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FRACTIONAL POLYA-SZEGÖ INEQUALITY

Young Ja Park*

Abstract. Let 0 < s < 1. For f∗ representing the symmetric ra-
dial decreasing rearrangement of f , we build up a fractional version
of Polya-Szegö inequality:∫

Rn

|(−∆)s/2f∗(x)|2dx ≤
∫
Rn

|(−∆)s/2f(x)|2dx.

1. Introduction and the main theorem

Rearrangement technique has long been a basic tool in the calculus of
variations and in the theory of those partial differential equations that
arise as Euler-Lagrange equations of variational problems. It permits
one to concentrate on radial monotone decreasing functions and thereby
reduces many problems to simple one dimensional ones. One of the most
important applications of the concept of the symmetric radial decreasing
rearrangement would be the kinetic energy reduction. In fact, Polya-
Szegö inequality claims that the symmetric decreasing rearrangement
diminishes the L2-norm of the gradient of a function f :∫

Rn

|∇f∗(x)|2dx ≤
∫
Rn

|∇f(x)|2dx,(1.1)

where f∗ represents the symmetric decreasing rearrangement of f . In-
equality (1.1) itself has numerous applications in physics. For instance,
applying the symmetric decreasing rearrangement, G. Polya and G.
Szegö proved that the capacity of a condenser decreases or remains un-
changed [10]. It was also employed to show that among all bounded
bodies with fixed measure, balls have the minimal capacity [8], and it
also has played a crucial role in the solution of the famous Choquards
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conjecture [7, 5]. Moreover, it turned out that inequality (1.1) is ex-
tremely useful to establish the existence of ground states solutions of a
nonlinear Schrödinger equation [5].

The relativistic kinetic energy statement of the inequality (1.1) is∫
Rn

|
√
−∆f∗(x)|2dx ≤

∫
Rn

|
√
−∆f(x)|2dx

(page 174 in [8]). With this motivation we ask a question on the non-
expansivity of symmetric decreasing rearrangement of functions with
respect to the fractional actions (−∆)s/2 for 0 < s < 1. Our main
theorem is stated as follows:

Theorem 1.1. Let 0 < s < 1. Let f∗ denote the symmetric radial
decreasing rearrangement of f . Then we have∫

Rn

|(−∆)s/2f∗(x)|2dx ≤
∫
Rn

|(−∆)s/2f(x)|2dx,(1.2)

in the sense that the finiteness of of the right side implies the finiteness
of the left side. Furthermore the equality occurs for radial decreasing
functions and the best constant is 1.

For the basic terminology and some properties of symmetric decreas-
ing rearrangement, we refer [6] and Chapter 3 in [8].

2. The proof

It suffices to prove the following:∫
Rn

|ξ|2s|F [f∗](ξ)|2dξ ≤
∫
Rn

|ξ|2s|f̂(ξ)|2dξ,(2.1)

where f̂ = F(f) represents the Fourier transform of f on Rn defined by

f̂(ξ) = F(f)(ξ) =
1

(2π)n/2

∫
Rn

f(x)e−ix·ξ dx,

if f ∈ L1(Rn)∩L2(Rn). (We present this only for the explicit expression
of the Bessel kernel for later use in (2.3).) We first prove the following
lemma.

Lemma 2.1. For 0 < s < 1, we have∫
Rn

(
|ξ|2

1 + |ξ|2

)s

|F [f∗](ξ)|2dξ ≤
∫
Rn

(
|ξ|2

1 + |ξ|2

)s

|f̂(ξ)|2dξ.(2.2)
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Suppose that Lemma 2.1 has been proved. Take ε > 0, and replace
f(x) by f(εx). We have [f(εx)]∗ = f∗(εx), since rearrangement com-
mutes with uniform dilation. Then, (2.2) becomes

1

ε2n

∫
Rn

(
|ξ|2

1 + |ξ|2

)s

|F [f∗](ξ/ε)|2dξ ≤ 1

ε2n

∫
Rn

(
|ξ|2

1 + |ξ|2

)s

|f̂(ξ/ε)|2dξ.

Changing variables ξ/ε = η gives∫
Rn

(
|η|2

1 + ε2|η|2

)s

|F [f∗](η)|2dη ≤
∫
Rn

(
|η|2

1 + ε2|η|2

)s

|f̂(η)|2dη.

Take the limit of both sides as ε → 0 to get (2.1).

Proof of Lemma 2.1. From the following expression(
|ξ|2

1 + |ξ|2

)s

=

(
1− 1

1 + |ξ|2

)s

= 1−
∞∑
k=1

(−1)k+1

(
s
k

)(
1

1 + |ξ|2

)k

with (
s

k

)
=

s(s− 1) · · · (s− (k − 1))

k!
,

inequality (2.2) now becomes∫
Rn

|F [f∗](ξ)|2dξ −
∞∑
k=1

(−1)k+1

(
s
k

)∫
Rn

1

(1 + |ξ|2)k
|F [f∗](ξ)|2dξ

≤
∫
Rn

|F [f ](ξ)|2dξ −
∞∑
k=1

(−1)k+1

(
s
k

)∫
Rn

1

(1 + |ξ|2)k
|F [f ](ξ)|2dξ.

It is enough to show that for each positive integer k∫
Rn

1

(1 + |ξ|2)k
|F [f∗](ξ)|2dξ ≥

∫
Rn

1

(1 + |ξ|2)k
|F [f ](ξ)|2dξ

since (−1)k+1

(
s
k

)
> 0 with 0 < s < 1. We consider a function gk

such that F [g̃k](ξ) = (1 + |ξ|2)−k/2, where g̃(x) = ḡ(−x). In fact, if we
let

Gk(x) =
1

Γ(k/2)

1

(4π)k/2

∫ ∞

0
e−

π|x|2
δ e−

δ
4π δ−

(n−k)
2

dδ

δ
,

then we have

F [Gk](ξ) = (1 + 4π2|ξ|2)−k/2.(2.3)

It can be easily shown that

(1 + |ξ|2)−k = F [G2k](ξ/2π) = (2π)kF [G2k](2πξ).
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So, we have∫
Rn

1

(1 + |ξ|2)k
|F [f ](ξ)|2dξ = (2π)k

∫
Rn

Ĝ2k(2πξ)f̂(ξ)f̂(ξ)dξ

= (2π)k
∫
Rn

G2k(−2πx)(f ∗ f̃)(x)dx

= (2π)k[G2k(2πx) ∗ (f ∗ f̃)(x)](0)

= (2π)k
∫
Rn×Rn

G2k[2π(y − z)]f(z)f̄(y)dydz

≤ (2π)k
∫
Rn×Rn

G2k[2π(y − z)]f∗(z)f̄∗(y)dydz(2.4)

=

∫
Rn

1

(1 + |ξ|2)k
|F [f∗](ξ)|2dξ,

where

(g ∗ h)(x) =
∫
Rn

g(x− y)h(y)dy.

The Symmetrization lemma by W. Beckner in [4] takes care of the in-
equality (2.4), which is the only place that inequality occurs. So it is
clear that the extremals are radial decreasing functions and the best
constant is 1. The proof is now completed. 2

Remark 2.2. Theorem 1.1 implies the nonexpansivity of symmetric
decreasing rearrangement on fractional Sobolev spaces Hs(Rn), 0 < s <
1; for f ∈ Hs(Rn),

∥f∗∥Hs(Rn) ≤ ∥f∥Hs(Rn),(2.5)

where the fractional Sobolev norm ∥ · ∥Hs(Rn) is employed by

∥f∥Hs(Rn) :=

(∫
Rn

|f(x)|2 dx
)1/2

+

(∫
Rn

|ξ|2s|f̂(ξ)|2 dξ
)1/2

.

Remark 2.3. The argument of the proof has been taken from the
author’s own paper [9].
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