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ON HS-ALGEBRAS

Kyung Ho Kivm*

ABSTRACT. In this paper, we considered the congruence relation,
isomorphism and obtained some properties of HS-algebras.

1. Introduction

The concept of Hilbert algebra was introduced in early 50-ties by L.
Henkin and T. Skolem for some investigations of implication in intuition-
istic and other classical logics. In 60-ties, these algebras were studied
especially, by A. Horn and A. Diego [3] from algebraic point of view.
Recently, the Hilbert algebras were treated by D. Buseneag [1, 2]. The
present author introduced the notion of HS-algebra [4]. In this paper,
we considered the congruence relation, isomorphism and obtained some
properties of HS-algebras.

2. Preliminaries

A Hilbert algebra is a triple (X,*,1), where X is a nonempty set,
* 7 is a binary operation on X, 1 € X is an element such that the
following three axioms are satisfied for every z,y, z € X:

(H1) z* (y*xz) =1,

(H2) (2 (yx 2)) * ((z x y) * (% 2)) = 1,
(H3) if x xy =y xx =1 then z = y.

“

If X is a Hilbert algebra, then the relation x < y if and only if xxy = 1
is a partial order on X, which will be called the natural ordering on X.
With respect to this ordering, 1 is the largest element of X.
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In a Hilbert algebra X, the following properties hold([3]).

xxl=1forall z € X,

xx(y*z)=(rxy)*(xx*z)forall z,yz € X,

lxxz =g forall x € X,

xx(y*z)=yx*(xrxz) foral x,y,z € X.

zx ((zxy)xy)) =1

x <y implies zxx < zxy and y*x z <z * z for all x,y,z € X.

3. HS-algebras

Definition 3.1. By an HS-algebra (X, -, *) with two binary operations “-”
and “x” that satisfies the following axioms:
(HS1) S(X) = (X,-) is a semigroup,
(HS2) H(X) = (X,*,1) is a Hilbert algebra,
(HS3) z-(y*2) =z -y*x-zand (x*y)-z =x-z*y-2 for any z,y,2 € X.
For convenience, we use the multiplication x - y by zy. X is a multi-
plicatively abelian HS-algebra if S(X) = (X, ) is abelian.

Example 3.2 [4]. Let X = {1, a,b,c} in which “¥” and “” are defined by

*‘1abc "1abc
111 a b ¢ 111 1 1 1
all 1 b ¢ all a 1 a
bl a 1 ¢ b1l 1 b b
cll a b 1 cll a b c

-+

It is easy to check that (X, -, %) is an HS-algebra.

Example 3.3 [4]. Let X = {1,a,b,c} in which “«” and “” are defined by

* ‘ 1 a b c . ‘ 1 a b c

11 a b ¢ 111 1 11

a|ll 1 b ¢ a|ll a 1 1

b1l 1 1 ¢ b1 1 b ¢

cll 1 11 cll 1 ¢ b
It is easy to check that (X, -, *) is an HS-algebra.
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Example 3.4 [4]. Let X = {1,a,b, ¢} in which “4” and “” are defined by

* ‘ 1 a b ¢ . ‘ 1 a b ¢

11 a b ¢ 1711 1 11

all 1 b b all a 1 a

b1l a 1 a b1 1 b b

c|1l 1 1 1 c|ll a b c
It is easy to check that (X, -, ) is an HS-algebra.

For any x,y in an HS-algebra X, we define z V y as (y * =) * . Note
that x V y is an upper bound of x and y.

Definition 3.5. An HS-algebra is said to be commutative if for all x,y €
X,
(yxz)*xx=(rxy)xy, e, xVy=yVua.

Lemma 3.6 [4]. Let X be an HS-algebra. Then the following identities
hold.

(1) x21=1and 1z =1 for all z € X,

(2) z < y implies ax < ay and za < ya for all x,y,a € X,

(3) z(yV z) =xzVyz for all x,y,z € X.
Definition 3.7 [4]. Let X and X’ be HS-algebras. A mapping f : X —
X' is called an HS-algebra homomorphism (briefly, homomorphism) if
fla+y) = f(@) * fy) and f(ay) = f(2)f(y) for all 7,y € X.

4. Congruence relation and isomorphism theorem

In what follows, let X denote an HS-algebra unless otherwise speci-
fied.

DEFINITION 4.1. Let X be an HS-algebra and let p be a binary rela-
tion on X. Then

(1) p is said to be right (resp. left) compatible if (x,y) € p implies,
(xxz,y*2) € p (resp. (z*xx,z*y) € p) and (xz,yz) € p (resp.
(zz,zy) € p) for all x,y,z € X;

(2) p is said to be compatible if (x,y) € p and (u,v) € p imply
(x*xu,y*v) € pand (zu,yv) € p for all z,y,u,v € X;

(3) A compatible equivalence relation is called a congruence relation.

Using the notion of left (resp. right) compatible relation, we give a
characterization of a congruence relation.
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THEOREM 4.2. Let X be an HS-algebra. Then an equivalence relation
p on X is congruence if and only if it is both left and right compatible.

Proof. Assume that p is a congruence relation on X. Let z,y € X
be such that (z,y) € p. Note that (z,2) € p for all z € X because p is
reflexive. It follows from a congruence relation that (z*z,y* z) € p and
(zz,yz) € p. Hence p is right compatible. Similarly, p is left compatible.

Conversely, suppose that p is both left and right compatible. Let
x,y,u,v € X besuch that (z,y) € pand (u,v) € p. Then (z*u,y*u) € p
and (zu,yu) € p. by the right compatibility. Using the left compatibility
of p, we have (y x u,y *v) € p and (yu,yv) € p. It follows from the
transitivity of p that (z * u,y * v) € p and (zu,yv) € p. Hence p is
congruence. [

For an equivalence relation p on an HS-algebra X, we denote
zp:={ye X |(z,y) € p} and X/p:={z, |z € X}.
THEOREM 4.3. Let p be a congruence relation on a HS-algebra X.
If X is commutative, X/p is a HS-algebra under the operations
Tp*Yp = (% y), and (2p)(y,) = (2y),
for all z,,y, € X/p.
Proof. Since p is a congruence relation, the operations are well-defined.

Clearly, (X/p,*) is a Hilbert-algebra and (X/p,-) is a semigroup. For
every T, Y, z2p € X/p, we have

Tp(Yp* 2p) =ap(yx2), = (x(y*2)),
= (zy *x x2), = (2Y)p * (22)p
= TpYp * TpZp,
and
(Tp*Yp)zp = (T xY)pzp = ((z*Y)2),
= (vz*xyz), = (x2), * (y2),
= ZpZp * YpZp.
Thus X/p is an HS-algebra. O

THEOREM 4.4. Let p be a congruence relation on an HS-algebra X.
If X is commutative, the mapping p* : X — X/p defined by p*(z) = x,
for all x € X is an HS-algebra homomorphism.

Proof. Let x,y € X. Then p*(zxy) = (xxy), = x,%y, = p*(z)*p*(y),
and p*(zy) = (2y), = (z,)(y,) = p*(x)p*(y). Hence p* is an HS-algebra
homomorphism. O
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It is clear that p* is clearly surjective.

THEOREM 4.5. Let X and X' be commutative HS-algebras and let
f: X — X' be an HS-algebra homomorphism. Then the set
Kp={(x,y) e X x X | f(x) = f(y)}
is a congruence relation on X and there exists a unique 1-1 HS-algebra
homomorphism f : X/Ky — X' such that foK}‘ = f, where K]’Z X —
X/Ky. That is, the following diagram commute:

X I X/K,
| /
Xl

Proof. Tt is clear that Ky is an equivalence relation on X. Let
z,y,u,v € X be such that (z,y),(u,v) € K¢. Then f(x) = f(y) and
f(u) = f(v), which imply that

flaxu) = f(z) = f(u) = f(y)* fv) = fly*v)
and
flau) = f(2) f(u) = f(y)f(v) = f(yv).
It follows that (z * u,y * v) € Ky and (zu,yv) € K;. Hence K is a
congruence relation on X. Let f : X /Ky — X " be a map defined by
f(xKy) = f(x) for all x € X. It is clear that f is well-defined. For any
.Z‘Kf, ny S X/Kf, we have
faEyp+yKy) = f((xxy)Ky) = flz*y)
= f(z)* fy) = f(aKy) = f(yKy)

and

H(@K)WKp) = fzy)Ey) = flzy)
= f(@)f(y) = F(aK;) f(yKy).
If f(xKys) = f(yKy), then f(z) = f(y) and so (z,y) € Ky, that is,
Ky = yKy. Thus f is a 1-1 HS-algebra homomorphism. Now let g be

an HS-algebra homomorphism from X /K to X’ such that g o K} = f.
Then

9(xKy) = g(Kj(z)) = f(x) = f(zKy)
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for all Ky € X/Ky. It follows that ¢ = f so that f is unique. This
completes the proof. ]

COROLLARY 4.6. Let p and o be congruence relations on an HS-
algebra X such that p C o. If X is commutative, the set

o/p:={(zpyp) € X/px X/p|(x,y) €0}

is a congruence relation on X/p and there exists a 1-1 and onto HS-

algebra homomorphism from 2(7/5 to X/o.

Proof. Let g : X/p — X /o be a function defined by g(z,) = z, for
all z, € X/p. Since p C o, it follows that g is a well-defined onto HS-
algebra homomorphism. According to Theorem 4.5, it is sufficient to
show that Ky = o/p. Let (x,,y,) € K4. Then z, = g(x,) = 9(yp) = Yo
and so (z,y) € 0. Hence (x,,y,) € 0/p, and thus K, C o/p.

Conversely, if (z,,y,) € o/p, then (z,y) € o and so z, = y,. It
follows that

9(xp) = 20 =yo = g(y,)
so that (z,,y,) € K,. Hence K, = 0/p, and the proof is complete. [

DEFINITION 4.7. Let X be an HS-algebra. A subalgebra I of (X, %)
is called a left ideal of X if XI C I, a right ideal if IX C I, and an
(two-sided) ideal if it is both a left and right ideal.

THEOREM 4.8. Let I be an ideal of an HS-algebra X. Then py :=
(IxI)UAx is a congruence relation on X, where Ay := {(z,z) | x € X }.

Proof. Clearly, p; is reflexive and symmetric. Noticing that (z,y) €
pr if and only if z,y € I or x = y, we know that if (x,y) € p; and
(y,z) € pr then (z,z) € pr. Hence pr is an equivalence relation on X.
Assume that (z,y) € pr and (u,v) € p;. Then we have the following
four cases: (i) z,y € I and w,v € I; (ii) z,y € I and v = v; (iii) v =y
and u,v € I; and (iv) z = y and v = v. In either case, we get xxu = y*v
or (x*u,y*v) €I xI, and xu = yv or (zu,yv) € I x I. Therefore p;
is a congruence relation on X. O

Let X be a multiplicatively abelian HS-algebra and px be a binary
relation on X defined by

(a,b) € px <= Ju € X such that au = bu. (o)

Clearly, px is reflexive and symmetric. Let (a,b),(b,¢) € px. Then
there exist u,v € X such that au = bu and bv = cv. These imply
a(buv) = (au)(bv) = (bu)(cv) = c(buv), whence px is transitive. Thus
px is an equivalence relation on X.
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THEOREM 4.9. Let X be a multiplicatively abelian HS-algebra and
px be a binary relation on X defined by (e). If X is commutative, px

is a congruence relation on X, and X/px is a multiplicatively abelian
HS-algebra.

Proof. Let (a,b),(c,d) € px, Then there exist u,v € X such that
au = bu and cv = dv. These imply (ac)(uv) = (au)(cv) = (bu)(dv) =
(bd)(uv) and (a * ¢)(uv) = auv * cuv = buv * duv = (b * d)uv. Hence
(ac,bd) € px and (a *c,b*d) € px. Thus px is a congruence relation
on X, and clearly X/px is a multiplicatively abelian HS-algebra. O

Let X be a multiplicatively abelian HS-algebra. If X is commutative,
a map (px)*: X — X/px defined by

(px)*(a) = apx

is a surjective HS-algebra homomorphism.

THEOREM 4.10. Let X and X' be multiplicatively abelian HS-algebras
with X/px and X'/py, respectively and ¢ : X — X' be an HS-algebra
homomorphism. If X and X' are commutative, there exists a unique ho-
momorphism ¢/p : X/px — X'/px: such that ¢/po (px)* = (px:)* o ¢.

Proof. Define ¢/p : X/px — X'/px: by ¢/plapx) = é(a)px:. If
apx = bpx, then there exists u € X such that au = bu. Thus ¢(a)p(u) =

¢(b)d(u) and (¢(a), ¢(b)) € px, so d(a)px: = ¢(b)px’. Therefore ¢/p
is well-defined. Next, we prove that ¢/p is a homomorphism. In fact,
¢/plapx *bpx) = ¢/p((axb)px) = ¢(a*b)px = (¢(a) x ¢(b))px' =
p(a)pxr*d(b)pxr = ¢/ plapx)*d/p(bpx) and ¢/p(apx-bpx) = ¢/p((ab)px) =
p(ab)px: = (¢(a) - #(b))px: = ¢p(a)px: - d(b)px = ¢/plapx) - ¢/p(bpx).
For any a € X, we have (¢/po(px)*)(a) = ¢/p((px)*(a)) = ¢/plapx) =
d(a)pxr = (px1)*(¢(a)) = ((px')*0¢)(a). Thus ¢/po(px)* = (px:) 0 ¢.
Finally, if there exists a homomorphism ¢ : X/px — X’/px: such that
go (px)* = (px1)* o ¢, then g(apx) = g((px)*(a)) = (g (px)*)(a) =
((px1)* o 9)(a) = (px/)*(¢(a)) = ¢(a)px = ¢/plapx). Thus g = ¢/p
and ¢/p is unique. O

It is clear that Hom(X, X') is a semigroup under multiplication de-
fined by (61 - 62)(a) = 61(a) - 62(a). Likewise Hom(X/px, X'/px:) is a
semigroup by Theorem 4.10, we can define a mapping

®: Hom(X,X") — Hom(X/px, X'/ px:)
by ®(¢) = ¢/p. Then we have the following theorem.
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THEOREM 4.11. Let X and X' be multiplicatively abelian HS-algebras
with X/px and X'/px, respectively. If X and X' are commutative, the
above mapping ® given by ®(¢) = ¢/p is a semigroup homomorphism.

Proof. Let ¢1,¢9 € Hom(X,X') and apx € X/px. Then ((¢1 -
$2)/p)(apx) = ((¢1 - d2)(a))px = (d1(a) - ¢2(a))px: = d1(a)px: -
p2(a)pxr = d1/plapx) - ¢2/plapx) = (¢1/p- ¢2/p)(apx). Consequently,
(¢1-92)/p= ¢1/p- $2/p. Thus the map

®: Hom(X,X") — Hom(X/px,X'/pxs)

given by ®(¢) = ¢/p is a semigroup homomorphism. O
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