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ON HS-ALGEBRAS

Kyung Ho Kim*

Abstract. In this paper, we considered the congruence relation,
isomorphism and obtained some properties of HS-algebras.

1. Introduction

The concept of Hilbert algebra was introduced in early 50-ties by L.
Henkin and T. Skolem for some investigations of implication in intuition-
istic and other classical logics. In 60-ties, these algebras were studied
especially, by A. Horn and A. Diego [3] from algebraic point of view.
Recently, the Hilbert algebras were treated by D. Buseneag [1, 2]. The
present author introduced the notion of HS-algebra [4]. In this paper,
we considered the congruence relation, isomorphism and obtained some
properties of HS-algebras.

2. Preliminaries

A Hilbert algebra is a triple (X, ∗, 1), where X is a nonempty set,
“ ∗ ” is a binary operation on X, 1 ∈ X is an element such that the
following three axioms are satisfied for every x, y, z ∈ X:
(H1) x ∗ (y ∗ x) = 1,
(H2) (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1,
(H3) if x ∗ y = y ∗ x = 1 then x = y.

If X is a Hilbert algebra, then the relation x ≤ y if and only if x∗y = 1
is a partial order on X, which will be called the natural ordering on X.
With respect to this ordering, 1 is the largest element of X.
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In a Hilbert algebra X, the following properties hold([3]).

(H4) x ∗ x = 1 for all x ∈ X,
(H5) x ∗ 1 = 1 for all x ∈ X,
(H6) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all x, yz ∈ X,
(H7) 1 ∗ x = x for all x ∈ X,
(H8) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.
(H9) x ∗ ((x ∗ y) ∗ y)) = 1

(H10) x ≤ y implies z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z for all x, y, z ∈ X.

3. HS-algebras

Definition 3.1. By an HS-algebra (X, ·, ∗) with two binary operations “ ·”
and “ ∗ ” that satisfies the following axioms:

(HS1) S(X) = (X, ·) is a semigroup,
(HS2) H(X) = (X, ∗, 1) is a Hilbert algebra,
(HS3) x · (y ∗z) = x ·y ∗x ·z and (x∗y) ·z = x ·z ∗y ·z for any x, y, z ∈ X.

For convenience, we use the multiplication x · y by xy. X is a multi-
plicatively abelian HS-algebra if S(X) = (X, ·) is abelian.

Example 3.2 [4]. Let X = {1, a, b, c} in which “∗” and “·” are defined by

∗ 1 a b c
1 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 a b 1

· 1 a b c
1 1 1 1 1
a 1 a 1 a
b 1 1 b b
c 1 a b c

It is easy to check that (X, ·, ∗) is an HS-algebra.

Example 3.3 [4]. Let X = {1, a, b, c} in which “∗” and “·” are defined by

∗ 1 a b c
1 1 a b c
a 1 1 b c
b 1 1 1 c
c 1 1 1 1

· 1 a b c
1 1 1 1 1
a 1 a 1 1
b 1 1 b c
c 1 1 c b

It is easy to check that (X, ·, ∗) is an HS-algebra.
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Example 3.4 [4]. Let X = {1, a, b, c} in which “∗” and “·” are defined by

∗ 1 a b c
1 1 a b c
a 1 1 b b
b 1 a 1 a
c 1 1 1 1

· 1 a b c
1 1 1 1 1
a 1 a 1 a
b 1 1 b b
c 1 a b c

It is easy to check that (X, ·, ∗) is an HS-algebra.

For any x, y in an HS-algebra X, we define x ∨ y as (y ∗ x) ∗ x. Note
that x ∨ y is an upper bound of x and y.

Definition 3.5. An HS-algebra is said to be commutative if for all x, y ∈
X,

(y ∗ x) ∗ x = (x ∗ y) ∗ y, i.e., x ∨ y = y ∨ x.

Lemma 3.6 [4]. Let X be an HS-algebra. Then the following identities
hold.

(1) x1 = 1 and 1x = 1 for all x ∈ X,
(2) x ≤ y implies ax ≤ ay and xa ≤ ya for all x, y, a ∈ X,
(3) x(y ∨ z) = xz ∨ yz for all x, y, z ∈ X.

Definition 3.7 [4]. Let X and X ′ be HS-algebras. A mapping f : X →
X ′ is called an HS-algebra homomorphism (briefly, homomorphism) if
f(x ∗ y) = f(x) ∗ f(y) and f(xy) = f(x)f(y) for all x, y ∈ X.

4. Congruence relation and isomorphism theorem

In what follows, let X denote an HS-algebra unless otherwise speci-
fied.

Definition 4.1. Let X be an HS-algebra and let ρ be a binary rela-
tion on X. Then

(1) ρ is said to be right (resp. left) compatible if (x, y) ∈ ρ implies,
(x ∗ z, y ∗ z) ∈ ρ (resp. (z ∗ x, z ∗ y) ∈ ρ) and (xz, yz) ∈ ρ (resp.
(zx, zy) ∈ ρ) for all x, y, z ∈ X;

(2) ρ is said to be compatible if (x, y) ∈ ρ and (u, v) ∈ ρ imply
(x ∗ u, y ∗ v) ∈ ρ and (xu, yv) ∈ ρ for all x, y, u, v ∈ X;

(3) A compatible equivalence relation is called a congruence relation.

Using the notion of left (resp. right) compatible relation, we give a
characterization of a congruence relation.
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Theorem 4.2. Let X be an HS-algebra. Then an equivalence relation
ρ on X is congruence if and only if it is both left and right compatible.

Proof. Assume that ρ is a congruence relation on X. Let x, y ∈ X
be such that (x, y) ∈ ρ. Note that (z, z) ∈ ρ for all z ∈ X because ρ is
reflexive. It follows from a congruence relation that (x∗ z, y ∗ z) ∈ ρ and
(xz, yz) ∈ ρ. Hence ρ is right compatible. Similarly, ρ is left compatible.

Conversely, suppose that ρ is both left and right compatible. Let
x, y, u, v ∈ X be such that (x, y) ∈ ρ and (u, v) ∈ ρ. Then (x∗u, y∗u) ∈ ρ
and (xu, yu) ∈ ρ. by the right compatibility. Using the left compatibility
of ρ, we have (y ∗ u, y ∗ v) ∈ ρ and (yu, yv) ∈ ρ. It follows from the
transitivity of ρ that (x ∗ u, y ∗ v) ∈ ρ and (xu, yv) ∈ ρ. Hence ρ is
congruence.

For an equivalence relation ρ on an HS-algebra X, we denote

xρ := {y ∈ X | (x, y) ∈ ρ} and X/ρ := {xρ | x ∈ X}.
Theorem 4.3. Let ρ be a congruence relation on a HS-algebra X.

If X is commutative, X/ρ is a HS-algebra under the operations

xρ ∗ yρ = (x ∗ y)ρ and (xρ)(yρ) = (xy)ρ

for all xρ, yρ ∈ X/ρ.

Proof. Since ρ is a congruence relation, the operations are well-defined.
Clearly, (X/ρ, ∗) is a Hilbert-algebra and (X/ρ, ·) is a semigroup. For
every xρ, yρ, zρ ∈ X/ρ, we have

xρ(yρ ∗ zρ) = xρ(y ∗ z)ρ = (x(y ∗ z))ρ

= (xy ∗ xz)ρ = (xy)ρ ∗ (xz)ρ

= xρyρ ∗ xρzρ,

and
(xρ ∗ yρ)zρ = (x ∗ y)ρzρ = ((x ∗ y)z)ρ

= (xz ∗ yz)ρ = (xz)ρ ∗ (yz)ρ

= xρzρ ∗ yρzρ.

Thus X/ρ is an HS-algebra.

Theorem 4.4. Let ρ be a congruence relation on an HS-algebra X.
If X is commutative, the mapping ρ? : X → X/ρ defined by ρ?(x) = xρ

for all x ∈ X is an HS-algebra homomorphism.

Proof. Let x, y ∈ X. Then ρ?(x∗y) = (x∗y)ρ = xρ∗yρ = ρ?(x)∗ρ?(y),
and ρ?(xy) = (xy)ρ = (xρ)(yρ) = ρ?(x)ρ?(y). Hence ρ? is an HS-algebra
homomorphism.
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It is clear that ρ? is clearly surjective.

Theorem 4.5. Let X and X ′ be commutative HS-algebras and let
f : X → X ′ be an HS-algebra homomorphism. Then the set

Kf := {(x, y) ∈ X ×X | f(x) = f(y)}
is a congruence relation on X and there exists a unique 1-1 HS-algebra
homomorphism f̄ : X/Kf → X ′ such that f̄ ◦K?

f = f, where K?
f : X →

X/Kf . That is, the following diagram commute:

X -
K?

f
X/Kf

´
´

´
´

´́+
f̄

X′
?

f

Proof. It is clear that Kf is an equivalence relation on X. Let
x, y, u, v ∈ X be such that (x, y), (u, v) ∈ Kf . Then f(x) = f(y) and
f(u) = f(v), which imply that

f(x ∗ u) = f(x) ∗ f(u) = f(y) ∗ f(v) = f(y ∗ v)

and
f(xu) = f(x)f(u) = f(y)f(v) = f(yv).

It follows that (x ∗ u, y ∗ v) ∈ Kf and (xu, yv) ∈ Kf . Hence Kf is a
congruence relation on X. Let f̄ : X/Kf → X ′ be a map defined by
f̄(xKf ) = f(x) for all x ∈ X. It is clear that f̄ is well-defined. For any
xKf , yKf ∈ X/Kf , we have

f̄(xKf ∗ yKf ) = f̄((x ∗ y)Kf ) = f(x ∗ y)

= f(x) ∗ f(y) = f̄(xKf ) ∗ f̄(yKf )

and

f̄((xKf )(yKf )) = f̄((xy)Kf ) = f(xy)

= f(x)f(y) = f̄(xKf )f̄(yKf ).

If f̄(xKf ) = f̄(yKf ), then f(x) = f(y) and so (x, y) ∈ Kf , that is,
xKf = yKf . Thus f̄ is a 1-1 HS-algebra homomorphism. Now let g be
an HS-algebra homomorphism from X/Kf to X ′ such that g ◦K?

f = f .
Then

g(xKf ) = g(K?
f (x)) = f(x) = f̄(xKf )
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for all xKf ∈ X/Kf . It follows that g = f̄ so that f̄ is unique. This
completes the proof.

Corollary 4.6. Let ρ and σ be congruence relations on an HS-
algebra X such that ρ ⊆ σ. If X is commutative, the set

σ/ρ := {(xρ, yρ) ∈ X/ρ×X/ρ | (x, y) ∈ σ}
is a congruence relation on X/ρ and there exists a 1-1 and onto HS-

algebra homomorphism from X/ρ
σ/ρ to X/σ.

Proof. Let g : X/ρ → X/σ be a function defined by g(xρ) = xσ for
all xρ ∈ X/ρ. Since ρ ⊆ σ, it follows that g is a well-defined onto HS-
algebra homomorphism. According to Theorem 4.5, it is sufficient to
show that Kg = σ/ρ. Let (xρ, yρ) ∈ Kg. Then xσ = g(xρ) = g(yρ) = yσ

and so (x, y) ∈ σ. Hence (xρ, yρ) ∈ σ/ρ, and thus Kg ⊆ σ/ρ.
Conversely, if (xρ, yρ) ∈ σ/ρ, then (x, y) ∈ σ and so xσ = yσ. It

follows that
g(xρ) = xσ = yσ = g(yρ)

so that (xρ, yρ) ∈ Kg. Hence Kg = σ/ρ, and the proof is complete.

Definition 4.7. Let X be an HS-algebra. A subalgebra I of (X, ∗)
is called a left ideal of X if XI ⊆ I, a right ideal if IX ⊆ I, and an
(two-sided) ideal if it is both a left and right ideal.

Theorem 4.8. Let I be an ideal of an HS-algebra X. Then ρI :=
(I×I)∪∆X is a congruence relation on X, where ∆X := {(x, x) | x ∈ X}.

Proof. Clearly, ρI is reflexive and symmetric. Noticing that (x, y) ∈
ρI if and only if x, y ∈ I or x = y, we know that if (x, y) ∈ ρI and
(y, z) ∈ ρI then (x, z) ∈ ρI . Hence ρI is an equivalence relation on X.
Assume that (x, y) ∈ ρI and (u, v) ∈ ρI . Then we have the following
four cases: (i) x, y ∈ I and u, v ∈ I; (ii) x, y ∈ I and u = v; (iii) x = y
and u, v ∈ I; and (iv) x = y and u = v. In either case, we get x∗u = y∗v
or (x ∗ u, y ∗ v) ∈ I × I, and xu = yv or (xu, yv) ∈ I × I. Therefore ρI

is a congruence relation on X.

Let X be a multiplicatively abelian HS-algebra and ρX be a binary
relation on X defined by

(a, b) ∈ ρX ⇐⇒ ∃u ∈ X such that au = bu. (•)
Clearly, ρX is reflexive and symmetric. Let (a, b), (b, c) ∈ ρX . Then
there exist u, v ∈ X such that au = bu and bv = cv. These imply
a(buv) = (au)(bv) = (bu)(cv) = c(buv), whence ρX is transitive. Thus
ρX is an equivalence relation on X.
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Theorem 4.9. Let X be a multiplicatively abelian HS-algebra and
ρX be a binary relation on X defined by (•). If X is commutative, ρX

is a congruence relation on X, and X/ρX is a multiplicatively abelian
HS-algebra.

Proof. Let (a, b), (c, d) ∈ ρX , Then there exist u, v ∈ X such that
au = bu and cv = dv. These imply (ac)(uv) = (au)(cv) = (bu)(dv) =
(bd)(uv) and (a ∗ c)(uv) = auv ∗ cuv = buv ∗ duv = (b ∗ d)uv. Hence
(ac, bd) ∈ ρX and (a ∗ c, b ∗ d) ∈ ρX . Thus ρX is a congruence relation
on X, and clearly X/ρX is a multiplicatively abelian HS-algebra.

Let X be a multiplicatively abelian HS-algebra. If X is commutative,
a map (ρX)? : X → X/ρX defined by

(ρX)?(a) = aρX

is a surjective HS-algebra homomorphism.

Theorem 4.10. Let X and X ′ be multiplicatively abelian HS-algebras
with X/ρX and X ′/ρ′X , respectively and φ : X → X ′ be an HS-algebra
homomorphism. If X and X ′ are commutative, there exists a unique ho-
momorphism φ/ρ : X/ρX → X ′/ρX′ such that φ/ρ ◦ (ρX)? = (ρX′)? ◦ φ.

Proof. Define φ/ρ : X/ρX → X ′/ρX′ by φ/ρ(aρX) = φ(a)ρX′ . If
aρX = bρX , then there exists u ∈ X such that au = bu. Thus φ(a)φ(u) =
φ(b)φ(u) and (φ(a), φ(b)) ∈ ρX′ , so φ(a)ρX′ = φ(b)ρX′ . Therefore φ/ρ
is well-defined. Next, we prove that φ/ρ is a homomorphism. In fact,
φ/ρ(aρX ∗ bρX) = φ/ρ((a ∗ b)ρX) = φ(a ∗ b)ρX′ = (φ(a) ∗ φ(b))ρX′ =
φ(a)ρX′∗φ(b)ρX′ = φ/ρ(aρX)∗φ/ρ(bρX) and φ/ρ(aρX ·bρX) = φ/ρ((ab)ρX) =
φ(ab)ρX′ = (φ(a) · φ(b))ρX′ = φ(a)ρX′ · φ(b)ρX′ = φ/ρ(aρX) · φ/ρ(bρX).
For any a ∈ X, we have (φ/ρ◦(ρX)?)(a) = φ/ρ((ρX)?(a)) = φ/ρ(aρX) =
φ(a)ρX′ = (ρX′)?(φ(a)) = ((ρX′)? ◦φ)(a). Thus φ/ρ◦ (ρX)? = (ρX′)? ◦φ.
Finally, if there exists a homomorphism g : X/ρX → X ′/ρX′ such that
g ◦ (ρX)? = (ρX′)? ◦ φ, then g(aρX) = g((ρX)?(a)) = (g ◦ (ρX)?)(a) =
((ρX′)? ◦ φ)(a) = (ρX′)?(φ(a)) = φ(a)ρX′ = φ/ρ(aρX). Thus g = φ/ρ
and φ/ρ is unique.

It is clear that Hom(X,X ′) is a semigroup under multiplication de-
fined by (φ1 · φ2)(a) = φ1(a) · φ2(a). Likewise Hom(X/ρX , X ′/ρX′) is a
semigroup by Theorem 4.10, we can define a mapping

Φ : Hom(X, X ′) → Hom(X/ρX , X ′/ρX′)

by Φ(φ) = φ/ρ. Then we have the following theorem.
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Theorem 4.11. Let X and X ′ be multiplicatively abelian HS-algebras
with X/ρX and X ′/ρX′ , respectively. If X and X ′ are commutative, the
above mapping Φ given by Φ(φ) = φ/ρ is a semigroup homomorphism.

Proof. Let φ1, φ2 ∈ Hom(X, X ′) and aρX ∈ X/ρX . Then ((φ1 ·
φ2)/ρ)(aρX) = ((φ1 · φ2)(a))ρX′ = (φ1(a) · φ2(a))ρX′ = φ1(a)ρX′ ·
φ2(a)ρX′ = φ1/ρ(aρX) · φ2/ρ(aρX) = (φ1/ρ · φ2/ρ)(aρX). Consequently,
(φ1 · φ2)/ρ = φ1/ρ · φ2/ρ. Thus the map

Φ : Hom(X, X ′) → Hom(X/ρX , X ′/ρX′)

given by Φ(φ) = φ/ρ is a semigroup homomorphism.
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Math. Serie A 21 (1966), 1-52.

[4] S. M. Lee and K. H. Kim, A note on HS-algebras, International Mathematical
Forum 6, (No.31), (2011), 1529-1534.

*
Department of Mathematics,
Chungju National University
Chungju 380-702, Republic of Korea
E-mail : ghkim@cjnu.ac.kr


