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A FIFTH-ORDER IMPROVEMENT OF THE
EULER-CHEBYSHEV METHOD FOR SOLVING
NON-LINEAR EQUATIONS

WEONBAE KiM*, CHANGBUM CHUN** AND YONG-IL Kiv***

ABSTRACT. In this paper we present a new variant of the Euler-
Chebyshev method for solving nonlinear equations. Analysis of
convergence is given to show that the presented methods are at
least fifth-order convergent. Several numerical examples are given
to illustrate that newly presented methods can be competitive to
other known fifth-order methods and the Newton method in the
efficiency and performance.

1. Introduction

We consider iterative methods that use f, f’ and f” but not the higher
derivatives of f to find a simple root «, i.e., f(a) =0 and f'(«) # 0, of
a nonlinear equation f(z) = 0.

The most well-known and widely used iterative method for the cal-
culation of « is Newton’s method defined by

f(zn)
f(zn)
where x is an initial approximation sufficiently close to .. This method

is quadratically convergent [6]. In [1], a family of third-order methods
improving Newton’s method is proposed:

(1.1) Tyl = Ty —

f(@n)’

(1.2) Tnt1 = Tp — H(t(zn))
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where

w3 oy - I @@

[ ()

and H is any function with H(0) = 1,H’(0) = 1/2 and |H"(0)] <
00. This family includes many well-known classical third-order meth-
ods such as Halley’s method (H(t) = (1 — 3¢)7!), Euler-Chebyshev’s
method (H(t) = 1+ 3t), Hansen-Patrick family (H(t) = (A + 1)(A +
V1— (A +1)t)7Y) [4] etc, as particular cases. For further details, we
refer to [1]. In this paper, we present a variant of the Euler-Chebyshev
method, improving the order of convergence to five with an additional
functional evaluation. By precise analysis of convergence, we show that
the presented methods are of at least fifth-order, and their efficiency and
performance are demonstrated by numerical results.

2. Main result

To construct fifth-order methods, we present the following main re-
sult.

THEOREM 2.1. Assume that the function f is sufficiently smooth in
a neighborhood of its root «, where f'(a) # 0. Let H be any function
with H(0) = 1,H’(0) = 1/2 and |H"(0)] < oco. Then the iterative
scheme defined by, forn =0,1,2,---,

o f(@n) + f(2n)
(2.1) Tpy1 = Tn — H(G) F(2n) )
where
f"(@n)[f(zn) + f(2n)]
(2.2) Cn e ,
- T f(n)
(2.3) Zn = n H(t( n)) f/(xn)’

is of fifth order, and it then satisfies the following error equation:
2
(2.4) nil = 3(2(1{”(0) — 1)k + C3> ed +0(ed),

where e, = x,, — a and ¢, = f*) (@) /k!f' (), for k = 2,3,4,---.
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Proof. Let e, = x, —«. From the Taylor expansions of f(x,), f'(zy),
and f”(z,), and taking into account f(«) =0, we obtain

(2.5) f(zn) = fl(a)en+ 0262 + 0362 + C4efL + 6562 + O(eg)],
(2.6) f'(xn) = f(a)[1+2coe, + 303ei + 46462 + 565631 + O(ei)],
Df' () = f(a)[2co + 6ezen, + 12646721 + 20656% + O(e;ﬁ)].

From (2.5)-(2.7), we get

x
;/((;)) en — Co€2 +2(c% — c3)ed 4 (—4c¢3 + Teaez — 3eq)el
n
(2.8) +(8¢3 — 20c3c3 4 10cacy + 6¢3 — 4es)ed + O(e8),
"
x
J;U((xn)) = 2y + (—4c3 4 6c3)en + (8¢5 — 18¢acs + 12¢4)e?
n
2.9 +(—16¢5 + 48c3c3 — 32cacy — 18¢5 + 20c5)el + O(ey),
2 2 3 n n
whence
oy = L) 1)
" f(@n) f/(zn)
= 296, 4 6(—c3 + c3)e2 + 4(4c3 — Teaes + 3eq)ed
(2.10) +10(—4cj + 10c3cs — beacy — 3¢5 + 2¢5)et + O(ed),
t2(zn) = 4c3e2 +24(—c3 + cacy)ed
(2.11) +4(25¢5 — 46c3c3 4 12¢acq4 + 9c3)et + O(ed),
(2.12) 3(x,) = 8c3e3 4+ 72(—c5+ Bez)et + 0(ed),
(2.13) tY(z,) = 16caet + O(ed).
Since
1 J— 2 1 (3) 3
H(t(xy)) = 1+ it(mn) + §H 0)t*(zp) + EH (0)t°(xp)
1
+ﬂH(4>(0)t4(xn) + O(t5(zy)),

it follows from (2.10)-(2.13) that

(2.14)  H(t(zn)) = 1+ coen+ Ae2 + Bed + Cel +0(ed),
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where
A = (2H"(0) — 3)c3 + 3cs,

B = 4 <;H(3) (0) —3H"(0) + 2) 3+ 2(6H"(0) — 7)eaes + 6ey,

1
C = 2 <3H<4> (0) — 6H®(0) + 25H"(0) — 10) A

+2(6H®)(0) — 46H" (0) + 25)c3es + (24H" (0) — 25)cacy
+3(6H"(0) — 5)c3 + 10cs.

Hence, we easily obtain from (2.8) and (2.14) that the error equation of
the method defined by (2.3) is given by

Entl ‘= 2n —Q

2.15
(2.15) = (2(1 — H"(0))c3 —c;;)ei—kKlefL—i—ngi—kO(eg),
where
4 .
K = <—3H(5) (0) + 14H"(0) — 9) 34+ 12(1 — H"(0))cacs — ey,

1 20
K, = 2 <—3H(4) (0) + ?H(?’) (0) — 33H"(0) + 15) A
+3(—4H®)(0) + 36 H" (0) — 21)c2e3 + 24(1 — H"(0))eacy
+3(5 — 6H"(0))c3 — 6cs.
On the other hand, since

(2.16) f(za) = f'(a)(2n — @) + O(ey),
a simple calculation using (2.5), (2.6) and (2.15) shows that

f(@n) + f(zn) 2 < " 2 > 3

— = =ey, —cae, + [ 2(2—H"(0))c; — 3c3 |e
(217) f/(xn) 2 ( ( )) 2 3 n

+ Erel + Eyed + 0(eb),
where
4
E, = (—3H<3) (0) + 18H"(0) — 17) 3 +3(7 — 4H"(0))cacs — 6ey,

By = 2 <—;H(4)(0) +8H®)(0) — 51H"(0) + 32) cg

+3(—4H®)(0) + 46 H" (0) — 39)c3c3 + 8(5 — 3H"(0))cacy
+6(4 — 3H"(0))c3 — 10cs,
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whence we get from (2.9)

Faa) + F(z) (@)

E [ B [P
(2.18) = 2c9e, + 6(—c3 + c3)e2 + Lied + Loet + O(ed),
where
(2.19) L1 =4(5 — H"(0))c3 — 30cac3 + 12¢4,

Ly = 2 <—§H(3) (0) + 22H"(0) — 37) 3 +36(4 — H"(0))c3es
—56c9c4 — 36¢3 + 20cs.
It then easily follows that
2 = 4cse’ 4 24(—c3 + cacz)ed

(2.20) + <4(29 — 4H"(0))c3 — 192¢3c3 + 48¢ocq + 36c§) et +0(ed),

(2.21) 3 =8c3ed +72(—ch + cAes)et + O(eD),
(2.22) Ch=16ciel +O(ed).
Since

H(G) = 14 3G+ G H'O)G + SHOO)G + o HO 0! +0(¢))

it follows from (2.18)-(2.22) that

(2.23)  H(C,) = 1+ caen+ Miel + Mael + Msep, + O(e),
where
M, = (2H"(0) —3)c3 + 3cs,

2
My, = 2 <3H<3>(0) — TH"(0) + 5) 3 + 3(4H"(0) — 5)cges + 6ey,
2 4
M, = <3H(4> (0) — §0H<3> (0) — 8H"(0) + 80H" (0) — 37) a
+2(6H®) (0) — 57TH"(0) + 36)c3cs + 4(6H" (0) — 7)eacy
+18(H"(0) — 1)c3 + 10cs,
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whence from (2.17) we get

f(@n) + f(zn)
[ (zn)

2
=ep — 3(2(H”(0) —1)c3 + 03> e+ 0(ed).

(2.24)

Therefore, it is clear from (2.24) that the error equation of the method
defined by (2.1) is given by

(225)  epe1 = @n—a— W CH(G)
2
(2.26) = 3(2(]{”(0) — 1)k + C3> el +0(ed).
This completes the proof. O

3. Some special cases of order five

1\"!
In the case that H(t) = <1 - 275) , the scheme (2.1) yields a new

fifth-order iterative method

61w =2y — @) + S )
. n+1 n 2f/2(33n) _ f//(xn)(f($n) +f(zn))7

where

(3.2) o g 2 @) ()

21" (zn) = " (wn) f(20)
Note that (3.2) is the well-known Halley method [1] and so, the method
defined by (3.1) is a fifth-order variant of Halley’s method.

In the case that H(t) = /1 +t, the scheme (2.1) yields a new fifth-
order iterative method

(3.3)zpt1 = xpy — \/1 +

f"(@n) (f (2n) + f(zn)) f(2n) + f(20)
[ (xn) fllan)

where

(3.4) o \/ L ")) S

f2(xn)  f(wn)
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In the case that H(t) =60 + (1 — H)eﬁt where 6 is any real num-
ber except 1, the scheme (2.1) yields the new one-parameter fifth-order
family of methods
(3.5)

1 f"(@n)(f(2n) + f(20))
Tn4+1 = Tpn— 9 + (1 — 6)62(1 - 9) f’2($n) f(x}),(‘_; J;(zn)7

where

1 f"(wn) f(2n)
(3.6) nman— |04 (1—0)e20=0) Pl | L)

In the case that H(t) = (A + 1)(A + /1 — (A +1)t)~! where X is

any real number, the scheme (2.1) yields another new one-parameter
fifth-order family of methods

Tng1 = wn—(A+1) (A + \/1 ~(A+ 1)f”(x")(‘;,(2x{;) ;r f(zn))>

F@) + £
3.7) Flom)

where

f~<mn>f<mn>> Fln)

(3.8) zn=x,—(A+1) (A + \/1 (A+1) 2 () Flan)’

In a similar fashion as in the above, with any other functions H
satisfying H(0) = 1, H'(0) = 1/2 and |H"(0)| < oo, we can continuously
apply formula (2.1) to obtain the fifth-order methods; per iteration each
of them requires two evaluations of the given function, one of its first
derivative and one of its second derivative. If we consider the definition
of efficiency index [2] as pm, where p is the order of the method and
m is the number of functional evaluations per iteration required by the
method, we have that all of the methods obtained from formula (2.1)

have the efficiency index equal to 51 ~ 1.495, which is better than the
1

ones of the third-order methods 33 =~ 1.442 obtained from (1.2) and

Newton’s method /2 ~ 1.414.
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4. Numerical examples and conclusions

All computations were done using MAPLE using 64 digit floating
point arithmetics (Digits:=64). We accept an approximate solution
rather than the exact root, depending on the precision (€) of the com-
puter. We use the following stopping criteria for computer programs:
(1) |xn+1 — zn| <€, (i) |f(znt1)| < €, and so, when the stopping cri-
terion is satisfied, z,41 is taken as the exact root a computed. For
numerical illustrations in this section we used the fixed stopping crite-
rion € = 10715,

We present some numerical test results for various fifth-order iterative
schemes in Table 1. Compared were the Newton method (NM), the
method of Grau (GM) given by

J" (@) (f () + f(Zn))) f(@n) + f(2n)
2f72(zn)

1
n — dn — 1 =t n )
Zn =T ( +3 (x )) o)
the method of Kou et al [5] (KM) defined by

Tprl = 2 — f(zn)
" " f/(@n) + f"(@n) (20 — 20)’
1 " n n n
oo (14 M@0 @) S
2 fP@n) ) f(zn)
and the methods (3.1) with (3.2) (CM1), (3.5) with # = 1/2 and (3.6)
(CM2), and (3.7) with A = 1 and (3.8) (CM3), respectively, introduced
in the present contribution. We used the following test functions:

filx) = 3 + 422 — 10,

T+l = Tp — (1+

fo(z) = sin’z—a2? +1,
fa(z) = x?—e% —3z+42,
fa(x) = cosz — x,

fil) = (@—1P-1,

fe(x) = e *+ cosz,

fr(w) = " —da?,

fs(z) = 22 +sin(z/5) —1/4.

As convergence criterion, it was required that the distance of two
consecutive approximations § for the zero was less than 107'°. Also
displayed are the number of iterations to approximate the zero (IT), the
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TABLE 1. Comparison of various fifth-order iterative
methods and the Newton method

IT | COC T f(zs) 4
f1,20 = 1.27
NM 5 2 1.3652300134140968457608068290 2.70e-41 | 1.83e-21
GM 3 | 5.039 | 1.3652300134140968457608068290 0.0e-01 4.35e-27
KM 3 | 5.024 | 1.3652300134140968457608068290 0.0e-01 2.36e-32
CM1 3 | 5.018 | 1.3652300134140968457608068290 0.0e-01 6.94e-32
CM2 3 | 5.013 | 1.3652300134140968457608068290 0.0e-01 5.14e-32
CM3 3 5 1.3652300134140968457608068290 0.0e-01 5.33e-38
fa,m0 =1
NM 7 2.0 1.4044916482153412260350868178 | -1.04e-50 | 7.33e-26
GM divergent
KM 4 | 4.841 | 1.4044916482153412260350868178 -2.0e-63 | 5.79e-31
CM1 4 | 5.004 | 1.4044916482153412260350868178 1.3e-63 6.01e-43
CM2 3 | 4.568 | 1.4044916482153412260350868178 1.3e-63 2.50e-17
CM3 3 | 5.359 | 1.4044916482153412260350868178 1.3e-63 4.12e-16
f3,20=0
NM 5 2 0.25753028543986076045536730494 | 1.56e-49 | 6.64e-25
GM 3 | 4.868 | 0.25753028543986076045536730494 | -1.0e-63 | 5.47e-33
KM 3 | 4.910 | 0.25753028543986076045536730494 1.0e-63 1.05e-30
CM1 3 | 4.926 | 0.25753028543986076045536730494 0.0e-01 3.49e-30
CM2 3 | 4.925 | 0.25753028543986076045536730494 0.0e-01 3.29e-30
CM3 3 | 4.967 | 0.25753028543986076045536730494 0.0e-01 2.97e-28
fa,20 =12
NM 5 2 0.73908513321516064165531208767 | -1.90e-35 | 7.16e-18
GM 3 | 4.842 | 0.73908513321516064165531208767 0.0e-01 5.81e-18
KM 3 | 4.954 | 0.73908513321516064165531208767 0.0e-01 1.06e-18
CM1 3 | 4.926 | 0.73908513321516064165531208767 1.0e-64 1.32e-18
CM2 3 | 4.926 | 0.73908513321516064165531208767 0.0e-01 1.34e-18
CM3 3 | 5.055 | 0.73908513321516064165531208767 0.0e-01 1.65e-19
fs,20 =1.8
NM 6 2 2 2.87e-41 | 3.09e-21
GM 4 | 5.007 2 0.0e-01 1.99e-41
KM 4 5 2 0.0e-01 1.23e-17
CM1 3 | 5.119 2 0.0e-01 5.07e-16
CM2 3 | 5.006 2 0.0e-01 2.28e-17
CM3 3 | 5.013 2 0.0e-01 7.34e-21
fe,xo =0.1
NM 6 2 1.7461395304080124176507030890 6.80e-43 | 1.97e-21
GM 4 | 4.723 | 1.7461395304080124176507030890 -9.0e-64 1.0e-63
KM 3 | 4.122 | 1.7461395304080124176507030890 3.0e-64 1.78e-16
CM1 4 | 4.332 | 1.7461395304080124176507030890 -9.0e-64 1.0e-63
CM2 4 | 4.317 | 1.7461395304080124176507030890 -9.0e-64 1.0e-63
CM3 3 | 4.177 | 1.7461395304080124176507030890 -9.0e-64 | 6.94e-16
fr,m0 =2
NM 7 2 0.71480591236277780613762220811 | -2.06e-47 | 2.63e-24
GM 4 | 4.888 | 0.71480591236277780613762220811 0.0e-01 1.07e-21
KM 4 | 4.989 | 0.71480591236277780613762220811 0.0e-01 3.69e-27
CM1 4 | 4.934 | 0.71480591236277780613762220811 0.0e-01 1.90e-24
CM2 4 | 4.938 | 0.71480591236277780613762220811 0.0e-01 2.28e-24
CM3 4 | 5.012 | 0.71480591236277780613762220811 0.0e-01 7.29e-34
fe,xo =2
NM 8 2 0.4099920179891371316212583765 6.06e-56 | 2.46e-28
GM 4 | 4.745 | 0.4099920179891371316212583765 0.0e-01 5.50e-16
KM 4 | 5.251 | 0.4099920179891371316212583765 0.0e-01 1.39e-34
CM1 4 | 4.901 | 0.4099920179891371316212583765 -1.0e-64 | 1.17e-21
CM2 4 | 4.902 | 0.4099920179891371316212583765 0.0e-01 3.86e-21
CM3 3 | 4.988 | 0.4099920179891371316212583765 0.0e-01 1.04e-27
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computational order of convergence (COC), the approximate zero x.,
and the value f(z.). Note that the approximate zeroes were displayed
only up to the 28th decimal places, so it making all looking the same
though they may in fact differ.

The test results in Table 1 show that the computed order of conver-
gence of the presented iterative methods is all five, which agree with the
theoretical result developed in this paper. It can be observed that for
most of the functions we tested, the methods introduced in this presen-
tation show at least equal performance compared to the other fifth-order
methods. Moreover, the presented methods can compete with Newton’s
method.

5. Conclusion

In this work we improved a third-order family of iterative methods,
which includes the well-known methods such as Halley’s method, Euler-
Chebyshev’s method, etc as particular cases, to five at the expense of an
additional functional evaluation. Numerical results confirmed that the
methods obtained in this paper demonstrate at least equal performance
compared to other well-known methods in the literature.
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