ON HS-ALGEBRAS

KYUNG HO KIM*

ABSTRACT. In this paper, we considered the congruence relation, isomorphism and obtained some properties of HS-algebras.

1. Introduction

The concept of Hilbert algebra was introduced in early 50-ties by L. Henkin and T. Skolem for some investigations of implication in intuition-istic and other classical logics. In 60-ties, these algebras were studied especially, by A. Horn and A. Diego [3] from algebraic point of view. Recently, the Hilbert algebras were treated by D. Buseneag [1, 2]. The present author introduced the notion of HS-algebra [4]. In this paper, we considered the congruence relation, isomorphism and obtained some properties of HS-algebras.

2. Preliminaries

A Hilbert algebra is a triple (X, *, 1), where X is a nonempty set, " * " is a binary operation on X, $1 \in X$ is an element such that the following three axioms are satisfied for every $x, y, z \in X$:

- (H1) x * (y * x) = 1,
- (H2) (x*(y*z))*((x*y)*(x*z)) = 1,
- (H3) if x * y = y * x = 1 then x = y.

If X is a Hilbert algebra, then the relation $x \leq y$ if and only if x*y = 1 is a partial order on X, which will be called the *natural ordering* on X. With respect to this ordering, 1 is the largest element of X.

Received April 07, 20011; Revised June 01, 2011; Accepted August 25, 2011. 2010 Mathematics Subject Classification: Primary 08A05, 08A30, 20L05.

Key words and phrases: Hilbert algebra, HS-algebra, right (resp. left) compatible, congruence.

The research was supported by a grant from the Academic Research Program of Chungju National University in 2011.

In a Hilbert algebra X, the following properties hold([3]).

- (H4) x * x = 1 for all $x \in X$,
- (H5) x * 1 = 1 for all $x \in X$,
- (H6) x * (y * z) = (x * y) * (x * z) for all $x, yz \in X$,
- (H7) 1 * x = x for all $x \in X$,
- (H8) x * (y * z) = y * (x * z) for all $x, y, z \in X$.
- (H9) x * ((x * y) * y)) = 1
- (H10) $x \le y$ implies $z * x \le z * y$ and $y * z \le x * z$ for all $x, y, z \in X$.

3. HS-algebras

Definition 3.1. By an HS-algebra $(X, \cdot, *)$ with two binary operations " \cdot " and "*" that satisfies the following axioms:

- (HS1) $S(X) = (X, \cdot)$ is a semigroup,
- (HS2) H(X) = (X, *, 1) is a Hilbert algebra,
- (HS3) $x \cdot (y * z) = x \cdot y * x \cdot z$ and $(x * y) \cdot z = x \cdot z * y \cdot z$ for any $x, y, z \in X$.

For convenience, we use the multiplication $x \cdot y$ by xy. X is a multiplicatively abelian HS-algebra if $S(X) = (X, \cdot)$ is abelian.

Example 3.2 [4]. Let $X = \{1, a, b, c\}$ in which "*" and "·" are defined by

It is easy to check that $(X,\cdot,*)$ is an HS-algebra.

Example 3.3 [4]. Let $X = \{1, a, b, c\}$ in which "*" and "." are defined by

*	1	a	b	c		1	a	b	c
1	1	a	b	c			1		
a	1	1	b	c	a	1	a	1	1
b	1	1	1	c	b	1	1	b	c
c	1	1	1	1	c	1	1	c	b

It is easy to check that $(X, \cdot, *)$ is an HS-algebra.

Example 3.4 [4]. Let $X = \{1, a, b, c\}$ in which "*" and "." are defined by

*	1	a	b	c		1	a	b	c
1	1	a	b	c	1	1	1	1	1
a	1	1	b	b			a		
b	1	a	1	a	b	1	1	b	b
c	1	1	1	1	c	1	a	b	c

It is easy to check that $(X, \cdot, *)$ is an HS-algebra.

For any x, y in an HS-algebra X, we define $x \vee y$ as (y * x) * x. Note that $x \vee y$ is an upper bound of x and y.

Definition 3.5. An HS-algebra is said to be *commutative* if for all $x, y \in X$,

$$(y * x) * x = (x * y) * y$$
, i.e., $x \lor y = y \lor x$.

Lemma 3.6 [4]. Let X be an HS-algebra. Then the following identities hold.

- (1) x1 = 1 and 1x = 1 for all $x \in X$,
- (2) $x \le y$ implies $ax \le ay$ and $xa \le ya$ for all $x, y, a \in X$,
- (3) $x(y \lor z) = xz \lor yz$ for all $x, y, z \in X$.

Definition 3.7 [4]. Let X and X' be HS-algebras. A mapping $f: X \to X'$ is called an HS-algebra homomorphism (briefly, homomorphism) if f(x * y) = f(x) * f(y) and f(xy) = f(x)f(y) for all $x, y \in X$.

4. Congruence relation and isomorphism theorem

In what follows, let X denote an HS-algebra unless otherwise specified.

DEFINITION 4.1. Let X be an HS-algebra and let ρ be a binary relation on X. Then

- (1) ρ is said to be right (resp. left) compatible if $(x, y) \in \rho$ implies, $(x*z, y*z) \in \rho$ (resp. $(z*x, z*y) \in \rho$) and $(xz, yz) \in \rho$ (resp. $(zx, zy) \in \rho$) for all $x, y, z \in X$;
- (2) ρ is said to be *compatible* if $(x,y) \in \rho$ and $(u,v) \in \rho$ imply $(x*u,y*v) \in \rho$ and $(xu,yv) \in \rho$ for all $x,y,u,v \in X$;
- (3) A compatible equivalence relation is called a *congruence relation*.

Using the notion of left (resp. right) compatible relation, we give a characterization of a congruence relation.

THEOREM 4.2. Let X be an HS-algebra. Then an equivalence relation ρ on X is congruence if and only if it is both left and right compatible.

Proof. Assume that ρ is a congruence relation on X. Let $x, y \in X$ be such that $(x, y) \in \rho$. Note that $(z, z) \in \rho$ for all $z \in X$ because ρ is reflexive. It follows from a congruence relation that $(x*z, y*z) \in \rho$ and $(xz, yz) \in \rho$. Hence ρ is right compatible. Similarly, ρ is left compatible.

Conversely, suppose that ρ is both left and right compatible. Let $x, y, u, v \in X$ be such that $(x, y) \in \rho$ and $(u, v) \in \rho$. Then $(x*u, y*u) \in \rho$ and $(xu, yu) \in \rho$. by the right compatibility. Using the left compatibility of ρ , we have $(y*u, y*v) \in \rho$ and $(yu, yv) \in \rho$. It follows from the transitivity of ρ that $(x*u, y*v) \in \rho$ and $(xu, yv) \in \rho$. Hence ρ is congruence.

For an equivalence relation ρ on an HS-algebra X, we denote

$$x_\rho := \{y \in X \mid (x,y) \in \rho\} \ \text{ and } \ X/\rho := \{x_\rho \mid x \in X\}.$$

THEOREM 4.3. Let ρ be a congruence relation on a HS-algebra X. If X is commutative, X/ρ is a HS-algebra under the operations

$$x_{\rho} * y_{\rho} = (x * y)_{\rho}$$
 and $(x_{\rho})(y_{\rho}) = (xy)_{\rho}$

for all $x_{\rho}, y_{\rho} \in X/\rho$

Proof. Since ρ is a congruence relation, the operations are well-defined. Clearly, $(X/\rho,*)$ is a Hilbert-algebra and $(X/\rho,\cdot)$ is a semigroup. For every $x_{\rho}, y_{\rho}, z_{\rho} \in X/\rho$, we have

$$\begin{array}{ll} x_{\rho}(y_{\rho}*z_{\rho}) &= x_{\rho}(y*z)_{\rho} = (x(y*z))_{\rho} \\ &= (xy*xz)_{\rho} = (xy)_{\rho}*(xz)_{\rho} \\ &= x_{\rho}y_{\rho}*x_{\rho}z_{\rho}, \end{array}$$

and

$$\begin{array}{ll} (x_{\rho} * y_{\rho}) z_{\rho} &= (x * y)_{\rho} z_{\rho} = ((x * y) z)_{\rho} \\ &= (xz * yz)_{\rho} = (xz)_{\rho} * (yz)_{\rho} \\ &= x_{\rho} z_{\rho} * y_{\rho} z_{\rho}. \end{array}$$

Thus X/ρ is an HS-algebra.

THEOREM 4.4. Let ρ be a congruence relation on an HS-algebra X. If X is commutative, the mapping $\rho^*: X \to X/\rho$ defined by $\rho^*(x) = x_\rho$ for all $x \in X$ is an HS-algebra homomorphism.

Proof. Let $x, y \in X$. Then $\rho^*(x*y) = (x*y)_{\rho} = x_{\rho}*y_{\rho} = \rho^*(x)*\rho^*(y)$, and $\rho^*(xy) = (xy)_{\rho} = (x_{\rho})(y_{\rho}) = \rho^*(x)\rho^*(y)$. Hence ρ^* is an HS-algebra homomorphism.

It is clear that ρ^* is clearly surjective.

THEOREM 4.5. Let X and X' be commutative HS-algebras and let $f: X \to X'$ be an HS-algebra homomorphism. Then the set

$$K_f := \{(x, y) \in X \times X \mid f(x) = f(y)\}$$

is a congruence relation on X and there exists a unique 1-1 HS-algebra homomorphism $\bar{f}: X/K_f \to X'$ such that $\bar{f} \circ K_f^* = f$, where $K_f^*: X \to X/K_f$. That is, the following diagram commute:

Proof. It is clear that K_f is an equivalence relation on X. Let $x, y, u, v \in X$ be such that $(x, y), (u, v) \in K_f$. Then f(x) = f(y) and f(u) = f(v), which imply that

$$f(x * u) = f(x) * f(u) = f(y) * f(v) = f(y * v)$$

and

$$f(xu) = f(x)f(u) = f(y)f(v) = f(yv).$$

It follows that $(x*u, y*v) \in K_f$ and $(xu, yv) \in K_f$. Hence K_f is a congruence relation on X. Let $\bar{f}: X/K_f \to X'$ be a map defined by $\bar{f}(xK_f) = f(x)$ for all $x \in X$. It is clear that \bar{f} is well-defined. For any $xK_f, yK_f \in X/K_f$, we have

$$\bar{f}(xK_f * yK_f) = \bar{f}((x * y)K_f) = f(x * y)$$

= $f(x) * f(y) = \bar{f}(xK_f) * \bar{f}(yK_f)$

and

$$\bar{f}((xK_f)(yK_f)) = \bar{f}((xy)K_f) = f(xy)$$

= $f(x)f(y) = \bar{f}(xK_f)\bar{f}(yK_f)$.

If $\bar{f}(xK_f) = \bar{f}(yK_f)$, then f(x) = f(y) and so $(x,y) \in K_f$, that is, $xK_f = yK_f$. Thus \bar{f} is a 1-1 HS-algebra homomorphism. Now let g be an HS-algebra homomorphism from X/K_f to X' such that $g \circ K_f^{\star} = f$. Then

$$g(xK_f) = g(K_f^{\star}(x)) = f(x) = \bar{f}(xK_f)$$

for all $xK_f \in X/K_f$. It follows that $g = \bar{f}$ so that \bar{f} is unique. This completes the proof.

COROLLARY 4.6. Let ρ and σ be congruence relations on an HS-algebra X such that $\rho \subseteq \sigma$. If X is commutative, the set

$$\sigma/\rho := \{ (x_\rho, y_\rho) \in X/\rho \times X/\rho \mid (x, y) \in \sigma \}$$

is a congruence relation on X/ρ and there exists a 1-1 and onto HS-algebra homomorphism from $\frac{X/\rho}{\sigma/\rho}$ to X/σ .

Proof. Let $g: X/\rho \to X/\sigma$ be a function defined by $g(x_\rho) = x_\sigma$ for all $x_\rho \in X/\rho$. Since $\rho \subseteq \sigma$, it follows that g is a well-defined onto HS-algebra homomorphism. According to Theorem 4.5, it is sufficient to show that $K_g = \sigma/\rho$. Let $(x_\rho, y_\rho) \in K_g$. Then $x_\sigma = g(x_\rho) = g(y_\rho) = y_\sigma$ and so $(x, y) \in \sigma$. Hence $(x_\rho, y_\rho) \in \sigma/\rho$, and thus $K_g \subseteq \sigma/\rho$.

Conversely, if $(x_{\rho}, y_{\rho}) \in \sigma/\rho$, then $(x, y) \in \sigma$ and so $x_{\sigma} = y_{\sigma}$. It follows that

$$g(x_{\rho}) = x\sigma = y\sigma = g(y_{\rho})$$

so that $(x_{\rho}, y_{\rho}) \in K_q$. Hence $K_q = \sigma/\rho$, and the proof is complete. \square

DEFINITION 4.7. Let X be an HS-algebra. A subalgebra I of (X,*) is called a *left ideal* of X if $XI \subseteq I$, a *right ideal* if $IX \subseteq I$, and an (two-sided) ideal if it is both a left and right ideal.

THEOREM 4.8. Let I be an ideal of an HS-algebra X. Then $\rho_I := (I \times I) \cup \Delta_X$ is a congruence relation on X, where $\Delta_X := \{(x, x) \mid x \in X\}$.

Proof. Clearly, ρ_I is reflexive and symmetric. Noticing that $(x,y) \in \rho_I$ if and only if $x,y \in I$ or x=y, we know that if $(x,y) \in \rho_I$ and $(y,z) \in \rho_I$ then $(x,z) \in \rho_I$. Hence ρ_I is an equivalence relation on X. Assume that $(x,y) \in \rho_I$ and $(u,v) \in \rho_I$. Then we have the following four cases: (i) $x,y \in I$ and $u,v \in I$; (ii) $x,y \in I$ and u=v; (iii) x=y and $u,v \in I$; and (iv) x=y and u=v. In either case, we get x*u=y*v or $(x*u,y*v) \in I \times I$, and xu=yv or $(xu,yv) \in I \times I$. Therefore ρ_I is a congruence relation on X.

Let X be a multiplicatively abelian HS-algebra and ρ_X be a binary relation on X defined by

$$(a,b) \in \rho_X \iff \exists u \in X \text{ such that } au = bu.$$
 (•)

Clearly, ρ_X is reflexive and symmetric. Let $(a,b), (b,c) \in \rho_X$. Then there exist $u,v \in X$ such that au = bu and bv = cv. These imply a(buv) = (au)(bv) = (bu)(cv) = c(buv), whence ρ_X is transitive. Thus ρ_X is an equivalence relation on X.

THEOREM 4.9. Let X be a multiplicatively abelian HS-algebra and ρ_X be a binary relation on X defined by (\bullet) . If X is commutative, ρ_X is a congruence relation on X, and X/ρ_X is a multiplicatively abelian HS-algebra.

Proof. Let $(a,b), (c,d) \in \rho_X$, Then there exist $u,v \in X$ such that au = bu and cv = dv. These imply (ac)(uv) = (au)(cv) = (bu)(dv) = (bd)(uv) and (a*c)(uv) = auv*cuv = buv*duv = (b*d)uv. Hence $(ac,bd) \in \rho_X$ and $(a*c,b*d) \in \rho_X$. Thus ρ_X is a congruence relation on X, and clearly X/ρ_X is a multiplicatively abelian HS-algebra. \square

Let X be a multiplicatively abelian HS-algebra. If X is commutative, a map $(\rho_X)^* : X \to X/\rho_X$ defined by

$$(\rho_X)^{\star}(a) = a\rho_X$$

is a surjective HS-algebra homomorphism.

THEOREM 4.10. Let X and X' be multiplicatively abelian HS-algebras with X/ρ_X and X'/ρ_X' , respectively and $\phi: X \to X'$ be an HS-algebra homomorphism. If X and X' are commutative, there exists a unique homomorphism $\phi/\rho: X/\rho_X \to X'/\rho_{X'}$ such that $\phi/\rho \circ (\rho_X)^* = (\rho_{X'})^* \circ \phi$.

Proof. Define $\phi/\rho: X/\rho_X \to X'/\rho_{X'}$ by $\phi/\rho(a\rho_X) = \phi(a)\rho_{X'}$. If $a\rho_X = b\rho_X$, then there exists $u \in X$ such that au = bu. Thus $\phi(a)\phi(u) = \phi(b)\phi(u)$ and $(\phi(a),\phi(b)) \in \rho_{X'}$, so $\phi(a)\rho_{X'} = \phi(b)\rho_{X'}$. Therefore ϕ/ρ is well-defined. Next, we prove that ϕ/ρ is a homomorphism. In fact, $\phi/\rho(a\rho_X*b\rho_X) = \phi/\rho((a*b)\rho_X) = \phi(a*b)\rho_{X'} = (\phi(a)*\phi(b))\rho_{X'} = \phi(a)\rho_{X'}*\phi(b)\rho_{X'} = \phi/\rho(a\rho_X)*\phi/\rho(b\rho_X)$ and $\phi/\rho(a\rho_X\cdot b\rho_X) = \phi/\rho((ab)\rho_X) = \phi(ab)\rho_{X'} = (\phi(a)\cdot\phi(b))\rho_{X'} = \phi(a)\rho_{X'}\cdot\phi(b)\rho_{X'} = \phi/\rho(a\rho_X)\cdot\phi/\rho(b\rho_X)$. For any $a \in X$, we have $(\phi/\rho\circ(\rho_X)^*)(a) = \phi/\rho((\rho_X)^*(a)) = \phi/\rho(a\rho_X) = \phi(a)\rho_{X'} = (\rho_{X'})^*(\phi(a)) = ((\rho_{X'})^*\circ\phi)(a)$. Thus $\phi/\rho\circ(\rho_X)^* = (\rho_{X'})^*\circ\phi$. Finally, if there exists a homomorphism $g: X/\rho_X \to X'/\rho_{X'}$ such that $g\circ(\rho_X)^* = (\rho_{X'})^*\circ\phi$, then $g(a\rho_X) = g((\rho_X)^*(a)) = (g\circ(\rho_X)^*)(a) = ((\rho_{X'})^*\circ\phi)(a) = (\rho_{X'})^*(\phi(a)) = \phi(a)\rho_{X'} = \phi/\rho(a\rho_X)$. Thus $g=\phi/\rho$ and ϕ/ρ is unique.

It is clear that Hom(X, X') is a semigroup under multiplication defined by $(\phi_1 \cdot \phi_2)(a) = \phi_1(a) \cdot \phi_2(a)$. Likewise $Hom(X/\rho_X, X'/\rho_{X'})$ is a semigroup by Theorem 4.10, we can define a mapping

$$\Phi: Hom(X, X') \to Hom(X/\rho_X, X'/\rho_{X'})$$

by $\Phi(\phi) = \phi/\rho$. Then we have the following theorem.

THEOREM 4.11. Let X and X' be multiplicatively abelian HS-algebras with X/ρ_X and $X'/\rho_{X'}$, respectively. If X and X' are commutative, the above mapping Φ given by $\Phi(\phi) = \phi/\rho$ is a semigroup homomorphism.

Proof. Let $\phi_1, \phi_2 \in Hom(X, X')$ and $a\rho_X \in X/\rho_X$. Then $((\phi_1 \cdot \phi_2)/\rho)(a\rho_X) = ((\phi_1 \cdot \phi_2)(a))\rho_{X'} = (\phi_1(a) \cdot \phi_2(a))\rho_{X'} = \phi_1(a)\rho_{X'} \cdot \phi_2(a)\rho_{X'} = \phi_1/\rho(a\rho_X) \cdot \phi_2/\rho(a\rho_X) = (\phi_1/\rho \cdot \phi_2/\rho)(a\rho_X)$. Consequently, $(\phi_1 \cdot \phi_2)/\rho = \phi_1/\rho \cdot \phi_2/\rho$. Thus the map

$$\Phi: Hom(X, X') \to Hom(X/\rho_X, X'/\rho_{X'})$$

given by $\Phi(\phi) = \phi/\rho$ is a semigroup homomorphism.

References

- [1] D. Busneag, A note on deductive systems of a Hilbert algebras, Kobe J. Math. 2 (1985), 29-35.
- [2] D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math. 5 (1988), 161-172.
- [3] A. Diego, Sur les algébras de Hilbert, Ed. Hermann, Colléction de Logique Math. Serie A 21 (1966), 1-52.
- [4] S. M. Lee and K. H. Kim, A note on HS-algebras, International Mathematical Forum 6, (No.31), (2011), 1529-1534.

*

Department of Mathematics, Chungju National University Chungju 380-702, Republic of Korea E-mail: ghkim@cjnu.ac.kr