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A CHANGE OF SCALE FORMULA FOR
GENERALIZED WIENER INTEGRALS

Byoung Soo Kim*, Teuk Seob Song**, and Il Yoo***

Abstract. Cameron and Storvick introduced change of scale for-
mulas for Wiener integrals of bounded functions in the Banach alge-
bra S of analytic Feynman integrable functions on classical Wiener
space. Yoo and Skoug extended this result to an abstract Wiener
space. Also Yoo, Song, Kim and Chang established a change of
scale formula for Wiener integrals of functions on abstract Wiener
space which need not be bounded or continuous. In this paper, we
investigate a change of scale formula for generalized Wiener inte-
grals of various functions on classical Wiener space.

1. Introduction

It has long been known that Wiener measure and Wiener measur-
ability behave badly under the change of scale transformation [3] and
under translations [4]. Cameron and Storvick [3] expressed the analytic
Feynman integral for a rather large class of functionals as a limit of
Wiener integrals. In doing so, they discovered nice change of scale for-
mulas for Wiener integrals on classical Wiener space (C0[0, T ],mw). In
[12, 13, 15], Yoo, Yoon and Skoug extended these results to classical Yeh-
Wiener space and to an abstract Wiener space (H, B, ν). In particular,
Yoo and Skoug [12] established a change of scale formula for Wiener in-
tegrals of functions in the Fresnel class F(B) on abstract Wiener space,
and then they [13] developed this formula for a more generalized Fresnel
class FA1,A2 than the Fresnel class F(B). But functions in F(B) and
FA1,A2 are bounded. In [14], Yoo, Song, Kim and Chang investigated
a change of scale formula for Wiener integrals of functions on abstract
Wiener space which need not be bounded or continuous. In this paper,
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we investigate change of scale formulas for generalized Wiener integrals
of various functions on classical Wiener space.

2. Definitions and preliminaries

Let C0[0, T ] denote the Wiener space, that is, the space of R-valued
continuous functions x on [0, T ] with x(0) = 0. Let M denote the class
of all Wiener measurable subsets of C0[0, T ] and let mw denote Wiener
measure. (C0[0, T ],M,mw) is a complete measure space and we denote
the Wiener integral of a functional F by

∫
C0[0,T ] F (x) dmw(x).

Let C, C+ and C∼+ denote the set of complex numbers, complex num-
bers with positive real part, and nonzero complex numbers with non-
negative real part, respectively.

A subset E of C0[0, T ] is said to be scale-invariant measurable pro-
vided αE is measurable for each α > 0, and a scale-invariant measurable
set N is said to be scale-invariant null provided mw(αN) = 0 for each
α > 0. A property that holds except on a scale-invariant null set is said
to hold scale-invariant almost everywhere (s-a.e.). If two functionals F
and G are equal s-a.e., then we write F ≈ G.

Let F be a C-valued scale-invariant measurable functional on C0[0, T ]
such that

(2.1) J(λ) =
∫

C0[0,T ]
F (λ−1/2Zh(x, ·)) dmw(x)

exists as a finite number for all real λ > 0 where Zh is the Gaussian
process

(2.2) Zh(x, t) =
∫ t

0
h(s) d̃x(s)

where h is in L2[0, T ] and
∫ t
0 h(s) d̃x(s) denotes the Paley-Wiener- Zyg-

mund(P.W.Z) integral [2]. If there exists an analytic function J∗(λ) on
C+ such that J∗(λ) = J(λ) for all λ > 0, then J∗(λ) is defined to be the
generalized analytic Wiener integral of F over C0[0, T ] with parameter
λ, and for λ ∈ C+ we write

(2.3) Iλ
a (F ) = J∗(λ).

Let F be a functional on C0[0, T ] such that Iλ
a (F ) exists for all λ ∈ C+. If

the following limit exists for nonzero real q, then we call it the generalized
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analytic Feynman integral of F over C0[0, T ] with parameter q and we
write

(2.4) Iq
a(F ) = lim

λ→−iq
Iλ
a (F )

where λ → −iq through C+. When h ≡ 1, the generalized analytic
Wiener integral and generalized analytic Feynman integral reduced to
the analytic Wiener integral and analytic Feynman integral, respectively
[6,10].

The Banach algebra S consists of functionals on C0[0, T ] expressible
in the form

(2.5) F (y) =
∫

L2[0,T ]
exp{i(u, y)} dµ(u)

for s-a.e. y in C0[0, T ] where µ is an element of M(L2[0, T ]), the space
of C-valued countably additive Borel measures on L2[0, T ], and (u, y)
denotes the P.W.Z. integral

∫ T
0 u(t) d̃y(t).

The following existence theorem for generalized analytic Feynman
integral of functions in the Banach algebra S is the result of Chung,
Park and Skoug [6].

Theorem 2.1. ([6]) Let F ∈ S be given by (2.5). Then the general-
ized analytic Feynman integral of F over C0[0, T ] exists for all real q 6= 0
and

(2.6) Iq
a(F ) =

∫

L2[0,T ]
exp{− i

2q
‖uh‖2

2}dµ(u).

In addition for each λ ∈ C+,

(2.7) Iλ
a (F ) =

∫

L2[0,T ]
exp{− 1

2λ
‖uh‖2

2}dµ(u).

3. A change of scale formula for functionals in S

In this section, we discuss a change of scale formula for generalized
Wiener integrals of functions in S introduced by Cameron and Storvick.

We next introduce an integration formula which plays an important
role in this section. This lemma is obtained by using a similar method as
in the proof of Lemma 2 and 3 in [4] and hence we will state it without
proof.
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Lemma 3.1. Let λ be in C+, h ∈ L∞[0, T ] and v ∈ L2[0, T ]. Let
{α1, α2, · · · , αn} be a subset in L2[0, T ] such that {α1h, α2h, · · · , αnh}
are orthonormal on L2[0, T ]. Then

∫

C0[0,T ]
exp

{
1− λ

2

n∑

k=1

(αk, Zh(x, ·))2 + i(v, Zh(x, ·))
}

dmw(x)

= λ−n/2 exp

{
λ− 1
2λ

n∑

k=1

〈αkh, vh〉2 − 1
2
‖vh‖2

2

}

where 〈·, ·〉 denotes the inner product on L2[0, T ].

Let h be in L∞[0, T ] with 1/h in L∞[0, T ] and let Zh(x, t) be given by
(2.2). Let {γ1, · · · , γk, · · · } be a complete orthonormal set on L2[0, T ].
Now we set

αk = γk/h for k = 1, 2, 3, · · · ,(3.1)

and then the αk’s clearly belong to L2[0, T ].
In the next theorem, we give a relationship between generalized Wiener

integral and generalized analytic Wiener integral on Wiener space.

Theorem 3.2. Let {αk} be given as in (3.1), let F ∈ S, and let
λ ∈ C+. Then

Iλ
a (F ) = lim

n→∞λn/2

∫

C0[0,T ]
exp

{
1− λ

2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·))dmw(x).

Proof. Let F ∈ S be given by (2.5). By Fubini theorem and Lemma
3.1, we obtain that

∫

C0[0,T ]
exp

{
1− λ

2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·))dmw(x)

=
∫

L2[0,T ]

∫

C0[0,T ]
exp

{
1− λ

2

n∑

k=1

(αk, Zh(x, ·))2 + i(v, Zh(x, ·))
}

dmw(x)dµ(v)

= λ−n/2

∫

L2[0,T ]
exp

{
λ− 1
2λ

n∑

k=1

〈αkh, vh〉2 − 1
2
‖vh‖2

2

}
dµ(v).

Since {αk} is given by (3.1), {αkh} is a complete orthonormal set in
L2[0, T ]. By the bounded convergence theorem and Parseval’s relation,
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we obtain

lim
n→∞λn/2

∫

C0[0,T ]
exp

{
1− λ

2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·))dmw(x)

=
∫

L2[0,T ]
exp{− 1

2λ
‖vh‖2

2}dµ(v) = Iλ
a (F )

which completes the proof.

The following theorem is a relationship between generalized Wiener
integral and generalized analytic Feynman integral on Wiener space
which follows from Theorem 3.2 and using (2.6) instead of (2.7).

Theorem 3.3. Let αk and F be given as in Theorem 3.2 and let
{λn}∞n=1 be a sequence of complex numbers from C+ such that λn → −iq.
Then

Iq
a(F ) = lim

n→∞λ
n/2
n

∫

C0[0,T ]
exp

{
1− λn

2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·))dmw(x).

The next theorem shows our change of scale formula for generalized
Wiener integrals on Wiener space which follows from Theorem 3.2 above.

Theorem 3.4. Let ρ > 0 be given and let {αk} be given as in (3.1).
Then for F ∈ S,

∫

C0[0,T ]
F (ρZh(x, ·))dmw(x)(3.2)

= lim
n→∞ ρ−n

∫

C0[0,T ]
exp

{
ρ2 − 1
2ρ2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·))dmw(x).

Proof. By Theorem 3.2 and letting ρ−2 instead of λ, we obtain the
change of scale formula for generalized Wiener integrals of functions
having the form (2.5).

Corollary 3.5. ([3]) When h ≡ 1 in Theorem 3.4, we obtain
Cameron and Storvick’s change of scale formula for Wiener integrals
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of functions having the form (2.5),
∫

C0[0,T ]
F (ρx) dmw(x)(3.3)

= lim
n→∞ ρ−n

∫

C0[0,T ]
exp

{ρ2 − 1
2ρ2

n∑

k=1

(αk, x)2
}

F (x) dmw(x).

4. A change of scale formula for unbounded functions

Cameron and Storvick [5] introduced the class of functions of the
form

(4.1) F (x) = G(x)Ψ((α1, x), (α2, x), · · · , (αr, x))

for G ∈ S and Ψ = ψ + φ where ψ ∈ Lp(Rr), 1 ≤ p < ∞, αk’s given as
in (3.1) in Section 3, and φ ∈ M̂(Rr) , the set of functions φ defined on
Rr by

(4.2) φ(~s) =
∫

Rr

exp
{

i

r∑

k=1

sktk

}
dρ(~t)

where ρ is a complex Borel measure of bounded variation on Rr, ~s =
(s1, · · · , sr) and ~t = (t1, · · · , tr). And they showed that the above func-
tions (4.1) which need not be bounded or continuous are analytic Feyn-
man integrable.

In this section, we establish a change of scale formula for generalized
Wiener integrals of functions of the form (4.1).

To simplify the expressions, we use the following notations:

(~α, x) = ((α1, x), (α2, x), · · · , (αr, x))
and

(~αh, x) = ((α1h, x), (α2h, x), · · · , (αrh, x)).
The following theorem is the existence theorem for generalized an-

alytic Feynman intgral of above functions (4.1) which corresponds to
Cameron and Storvick’s theorem [5] for analytic Feynman integral of
these functions. Using the similar methods as in the proof of Cameron
and Storvick’s theorem, we obtain the following existence theorem and
so we will state it without proof.

Theorem 4.1. Let F (x) = G(x)Ψ((~α, x)) where G ∈ S, Ψ = ψ+φ ∈
Lp(Rr) + M̂(Rr), 1 ≤ p < ∞. Then for each λ ∈ C+, F is generalized
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analytic Wiener integrable. Moreover if G and φ are given by (2.5) and
(4.2), respectively and ψ ∈ Lp(Rr), then

Iλ
a (F ) =

( λ

2π

)r/2
∫

L2[0,T ]

∫

Rr

exp{S1(λ, v,~t)}ψ(~t) d~t dµ(v)(4.3)

+
∫

L2[0,T ]

∫

Rr

exp{S2(λ, v,~t)} dρ(~t) dµ(v)

where

S1(λ, v,~t) =
1
2λ

[ r∑

k=1

(iλtk + 〈αkh, vh〉)2 − ‖vh‖2
2

]

and

S2(λ, v,~t) = − 1
2λ

[
‖vh‖2

2 +
r∑

k=1

2tk〈αkh, vh〉+
r∑

k=1

t2k

]
.

In case p = 1, for each real q 6= 0, F is generalized analytic Feynman
integrable. Moreover if {αk} is given as in (3.1), then

Iq
a(F ) =

(
− iq

2π

)r/2
∫

L2[0,T ]

∫

Rr

exp{S1(−iq, v,~t)}ψ(~t) d~t dµ(v)(4.4)

+
∫

L2[0,T ]

∫

Rr

exp{S2(−iq, v,~t)} dρ(~t) dµ(v).

Now we give a relationship between generalized Wiener integral and
generalized analytic Wiener integral on Wiener space.

Theorem 4.2. Let {α1, α2, · · · , αn, · · · } be given as in (3.1). Let
F (x) = G(x) ψ((~α, x)) where G ∈ S and ψ ∈ Lp(Rr), 1 ≤ p < ∞. Then
for each λ ∈ C+, we have

Iλ
a (F ) = lim

n→∞λn/2

∫

C0[0,T ]
exp

{
1− λ

2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·))dmw(x).

Proof. Let n be a natural number with n > r and let

Γ(n) =
∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·)) dmw(x).

By the Fubini theorem, we have
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Γ(n) =
∫

L2[0,T ]

∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2 + i(v, Zh(x, ·))
}

ψ ((~α, Zh(x, ·))) dmw(x) dµ(v)

=
( λ

2π

)r/2( 1
λ

)n/2
∫

L2[0,T ]

∫

Rr

exp
{λ− 1

2λ

n∑

k=1

〈αkh, vh〉2 − 1
2
‖vh‖2

2

}

exp
{ 1

2λ

r∑

k=1

(iλtk + 〈αkh, vh〉)2
}

ψ(~t) d~t dµ(v).

Note that, by the Bessel inequality, we have

∣∣∣exp
{λ− 1

2λ

n∑

k=1

〈αkh, vh〉2 − 1
2
‖vh‖2

2

+
1
2λ

r∑

k=1

(iλtk + 〈αkh, vh〉)2
}

ψ(~t)
∣∣∣ ≤ exp

{
−Reλ

2

r∑

k=1

t2k

}
|ψ(~t)|

and the right hand side of the inequality above is integrable on L2[0, T ]×
Rr, since ψ ∈ Lp(Rr) and µ ∈ M(L2[0, T ]). Hence by the dominated
convergence theorem and Parseval’s relation, we obtain

lim
n→∞λn/2Γ(n) =

( λ

2π

)r/2
∫

L2[0,T ]

∫

Rr

exp
{

S1(λ, v,~t)
}

ψ(~t) d~t dµ(v).

By Theorem 4.1, the proof is completed.

Moreover if p = 1, we obtain a relationship between generalized
Wiener integral and generalized analytic Feynman integral on Wiener
space.

Theorem 4.3. Let {αk} be given as in (3.1). Let F (x) = G(x)ψ((~α, x))
where G ∈ S and ψ ∈ L1(Rr) and let {λn} be a sequence of complex
numbers in C+ such that λn −→ −iq. Then

Iq
a(F ) = lim

n→∞λ
n/2
n

∫

C0[0,T ]
exp

{1− λn

2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·)) dmw(x).
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Proof. Let n be a natural number with n > r and let

Γ(n, λn) =
∫

C0[0,T ]
exp

{1− λn

2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·)) dmw(x).

By the same method as in the proof of Theorem 4.2, we have

Γ(n, λn)

=
(λn

2π

)r/2( 1
λn

)n/2
∫

L2[0,T ]

∫

Rr

exp
{λn − 1

2λn

n∑

k=1

〈αkh, vh〉2− 1
2
‖vh‖2

2

}

exp
{ 1

2λn

r∑

k=1

(iλntk + 〈αkh, vh〉)2
}

ψ(~t) d~t dµ(v).

Using the Bessel inequality in the first exponent above, we have that
the absolute value of the exponentials above is bounded by unity. And
also |ψ(~t)| is integrable on L2[0, T ] × Rr since ψ ∈ L1(Rr) and µ ∈
M(L2[0, T ]). Hence by the dominated convergence theorem and Parse-
val’s relation, we obtain

lim
n→∞λn/2

n Γ(n, λn)

=
(
− iq

2π

)r/2
∫

L2[0,T ]

∫

Rr

exp
{
S1(−iq, v,~t)

}
ψ(~t) d~t dµ(v).

By Theorem 4.1, the proof is completed.

Theorem 4.4. Let {αk} be given as in (3.1). Let F (x) = G(x)
×φ((~α, x)) where G ∈ S and φ ∈ M̂(Rr). Then the formulas in Theorem
4.2 and 4.3 hold.

Proof. Let n be a natural number with n > r and let

Γ(n) =
∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2
}

F (Zh(x, ·)) dm(x).

By the Fubini theorem, we have
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Γ(n) =
∫

L2[0,T ]

∫

Rr

∫

C0[0,T ]
exp

{1− λ

2

n∑

k=1

(αk, Zh(x, ·))2

+ i(v, Zh(x, ·)) + i
r∑

k=1

tk(αk, Zh(x, ·))
}

dmw(x) dρ(~t) dµ(v)

= λ−n/2

∫

L2[0,T ]

∫

Rr

exp
{
S3(λ, v,~t)

}
dρ(~t) dµ(v)

where

S3(λ, v,~t) =
λ− 1
2λ

n∑

k=1

(αkh, vh)− 1
λ

r∑

k=1

tk(αkh, vh)− 1
2λ

r∑

k=1

t2k−
1
2
‖vh‖2

2.

Using the Bessel inequality, we have that the exponential of the last
expression above is bounded in absolute value by unity. Hence by the
dominated convergence theorem and Parseval’s relation, we obtain

lim
n→∞λn/2Γ(n) =

∫

L2[0,T ]

∫

Rr

exp
{
S2(λ, v,~t)

}
dρ(~t) dµ(v).

By Theorem 4.1, the proof is completed.

From Theorem 4.2, Theorem 4.3, Theorem 4.4 and the linearity of
the generalized analytic Wiener integral on Wiener space, we have the
following corollaries.

Corollary 4.5. Let {αk} be given as in (3.1). Let F be given as in
Theorem 4.1. Then the formula in Theorem 4.2 holds.

Corollary 4.6. Let{αk} and {λk} be given as in Theorem 4.3. Let

F (x) = G(x)Ψ((~α, x)) where G ∈ S and Ψ = ψ + φ ∈ L1(Rr) + M̂(Rr).
Then the formula in Theorem 4.3 holds.

Our main result, namely a change of scale formula for generalized
Wiener integrals on Wiener space now follows from Corollary 4.5.

Theorem 4.7. Let {αk} be given as in (3.1). Let F be given as in
Theorem 4.1. Then the change of scale formula (3.2) holds.

Proof. By letting λ = ρ−2 in Corollary 4.5, we obtain the change of
scale formula for generalized Wiener integrals of functions having the
form (4.1).

Corollary 4.8. ([14]) When h ≡ 1 in Theorem 4.7, we have the
change of scale formula (3.3) for Wiener integrals of functions of the
form (4.1).
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