we prove the assertion in the case when ¢ { (¢ — 1). In this
case GT(F/k) is equal to the genus field G(F/k), so GT(F/k) is a
subfield of Hilbert class field Hp. Let H be the subgroup of CI(F)
which is isomorphic to Gal(Hr/G™ (F/k)) under the Artin isomorphism
ClI(F) = Gal(Hp/F). By Lemma 2.3, Gal(G"(F/k)/F) is isomorphic
to (Z/¢Z)~1, where t is the number of finite places of k ramifying in F.
Hence CI(F)/H is also an elementary ableian /-group, so CI(F) is con-
tained in H. Since G (F/k) is contained in the cyclotomic function field
Kn,, Gt (F/k) is contained in K;{,O and KK,O NHp = GT(F/k). In the
same way as in the proof of this proposition for the case £|(¢—1), we can
show that CI(K ]'\ﬁo) has a subgroup which is isomorphic to CI(F)*. [
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3. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. First, we consider the
case when ¢ is odd. Note that any real quadratic extension F of k is of
the form F = k(v/N), where N is a monic square-free polynomial of even
degree, and F' is always contained in the real cyclotomic function field
K3, that is, N is the conductor of F' = k(v/N). In [4], Chakraborty and
Mukhopadhyay has shown that for any positive integer g > 3, there are
> ¢!/%9 real quadratic extensions k(v/N) such that deg N < [ and the
ideal class group Cl((’)k( \/N)) of Ok( M) has an element of order g. By
applying Proposition 2.4 to such N’s with £ = 2, we can see that the ideal
class group Cl (K]J\r,) has a subgroup which is isomorphic to CI ((’)k( \/N))Z.
Then, by the result of Chakraborty and Mukhopadhyay, Cl(K]T,) has

an element of order —%—. Hence, h}, is divisible by —%—. This

ged(2,9) ged(2,9)
competes the proof of Theorem 1.1 when ¢ is odd.

Now, we consider the case when ¢ is even. Any separable quadratic
extension F' of k can be written as F' = k(«), where « is a zero of
x? + Ax + B = 0 with A,B € A. Here, we can always assume that
A is monic and (A, B) satisfies the property that for any irreducible

polynomial P dividing A, the congruence
x2 + Ax + B = 0 mod P>

is not solvable in A. Then we have Op = Ala] and A is uniquely
determined since the discriminant of Op is A% Write d(F) = deg A.
Recently, Bae and Jung [3] has shown that for any positive integer g > 2,
there are >> ¢(9) real quadratic extensions F of k such that d(F) </
and the i(zeal cl?ss group of O contains an element of order g, where

v(g,?)is 35 OF 537 according as g is odd or even. It is easy to see that the

conductor of F = k(a) is A2, i.e., F is contained in the real cyclotomic
function field Kjlg. By Proposition 2.4, we can see that the ideal class

group Cl (KXQ) has a subgroup which is isomorphic to CI(Or)2. Then,

by the result of Bae and Jung, CZ(KL) has an element of order —%—.

ged(2,9)
Hence, hzz is divisible by m. This competes the proof of Theorem

1.1 when ¢ is even.
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