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h-STABILITY OF THE NONLINEAR PERTURBED
DIFFERENCE SYSTEMS

YooN HoE Goo* AND HYE JIN PARk**

ABSTRACT. In this paper, we investigate h-stability of the nonlin-
ear perturbed difference system by using comparison principle.

1. Introduction

Discrete Volterra systems arise mainly in the process of modeling of
some real phenomena or by applying a numerical method to a Volterra
integral equation. Medina and Pinto [9] introduced the notion of h-
stability which is an important extension of the notion of exponential
asymptotic stability. In the study of the stability properties of difference
systems, the notion of h-stability is very useful because, when we study
the asymptotic stability it is not easy to work with non-exponential types
of stability. To study the various stability notions of nonlinear difference
systems, the comparison principle [7] and variation of constants formula
by Agarwal [1] play a fundamental role.

Media and Pinto [9-11] applied the h-stability to obtain a uniform
treatment for the various stability notions in difference systems and gave
new insights about stability for weakly stable difference systems(at least,
for systems with stabilities weaker than those given by exponential sta-
bility and uniform Lipschitz stability). Also, Choi and Koo [3] obtained
results for hS of nonlinear difference systems via neo-similarity. The sta-
bility problem for Volterra difference systems was studied by Elaydi [6],
Elaydi and Murakami [6], Raffoul [12], Zouyousefain and Leela [13], Choi
and Koo [2], and others.
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In this paper, we investigate h-stability of the nonlinear difference
systems by using comparison principle.

2. Preliminaries

We consider the nonlinear difference system
(2.1) z(n+1) = f(n,z(n)),

where f: N(ng) x R™ — R™, N(ng)={no,no+1,--- ,no+ k,---} (ng
a nonnegative integer), R™ is the m-dimensional real euclidean space.
We assume that f,= Jf/0x exists and is continuous and invertible on
N(ng) x R™, f(n,0) = 0. Let x(n) = z(n,ngp, zo) be the unique solu-
tion of (2.1) with x(ng,no,zo) = xo. Also, we consider its associated
variational system

(2.2) v(n+1) = fz(n,0)v(n)
and
(2.3) z(n+1) = fz(n,xz(n,ng,xo))z(n)

of (2.1). The fundamental matrix ®(n,ng,0) of (2.2) is given by

®(n,ng,0) = a—mox(n,no,O)
and the fundamental matrix ®(n,ng,xo) of (2.3) is given by
®(n,ng, xo) = ia:(n,no,aco)
Oxg
(See [9))
The symbol | - | will be used to denote any convenient vector norm on
R™.

We now recall the main definitions [11] that we need in the sequel.

DEFINITION 2.1. The zero solution of (2.1), or more briefly system
(2.1), is called (hS) h-stable if there exist ¢ > 1,d > 0 and a positive
bounded function h : N(ng) — R such that

| x(”a”OaxO) ’S c ’ Lo | h(n)h_l(no)

for n > ng and | g |< & (here h=1(n) = 1/h(n)),
(hSV) h-stable in variation if the zero solution of system (2.3) is hS.
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The notion of ne-similarity in M was introduced by Choi and Koo [3].

Let M denote the set of all m x m invertible matrices A(n) defined
on N(ng) and N be the subset of M consisting of those nonsingular
bounded matrices S(n) such that S~!(n) is also bounded.

DEFINITION 2.2. A matrix A(n) € M is ne-similar to a matrix
B(n) € M if there exists an m X m matrix F(n) absolutely summa-
ble over N(ngp), i.e.,

Y IF() < o0

l=no
such that
S(n+1)B(n) — A(n)S(n) = A(n)F(n)
for some S(n) € N.

For the example of n-similarity, see [3].

REMARK 2.3. The notion of t.-similarity is an equivalence relation
in the set of all m X m continuous matrices on R™ but the n.o-similarity
is not an equivalence relation in general.

We give some related properties that we need in the sequal.
LEMMA 2.4. [10] The linear defference system

(2.4) z(n+1) = An)x(n), x(ng)= xo,

where A(n) is an m x m matrix, is hS if and only if there exist ¢ > 1
and a positive bounded function h defined on N (ng) such that for every
xg € R™,

(2.5) | ¢(n,m0,0) |< ch(n)h(ng) ™"

for n > ng, where ¢ is the fundamental matrix of (2.4).

We consider the nonlinear difference system
z(n+1) = f(n,z(n))
and its perturbed difference system

(2.6) y(n+1) = f(n,y(n)) + g(n,y(n))
where f,g : N(ng) x R™ — R™ | and f(n,0) = g(n,0) = 0. Let
y(n) = y(n,ng,yo) denote the solution of (2.6) satisfying the initial
condition y(ng, no, Yo) = Yo-

THEOREM 2.5. [3] Assume that f,(n,0) is ne-similar to f;(n,z(n, no,
xg)) forn > ng > 0 and | xg |< § for some constant 6 > 0. If the solution
v =0 of (2.2) is hS, then the solution z = 0 of (2.3) is hS.
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THEOREM 2.6. [8] Assume that x(n,ng,xo) and x(n,ng,yo) are the
solutions of (2.1) through (ng, x¢) and (no,yo), respectively, existing for
n > ng, such that xg,yo belong to a convex subset of R™. Then, for
n = ng,

1
z(n,no,Y0) — (N, no, o) = [/0 ®(n,ng, 5(yo — x0))ds|(yo — o).

LEMMA 2.7. [3] Let k(n,r) be a nonincreasing function in r for any
fixed n € N(ng). Suppose that for n > ny,

n—1 n—1
v(n) — Z k(L v(l)) <u(n) — Z k(L u(l))

l=ng l=ng

If v(ng) < u(ng), then v(n) < u(n) for all n > nyg.

3. Main results

In this section, we investigate hS for the nonlinear difference systems
via neo-similarity.

THEOREM 3.1. [12] If the zero solution of (2.1) is hS, then the zero
solution of (2.2) is hS.

Proof. 1t is analogous to that of Theorem 5 in [2]. O

THEOREM 3.2. Suppose that f,(n,0) is ne-similar to fy(n,x(n,no,
x0)) for n > ng > 0 and |xg| < 0 for some constant 6 > 0. Then, the
solution v = 0 of (2.2) is hS if and only if the solution z = 0 of (2.3) is
hS.

Proof. First suppose v = 0 of (2.2) is hS. Then, by Theorem 2.5, the
solution z = 0 of (2.3) is hS.

Conversely, suppose the solution z = 0 of (2.3) is hS. Let z(n) =
x(n,ng, o) be any solution of (2.1). Then, by Theorem 2.6, we have

1
x(n, ng, rg) = [/ ®(n,ng, sxo)ds]zo
0

By Lemma 2.4, since the solution z = 0 of (2.3) is hS, there exist ¢ > 1
and a positive bounded function h on N(ng) such that

| @(n,ng, zo) |< ch(n)h(n)_l
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for n > ng > 0, where ®(n,ng,xo) is the fundamental matrix of (2.3).
From (2.5), we have

1
| 2(n, o, 7o) | < / | B(n, no, szo) | ds | o |
0

< c|xo | h(n)h(ng) L.
This implies that the zero solution of (2.1) is hS. Therefore, by Theorem
3.1, the solution v = 0 of (2.2) is hS and so the proof is complete. [

COROLLARY 3.3. Under the same conditions of Theorem 3.2, the zero
solution of (2.1) is hSV.

THEOREM 3.4. Suppose that f;(n,0) is neo-similar to f(n,z(n,ng,
x0)) for n > nyg > 0 and | o |< § for some constant 6 > 0 and the
solution x = 0 of (2.1) is hS. Also, suppose that

[g(n,2) [SA(n) |z for n>mo, |2]|< o0,
h(n . 00 h(n
where h(7§+)1))\(n) € L(N(no)), ie, > 07 %)\(n) < 00, then the

zero solution y = 0 of (2.6) is hS.

Proof. Using the discrete analogue of Alekseev’s formula [10], the
solutions of (2.1) and (2.6) with the same initial value are related by

om0, 10) = o) + 3 / (m, 1+ 1, p(y(D), 7)dr - g (L, y(1)),
l=ng

where u(y(n), 7) = f(n, y(n)) +g(n,y(n)), T € [0,1] and B(n, no, zo) is

the fundamental matrix of (2.3). In view of the assumptions, Theorem

3.1 and Theorem 3.2, the zero solution z = 0 of (2.3) is hS. Hence, we

have

| y(n,m0,%0) |

<[ (n,n0,y0) |+Z/ [(n, 1+ 1, u(y(), 7)) [ dr | g(L,y(1)) |
l=ng

< ¢ yolh(n)h ™" (ng +czh DA |y |-

l=ng

Letting u(n) = |ygng|, we obtain

n—1

u(n) < cu(ng) + ¢ Y (1 + DADA() | u(l) |.

l=ng
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Hence, by the discrete Bellman’s inequality [1, 6], we obtain

[ y(n) | < ch(n)h™ (ng) |y0|eXp< Zhs+ )

< erh(n)h™(no) | vo |,

h(s)
s=ng h(s—l—l))\

solution y = 0 of (2.3) is hS. This completes the proof. O

where ¢; = cexp (CZ (s)> is a positive constant. The zero

Also, we examine the property of hS for the perturbed system

(3.1) y(n+1) = f(n,y) + Z (Ly(), y(ne) = .

l=ng
where g(n,0) = 0.

THEOREM 3.5. Suppose that f,(n,0) is ne-similar to f,(n,x(n,no,
x0)) forn > ng > 0 and |xg| < § for some constant 6 > 0 and the solution
x =0 of (2.1) is hS with the nonincreasing function h(n). Also, suppose
that

|Zg(laz) |§T(TL,|Z|) fornZno, |Z|<OO,

l=ng

where r : N(ng) x R™ — R™T is strictly increasing in u for each fixed
n € N(ng) with r(n,0) = 0. Consider the scalar difference equation

(3.2) u(n + 1) = u(n) + cr(n,u(n)), wu(ng) =ug, c>1.
If the zero solution u = 0 of (3.2) is hS, then the zero solution y = 0 of
(3.1) is also hS whenever ug = ¢ | yo |.

Proof. Using the discrete analogue of Alekseev’s formula [10], we have

y(n,no, yo)
!

2(n, 1m0, %0 +Z/ (nd 4+ Ly, 7))dr - > gk, (),

l=no k=mno

where (y(n), 7) = f(n,y(n)) +7 5, 9L, y(1), 7 € [0,1] and (n, no,
x0) is the fundamental matrix of (2.3). By the assumptions, Theorem
3.1 and Theorem 3.2, the zero solution z = 0 of (2.3) is hS. Hence, we
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obtain

‘ y(na no, yO) |

n—1 1
<Jatm o) |+ 3 [ 19001+ Lutw(0).7)) 7| 3 sl u(h)

l=ng k=ng

n—1
< clyo | h(n)h™ (no) +¢ Y h(n)h =1+ r(L [ y(0) |)
l=ng

n—1

<clyol+e Sl |y D,

l=ng

since h(n) is nonincreasing. Thus, we have

n—1 n—1
L) [ =Dy ) < elyol=uo=u(n) =) rlull).

l=ng l=ng

By Lemma 2.7, we get y(n) < wu(n) for all n > ng. In view of the
assumption, since u = 0 of (3.2) is hS, we obtain

| y(n) |< u(n) < crugh(n)h(ng)~"
= c1c | yo | h(n)h(no) ™
=d|yo | h(n)h(ng) ™, d=cic>1
Hence, the proof is complete. ]
REMARK 3.6. If we consider the linear difference system
(3.3) z(n+1) = f(n,z(n)) = A(n)xz(n)
and its perturbation

(3.4) y(n+1) = An)y(n)+ > _ g(ly(0)),

l=ng

where A(n) is an m x m matrix defined on N (ng), then the zero solution
y =0 of (3.4) is hS under the same conditions in Theorem 3.5.
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