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COMPARISON THEOREMS FOR THE VOLUMES OF
TUBES ABOUT METRIC BALLS IN CAT (κ)-SPACES

Doohann Lee* and Yong-Il Kim**

Abstract. In this paper, we establish some comparison theorems
about volumes of tubes in metric spaces with nonpositive curva-
ture. First we compare the Hausdorff measure of tube about a
metric ball contained in an (n − 1)-dimensional totally geodesic
subspace of an n-dimensional locally compact, geodesically com-
plete Hadamard space with Lebesgue measure of its corresponding
tube in Euclidean space Rn, and then develop the result to the case
of an m-dimensional totally geodesic subspace for 1 < m < n with
an additional condition. Also, we estimate the Hausdorff measure
of the tube about a shortest curve in a metric space of curvature
bounded above and below.

1. Introduction

Comparison theorems for the volumes of regions in Riemannian man-
ifolds with some curvature hypothesis play an important role in Rie-
mannian geometry. From the Bishop-Günther inequalities, we obtain
lower bounds, respectively upper bounds, for volumes of geodesic balls
and tubes by imposing upper bounds, respectively lower bounds, on the
sectional curvature. Assuming weaker conditions on the Ricci tensor
or considering the ratio between the volumes of geodesic balls in the
manifold and the model spaces, we can improve these inequalities. See
[8, 10, 11] and the references therein.

From a practical point of view, it is interesting to improve the com-
parison theorems for tubes of subregions in Riemannian manifolds and
to turn the attention from Riemannian manifolds to CAT (κ)-spaces.
Motivated and inspired by the ongoing research with the comparison
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theorems, in this paper we are concerned with the comparison theorems
for the volumes of tubes about metric balls in CAT (κ)-spaces.

The main purpose of this paper is to compare the volume of a tube in
metric spaces with nonpositive curvature with the Lebesgue measure of
the corresponding tube in Euclidean space Rn. The Riemannian volume
of a tube in a Riemannian manifold of curvature bounded above or
below by 0 is closely related to the volume of the corresponding tube
in Euclidean space [8]. As in Riemannian geometry, the volume of a
region in a curved metric space with an intrinsic metric also depends
on the curvature of the space [9, 12]. In [7], Lee et al. obtained the
Bishop-Günther type inequality in the 2-dimensional singular Hadamard
space with Nikolaev’s area of surface by comparing the area of surface
of a parallel set of a geodesic segment to the Lebesgue measure of the
corresponding set in R2. In this paper, we improve this inequality and
extend it to higher dimensional spaces. In this paper, we always assume
the uniformity of the Hausdorff dimension. Namely, for each point in an
n-dimensional Hausdorff space, any sufficiently small neighborhood has
the Hausdorff dimension n.

First, we establish two comparison theorems about the volume of a
tube in an n-dimensional Hadamard space with extendible geodesics.
Let (X, d) be an n-dimensional geodesically complete Hadamard space,
and let G be a totally geodesic subspace of X with codimension 1. Let
Ko,ε,G be a closed metric ball in G centered at o ∈ G with radius ε.
Then the tube T (Ko,ε,G, r) of radius r about Ko,ε,G is defined by the set

T (Ko,ε,G, r) ≡ {x ∈ X : πG(x) ∈ Ko,ε,G and d(x,Ko,ε,G) ≤ r},
where πG(x) means the metric projection into G of x ∈ X. In what
follows, Hn(D) denotes the n-dimensional Hausdorff measure of a subset
D of X and Ln(E) denotes the n-dimensional Lebesgue measure of a
subset E of Rn. Then we obtain the following result:

Theorem 1.1. Let (X, d) be an n-dimensional locally compact, geodesi-
cally complete Hadamard space, and let G be a totally geodesic subspace
of X with codimension 1. Then, for the tube T (Ko,ε,G, r) of radius r
about a closed metric ball Ko,ε,G(⊂ G), we have

Hn(T (Ko,ε,G, r)) ≥ Ln(T0(K̄, r)),

where T0(K̄, r) is the corresponding tube in Rn of the tube T (Ko,ε,G, r).

By the corresponding tube T0(K̄, r) we mean the set of all points m
in Rn such that there exists a geodesic segment γ of length `(γ) ≤ r
from m meeting the corresponding set K̄ of Ko,ε,G orthogonally.
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We generalise Theorem 1.1 to the case that G is an m-dimensional totally
geodesic subspace of X for 1 < m < n with an additional condition (cf.
Theorem 2.3).

In order to measure the tube of a shortest curve, we shall consider
spaces of curvature bounded above and below. Let I be a closed interval
of R and γ : I → X a shortest curve parametrized by arc length, and
consider the metric projection πγ : X → γ(I). Now we assume that X
is a geodesically complete space of curvature bounded above and below.
Then the geodesic γ has an extension γext : R→ X. We define the tube
T (γ, r) of radius r about γ as the set

T (γ, r) = {x ∈ X : πγ(x) = πγext(x) ∈ γ(I), dX(x, γ(I)) ≤ r}.
Then we have

Theorem 1.2. Let (X, dX) be an n-dimensional locally compact,
geodesically complete simply connected space of curvature ≤ 0 and ≥
κ′(< 0), and let γ : I → X be a shortest curve parametrized by arc
length. Then we have

Hn(T (γ, r)) ≥ Ln(Bn−1(o, r)× I).

2. Main results

Throughout this paper, any metric space (X, d) is metrically connected
and intrinsic, i.e. any two points of X can be joined by a curve with
finite length and the metric d(p, q) is the same as the infimum of lengths
in the metric d of all curves joining p, q ∈ X.

A continuous curve γ : I → X in a metric space X is called a (unit
speed) geodesic if each t ∈ I has an open neighborhood J ⊂ I such that
d(γ(t1), γ(t2)) = |t1 − t2| for all t1, t2 ∈ J . The image γ([a, b]) ⊂ X
of [a, b] ⊂ I is called a geodesic segment with endpoints γ(a) and γ(b).
Usually we will denote the geodesic segment with endpoints p and q
by pq and the geodesic passing through p and q by pq, respectively. If
d(γ(t1), γ(t2)) = |t1 − t2| for all t1, t2 ∈ [a, b], then γ : [a, b] → X is
called a shortest curve joining γ(a) and γ(b). A metric space X is said
to be geodesic if for any two points in X there exists a shortest curve
joining them.

A triangle in X with three shortest curves γ1, γ2, γ3 as its sides is
denoted by 4(γ1, γ2, γ3). When vertices of the triangle are p, q and r,
we often denote the triangle by 4pqr. A triangle 4(γ̄1, γ̄2, γ̄3) in a com-
plete simply connected surface Mκ of constant curvature κ ∈ R is called
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a comparison triangle for 4(γ1, γ2, γ3) if `(γ̄i) = `(γi) for i = 1, 2, 3.
For any real number κ, a metric space X has Alexandrov curvature

at most κ if, by definition, each point of M has an open neighborhood
U , called a CAT (κ) domain (or an Rκ domain), in which a minimizing
geodesic exists joining any given pair of end points and for any minimiz-
ing geodesic triangle in U with perimeter less than 2π√

κ
(∞ if κ ≤ 0), the

distance between any two points on the triangle is no greater than the
distance between corresponding points on the triangle in Mκ with the
same side lengths.

A metric space Y is geodesically complete if for any geodesic γ : I →
Y there exists an extension γext : R→ Y of γ such that γext|I = γ.

From now on, let X be a locally compact, geodesically complete ge-
odesic space of curvature bounded above by κ.

A mapping φ from a metric space (Y, dY ) to a metric space (Z, dZ)
is said to be nonexpanding if dZ(φ(p1), φ(p2)) ≤ dY (p1, p2) for any
p1, p2 ∈ Y . If there exists a nonexpanding mapping from a convex
domain D1 onto another convex domain D2, then Hn(D2) ≤ Hn(D1) ,
which is generally known as Kolmogorov’s Principle. For details we refer
to [5].

A Hadamard space is a complete simply connected metric space of
nonpositive curvature, which is a generalization of the Hadamard mani-
fold. By the Hadamard-Cartan theorem, Hadamard spaces are geodesic.

A function f : X → R defined on X is called (strictly) convex if for
every nontrivial geodesic γ : I → X, the real function f ◦ γ : I → R is
(strictly) convex. It is known that for any given geodesics γ1, γ2 : I → Y
in a Hadamard space (Y, dY ), the function f : I → R defined by f(t) =
dY (γ1(t) , γ2(t)) is convex in t. Also, for a convex subset C in Y , the func-
tion dC : Y → R defined by dC(z) = dY (z, C) is convex. If f : C → R is
a convex function on a (strongly) convex set C in Y , then for any s ∈ R,
the subset f≤s defined by f≤s ≡ {p ∈ C : f(p) ≤ s} is (strongly) convex
in C. Moreover, all metric balls and all ε-neighborhoods of a shortest
curve in Y are always strongly convex in Y , respectively.

For a convex closed subset C of a Hadamard space Y , the metric
projection πC : Y → C defined by the closest point πC(p) ∈ C to the
point p is well defined in Y , and the unique point πC(p) ∈ C is called the
footpoint of p on C. Since a geodesic segment pq in Y is a closed convex
subset of Y , each point y ∈ Y has its footpoint on pq. It is known that
the metric projection πC : Y → C is a 1-Lipschitz retraction. Also, for
the geodesic segment y πC(y) and a geodesic segment πC(y) z, we have
∠(πC(y)y, πC(y)z) ≥ π

2 for any z ∈ C [6].
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For a Riemannian manifold M and a topologically embedded subman-
ifold P of M , a tube T (P, r) of radius r ≥ 0 about P is defined as the
set of all points m in M such that there exists a geodesic segment γ
of length `(γ) ≤ r from m meeting P orthogonally. It is known that
for an analytic Riemannian manifold M and an analytically embedded
submanifold P with compact closure, the volume of a tube of radius r
about P in M is less (more) than that of the corresponding tube of P
in Rn if 2 ≤ dimP ≤ n − 2 and the sectional curvature of M is posi-
tive (negative) on P , respectively. If dimP = 1 or n − 1 and the Ricci
curvature of M is positive (negative) on P , then the same comparison
inequalities hold [8]. Weyl’s result for Euclidean space is the following.
Denote by V n

P (r) the volume of a tube T (P, r) about a submanifold P
of Rn. Then,

V n
P (r) =

(πr2)
n−q

2

(n−q
2 )!

[ q
2
]∑

i=0

k2i(P )r2i

(n− q + 2)(n− q + 4) · · · (n− q + 2i)
,

where k2i(P ) is the (2i)-th integrated mean curvature of P . For details,
we refer to [8] (p. 62). As in Riemannian geometry, volume of some
domain in a nonregular metric space of curvature bounded above in the
sense of Alexandrov is dependent on the curvature of the space [7, 9, 12].
In order to measure a tube volume in a curved metric space, we need
to carefully choose a subspace P for a tube T (P, r). It is because that,
unlike a submanifold in Riemannian manifold, subspaces in a curved
metric space may have nonconstant dimension, and hence it is unusual
to calculate volume depending on dimension. In addition, orthogonality
between subspace and geodesics is not natural in such a space.

Proposition 2.1. Let (X, dX) be an n-dimensional locally compact,
geodesically complete Hadamard space. Then, for any point p ∈ X,
there exists an expanding mapping Ep from n-dimensional closed ball
Bn(o, δ) in Rn to the closed metric ball B(p, δ) in X for some proper
δ > 0.

Proof. See Corollary 6.2 in [12].

Definition 2.1. Let (Z, d) be a metric space with an intrinsic metric
d. A subspace (Y, d|Y ) of (Z, d) is said to be totally geodesic if any
geodesic in (Z, d) meeting Y in two points is totally contained in Y .

Theorem 2.2. Let (X, d) be an n-dimensional locally compact, geodesi-
cally complete Hadamard space, and let G be a totally geodesic subspace
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of X with codimension 1. Then, for a tube T (Kp,ε,G, r) of radius r about
a closed metric ball Kp,ε,G(⊂ G), we have

Hn(T (Kp,ε,G, r)) ≥ Ln(T0(K̄, r)),

where T0(K̄, r) is the tube in Rn corresponding to the T (Kp,ε,G, r).

Proof. At first, we notice the closed metric ball Kp,ε,G centered at p
of radius ε in G of X is a convex Borel subset of X. Since Kp,ε,G is
convex in X, Kp,ε,G is a Hadamard space as a metric subspace of X.
Then from Proposition 2.1 there exists a nonexpanding mapping h from
Kp,ε,G onto the closed ball Bn−1(o, ε) centered at the origin o of radius
ε in an (n− 1)-dimensional Euclidean space Rn−1.

The corresponding tube T0(K̄, r) ⊂ Rn of a tube T (Kp,ε,G, r) of radius
r about Kp,ε,G is a tube of radius r about the closed ball Bn−1(o, ε) ⊂
Rn−1 centered at origin o of radius ε, and hence it is the same as the
cylinder Bn−1(o, ε)×[−r, r] in Rn. Devide the tube T (Kp,ε,G, r) by three
disjoint regions Kp,ε,G, T u

K(r) and T l
K(r), which are all Borel subsets

of X. Here, T u
K(r) and T l

K(r) correspond to Bn−1(o, ε) × (0, r] and
Bn−1(o, ε)× [−r, 0), respectively.

Since Kp,ε,G is a closed convex subset in T (Kp,ε,G, r), there exists the
metric projection πK from T (Kp,ε,G, r) onto Kp,ε,G, and so each point
x ∈ T (Kp,ε,G, r) has its footpoint πK(x) ∈ Kp,ε,G. For x ∈ T u

K(r), denote
the distance d(x,Kp,ε,G) between x and Kp,ε,G by zx. Then we define a
mapping F u : T u

K(r) → T u
0 (r) by

F u(x) = (h(πK(x)), zx) ∈ T u
0 (r),

where T u
0 (r) denotes the cylinder Bn−1(o, ε)× (0, r] in Rn. In a similar

way, we define a mapping F l : T l
K(r) → T l

0(r) by

F l(x) = (h(πK(x)),−zx) ∈ T l
0(r),

where T l
0(r) denotes the cylinder Bn−1(o, ε)× [−r, 0) in Rn.

We will show that the mappings F u and F l are nonexpanding. For
x, y ∈ T u

K(r) with F u(x) = (h(πK(x)), zx) and F u(y) = (h(πK(y)), zy),
we have

dX(πK(x), πK(y)) ≥ d0(h(πK(x)), h(πK(y))),
since the mapping h : Kp,ε,G → Bn−1(o, ε) is nonexpanding, where d0

denotes the usual Euclidean metric on Rn. On the other hand, the
function f : I → R defined by f(t) = d(γ1(t) , γ2(t)) is convex in t
for geodesics γ1, γ2 : I → X such that γ1 is a geodesic joining two
points x and πK(x) and γ2 is a geodesic joining two points y and πK(y).
Therefore, we have d(x, y) ≥ d0(F u(x), F u(y)), and so the mapping F u
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is nonexpanding.
Hence, from Kolmogorov’s Principle, we obtain

Hn(T u
K(r)) ≥ Ln(T u

0 (r)).

By the same argument, we also obtain that

Hn(T l
K(r)) ≥ Ln(T l

0(r)).

Since T (Kp,ε,G, r) is the disjoint union of three Borel sets Kp,ε,G, T u
K(r)

and T l
K(r), we obtain the desired inequality. 2

Now we generalize Theorem 2.6 to the case of tube about metric ball
in an m-dimensional totally geodesic subspace G of X for 1 < m < n
under some condition.

Theorem 2.3. Let (X, dX) be an n-dimensional locally compact,
geodesically complete Hadamard space, and let Ko,ε,G be a closed metric
ball centered at a point o ∈ G of radius ε in an m-dimensional(m > 1)
totally geodesic subspace G of X. We assume that for some r > 0, a
closed metric ball in π−1

G (o) with center o and radius r is a convex subset
of X. Then for the tube T (Ko,ε,G, r) about Ko,ε,G, we have

Hn(T (Ko,ε,G, r)) ≥ Ln(Bm(ō, ε)×Bn−m(ō, r)).

Proof. Since G is a totally geodesic subspace of X, the metric pro-
jection πG : X → G is well-defined, and hence, for each point x ∈
T (Ko,ε,G, r), there exists a unique footpoint πG(x) in Ko,ε,G. We denote
it by xK , for notational convenience. From Proposition 2.1, there exists
a nonexpanding mapping Eo from Ko,ε,G to an m-dimensional closed
ball Bm(ō, ε) in Rm, where ō is the origin of Rm.

Let Q be the closed metric ball centered at o of radius r contained
in π−1

G (o). By assumption that Q is convex in X, there exists a unique
footpoint πQ(x) in Q, and denote it by xQ. Then there exists a nonex-
panding mapping J from Q ⊂ π−1

G (o) to Bn−m(ō, r) ⊂ Rn−m. Thus

dX(xQ, yQ) ≥ d0(J(xQ), J(yQ)).

Let T be the tube about the ball Bm(ō, ε) in Rn. Then

T = Bm(ō, ε)×Bn−m(ō, r),

which is a corresponding tube of T (Ko,ε,G, r).
Now we define a mapping F from T (Ko,ε,G, r) to T by

F (x) = (Eo(xK), J(xQ)).



464 Doohann Lee and Yong-Il Kim

Let x, y ∈ T (Ko,ε,G, r). Since Eo is nonexpanding, we have

dX(xK , yK) ≥ d0(Eo(xK), Eo(yK)).

Since the mapping J is also nonexpanding and ∠(oxK , oxQ) ≥ π
2 for any

point x ∈ X, dX(x, y) ≥ d0(F (x), F (y)), i.e., F is nonexpanding. There-
fore, we obtain the volume comparison inequality from Kolmogorov’s
Principle. 2

A convex domain U in a locally compact metric space (M, d) is called
an Rκ′,κ-domain if for any triangle 4 in U (the perimeter of triangle is
less than 2π/

√
κ if κ > 0),

d(p, q) ≤ dκ(p̄, q̄) , d(p, q) ≥ dκ′(p̄′, q̄′),

where for points p, q on sides of 4, p̄, q̄ are the corresponding points on
the sides of the comparison triangle 4 ⊂ Mκ and p̄′, q̄′ are the corre-
sponding points on the sides of the comparison triangle 4′ ⊂ Mκ′ . dκ

and dκ′ denote the metrics of model surfaces Mκ and Mκ′ , respectively.
M is called a space of curvature ≤ κ and ≥ κ′ if each point has a neigh-
borhood that is an Rκ′,κ-domain.

For δ > 0, let γ1, γ2 : [0, δ] → X be a pair of unit speed geodesics em-
anating from a point p in X. For s, t ∈ (0, δ] let 4st = (p̄, γ̄1(s), γ̄2(t)) ⊂
Mκ be the comparison triangle for the triangle 4st = (p, γ1(s), γ2(t)).
Then the angle ∠(γ1, γ2) at p between γ1 and γ2 in X is defined by
∠(γ1, γ2) = lim

s,t→0
α(s, t) , where α(s, t) is the angle of 4st at p in Mκ.

Two geodesics are said to be equivalent if the angle between them is
zero. The direction space DpX at p ∈ X defined as the set of the equiv-
alence classes of geodesics in X emanating from p is a metric space with
the angle metric [2]. The tangent cone TpX at p ∈ X is the Euclidean
cone over the direction space DpM .

For a point p in a topological manifold M , a geodesic starts out in
every direction at p, and the direction space DpM with the angle metric
is compact for each p ∈ M . In particular, DpM is a geodesic space at
the distances less than π [1, 4].

Remark 2.4. In a locally compact, geodesically complete, intrinsic
metric space (M, d) of curvature ≤ κ and ≥ κ′ the tangent cone TpM
for p ∈ M is isometric to Euclidean space of the same finite dimension.
(M, d) is a topological manifold of this dimension [3].

Suppose that U ⊂ RK′,K is a sufficiently small convex domain, and
AA′ is a geodesic segment in U . Let B(O, r) be the ball in the tangent
space to M at A and ζ ∈ B(O, r). Draw the geodesic AH of length ||ζ||
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from A in the direction of the vector ζ, namely, H = expA ζ. Let H ′ be
the point symmetric to H with respect to the midpoint of the geodesic
AA′. Then

∏
AA′(ζ) is defined by

∏
AA′(ζ) ≡ exp−1

A′ (H
′).

Now let AB be an arbitrary geodesic segment in U . Divide AB
into 2j equal segments by points A = A0, A1, A2, · · · , A2j = B. Put
hj = d(A,B)

2j . Also, we denote
∏

AiAi+1
constructed as above by

∏
i,i+1.

Definition 2.5. Let ζ be an arbitrary tangent vector to M at A,
and put ζ ′ = hj

ζ
||ζ|| . Consider the map

∏

j

′(ζ) =
∏

2j−1,2j

◦
∏

2j−2,2j−1

◦ · · · ◦
∏

1,2

◦
∏

0,1

(ζ ′).

We define
∏

j(ζ) as the vector with length ||ζ|| in the same direction as∏′
j(ζ). Then the map

∏
: TAM → TBM defined by

∏
(ζ) = lim

j→∞

∏

j

(ζ), ζ ∈ TAM

is called the parallel translation along the geodesic segment AB.

Proposition 2.2. The parallel translation along a geodesic segment
AB preserves both angles between vectors and lengths of vectors, that
is,

∠(ζ, η) = ∠(
∏

(ζ),
∏

(η)) , ||ζ|| = ||
∏

(ζ)||.
Proof. See [3].

Let I = [a, b] be a closed interval of R and γ : I → X a shortest
curve parametrized by arc length, and let πγ : X → γ(I) be the metric
projection. The tube T (γ, r) of radius r about γ is defined by the set

T (γ, r) = {x ∈ X : πγ(x) = πγext(x) ∈ γ(I), dX(x, γ(I)) ≤ r},
where γext : J → X is an extension of γ. Put

HB(a) = {x ∈ X : πγ(x) = a, πγext(x) 6= a, dX(x, γ(I)) ≤ r}
and

HB(b) = {x ∈ X : πγ(x) = b, πγext(x) 6= b, dX(x, γ(I)) ≤ r}.
Then

{x ∈ X : dX(x, γ(I)) ≤ r} = T (γ, r) ∪HB(a) ∪HB(b).

Proposition 2.1 implies that Hn(HB(a)) ≥ 1
2Ln(Bn(o, r)) and Hn(HB(b))

≥ 1
2Ln(Bn(o, r)).



466 Doohann Lee and Yong-Il Kim

Theorem 2.6. Let (X, dX) be an n-dimensional locally compact,
geodesically complete simply connected space of curvature ≤ 0 and ≥ κ′,
where κ′ < 0. Then for a shortest curve γ : I → X parametrized by arc
length, we have

Hn(T (γ, r)) ≥ Ln(Bn−1(o, r)× I),

where Bn−1(o, r) is the closed ball centered at the origin o of radius r
in Rn−1.

Proof. Without loss of generality, we can assume that the domain
I of the curve γ is a straight line segment in Rn such that the origin
o ∈ Rn is the midpoint of I. Let m ∈ X be the middle point of γ, i.e.,
γ(0) = m. By Proposition 2.1, there exists a nonexpanding map G from
the metric ball Dn(m, r) onto the Euclidean ball Bn(o, r). Moreover, for
each point p ∈ Dn(m, r) such that πγ(p) = m, G(p) is orthogonal to I
in Rn. Also, each point of γ(I) corresponds to the unique point of I in
Rn and in particular, m corresponds to o. For each point x in T (γ, r),
let tx ∈ I be the corresponding point of πγx ∈ γ(I).

Let vx be the tangent vector at πγx, which belongs to the equivalence
class of the geodesic xπγx emanating from πγx. Consider the parallel
translation

∏
(vx) of vx from πγx to m along γ, and denote the image by

Px. By Proposition 2.2, the angle between Px and the geodesic segment
mπγx at m is not less than π/2. Also, we notice that for Px ∈ Dn(m, r),
G(Px) ∈ Bn−1(o, r).

Now we define a mapping F : T (γ, r) → Bn−1(o, r)× I by

F (x) = (G(Px), tx).

The corresponding tube T̄ (I, r) of T (γ, r) is isometric to Bn−1(o, r)×I ⊂
Rn.

Let x, y be any two points in T (γ, r). Denote the Euclidean parallel
translation in Rn of G(Px) along I from o to tx by zx. Then F (x) = zx.
Also, d(πγx, πγy) = |tx − ty|, d(πγx, x) = |tx − zx| and d(πγy, y) =
|ty − zy|. Since G is a nonexpanding map,

dX(Px, Py) ≥ dE(G(Px), G(Py)),

where dE denote the usual Euclidean metric on Rn. Notice that

∠(xπγx, πγxm) ≥ π

2
, ∠(yπγy, πγym) ≥ π

2
.

Therefore, we obtain the inequality

dX(x, y) ≥ dE(zx, zy),
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and this implies the consequence. 2
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