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INTEGRAL TRANSFORMS OF FUNCTIONALS ON A
FUNCTION SPACE OF TWO VARIABLES

Bong Jin Kim*, Byoung Soo Kim**, and Il Yoo***

Abstract. We establish the various relationships among the inte-
gral transform Fα,βF , the convolution product (F ∗ G)α and the
first variation δF for a class of functionals defined on K(Q), the
space of complex-valued continuous functions on Q = [0, S]× [0, T ]
which satisfy x(s, 0) = x(0, t) = 0 for all (s, t) ∈ Q. And also we ob-
tain Parseval’s and Plancherel’s relations for the integral transform
of some functionals defined on K(Q).

1. Introduction and definitions

In a unifying paper [15], Lee defined an integral transform Fα,β of
analytic functionals on an abstract Wiener space. For certain values
of the parameters α and β and for certain classes of functionals, the
Fourier-Wiener transform [3], the Fourier-Feynman transform [4] and
the Gauss transform are special cases of this integral transform Fα,β. In
[6], Chang, Kim and Yoo established an interesting relationship between
the integral transform and the convolution product for functionals on
an abstract Wiener space. Recently [12] Kim, Kim and Skoug studied
the relationships among the integral transform, the convolution product
and the first variation for functionals defined on K[0, T ], the space of
complex-valued continuous functions on [0, T ] which vanish at zero.

Let K(Q) be the space of complex-valued continuous functions de-
fined on Q = [0, S] × [0, T ] and satisfying x(s, 0) = x(0, t) = 0 for all
(s, t) ∈ Q. Let α and β be nonzero complex numbers. In this paper, we
establish the various relationships among the integral transform Fα,βF ,
the convolution product (F ∗G)α and the first variation δF for a class of
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functionals defined on K(Q). Also we obtain Parseval’s and Plancherel’s
relations for the integral transform of some functionals defined on K(Q).

Let C(Q) denote Yeh-Wiener space; that is, the space of all real-
valued continuous functions x(s, t) on Q with x(s, 0) = x(0, t) = 0 for all
(s, t) ∈ Q. Yeh [18] defined a Gaussian measure mY on C(Q) (later mod-
ified in [20]) such that as a stochastic process {x(s, t) : (s, t) ∈ Q} has
mean E[x(s, t)] = 0 and covariance E[x(s, t)x(u, v)] = min{s, u}min{t, v}.

LetM denote the class of all Yeh-Wiener measurable subsets of C(Q)
and we denote the Yeh-Wiener integral of a Yeh-Wiener integrable func-
tional F by

(1.1)
∫

C(Q)
F (x) mY (dx).

Next we state the definitions of the integral transform Fα,βF , the
convolution product (F ∗G)α and the first variation δF for functionals
defined on K(Q).

Definition 1.1. Let F be a functional defined on K(Q). Then the
integral transform Fα,βF of F is defined by

(1.2) Fα,βF (y) =
∫

C(Q)
F (αx + βy)mY (dx), y ∈ K(Q)

if it exists [6, 12, 13, 15].

It is obvious that (1.2) implies that

Fα,βF (cy) = Fα,cβF (y)

for all real number c and for all y ∈ K(Q).

Definition 1.2. Let F and G be functionals defined on K(Q). Then
the convolution product (F ∗G)α of F and G is defined by

(F ∗G)α(y)

=
∫

C(Q)
F

(y + αx√
2

)
G

(y − αx√
2

)
mY (dx), y ∈ K(Q)

(1.3)

if it exists [6, 10, 12, 19, 21].

Definition 1.3. Let F be a functional defined on K(Q) and let
w ∈ K(Q). Then the first variation δF of F is defined by

(1.4) δF (y|w) =
∂

∂t
F (y + tw)|t=0, y ∈ K(Q)

if it exists [2, 5, 14, 16].
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Let {θ1, θ2, . . . , θn} be an orthonormal set of real-valued functions
in L2(Q). Furthermore assume that each θj is of bounded variation in
the sense of Hardy and Krause on Q. Then for each y ∈ K(Q) and
j = 1, 2, . . ., the Riemann-Stieltjes integral 〈θj , y〉 ≡

∫
Q θj(s, t) dy(s, t)

exists. Furthermore

|〈θj , y〉| =|θj(S, T )y(S, T )−
∫ T

0
y(S, t) dθj(S, t)

−
∫ S

0
y(s, T ) dθj(s, T ) +

∫

Q
y(s, t) dθj(s, t)| ≤ Cj‖y‖∞

(1.5)

with
Cj = |θj(S, T )|+ Var(θj(S, ·), [0, T ])

+ Var(θj(·, T ), [0, S]) + Var(θj , Q).
(1.6)

Next we describe the class of functionals that we work with in this
paper. For 0 ≤ σ < 1, let Eσ(Q) be the space of all functionals F :
K(Q) → C of the form

(1.7) F (y) = f(〈~θ, y〉) = f(〈θ1, y〉, . . . , 〈θn, y〉)
for some positive integer n, where f(~λ) = f(λ1, . . . , λn) is an entire
function of the n complex variables λ1, . . . , λn of exponential type; that
is to say,

(1.8) |f(~λ)| ≤ AF exp
{

BF

n∑

j=1

|λj |1+σ
}

for some positive constants AF and BF .
We finish this section by introducing a well-known Yeh-Wiener inte-

gration formula for functionals f(〈~θ, x〉):

(1.9)
∫

C(Q)
f(〈~θ, x〉)mY (dx) = (2π)−n/2

∫

Rn

f(~u) exp
{
−1

2
‖~u‖2

}
d~u

where ‖~u‖2 =
∑n

j=1 u2
j and d~u = du1 · · · dun.

2. Integral transform, convolution product and first varia-
tion of functionals in Eσ(Q)

We first show that if F is an element of Eσ(Q), then the integral
transform Fα,βF of F exists and is an element of Eσ(Q).
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Theorem 2.1. Let F ∈ Eσ(Q) be given by (1.7). Then the integral
transform Fα,βF exists, belongs to Eσ(Q) and is given by the formula

(2.1) Fα,βF (y) = h(〈~θ, y〉)
for y ∈ K(Q), where

(2.2) h(~λ) = (2π)−n/2

∫

Rn

f(α~u + β~λ) exp
{
−1

2
‖~u‖2

}
d~u.

Proof. For each y ∈ K(Q), using the Yeh-Wiener integration formula
(1.9), we obtain

Fα,βF (y) =
∫

C(Q)
f(α〈~θ, x〉+ β〈~θ, y〉) mY (dx)

=(2π)−n/2

∫

Rn

f(α~u + β〈~θ, y〉) exp
{
−1

2
‖~u‖2

}
d~u

=h(〈~θ, y〉)

where h is given by (2.2). By [8, Theorem 3.15], h(~λ) is an entire func-
tion. Moreover by the inequality (1.8) we have

|h(~λ)| ≤ (2π)−n/2

∫

Rn

AF exp
{

BF

n∑

j=1

|αuj + βλj |1+σ − 1
2
‖~u‖2

}
d~u.

But since

|αuj + βλj |1+σ ≤ |2αuj |1+σ + |2βλj |1+σ,

we have

|h(~λ)| ≤ AFα,βF exp
{

BFα,βF

n∑

j=1

|λj |1+σ
}

where

AFα,βF = (2π)−n/2AF

(∫

R
exp

{
BF |2αu|1+σ − u2

2

}
du

)n
< ∞

and BFα,βF = BF (2|β|)1+σ. Hence Fα,βF ∈ Eσ(Q).

Next we show that the convolution product of functionals from Eσ(Q)
exists and is an element of Eσ(Q). We may assume that F and G in
Theorem 2.2 below can be expressed using the same positive integer n.
For details, see Remark 1.4 in [12].
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Theorem 2.2. Let F, G ∈ Eσ(Q) be given by (1.7) with correspond-
ing entire functions f and g. Then the convolution (F ∗ G)α exists,
belongs to Eσ(Q) and is given by the formula

(2.3) (F ∗G)α(y) = k(〈~θ, y〉)
for y ∈ K(Q) where

(2.4) k(~λ) = (2π)−n/2

∫

Rn

f
(~λ + α~u√

2

)
g
(~λ− α~u√

2

)
exp

{
−1

2
‖~u‖2

}
d~u.

Proof. For each y ∈ K(Q), using the Yeh-Wiener integration formula
(1.9), we obtain

(F ∗G)α(y)

=
∫

C(Q)
f
(〈~θ, y〉+ α〈~θ, x〉√

2

)
g
(〈~θ, y〉 − α〈~θ, x〉√

2

)
mY (dx)

=(2π)−n/2

∫

Rn

f
(〈~θ, y〉+ α~u√

2

)
g
(〈~θ, y〉 − α~u√

2

)
exp

{
−1

2
‖~u‖2

}
d~u

=k(〈~θ, y〉)
where k is given by (2.4). By [8, Theorem 3.15], k(~λ) is an entire function
and

|k(~λ)| ≤(2π)−n/2AF AG

∫

Rn

exp
{

(BF + BG)
n∑

j=1

( |λj |+ |αuj |√
2

)1+σ
− 1

2
‖~u‖2

}
d~u.

By the same method as in Theorem 2.1, we have

|k(~λ)| ≤ A(F∗G)α
exp

{
B(F∗G)α

n∑

j=1

|λj |1+σ
}

,

where B(F∗G)α
= (BF + BG)2(1+σ)/2 and

A(F∗G)α
= (2π)−n/2AF AG

(∫

R
exp

{
(BF + BG)(

√
2|αu|)1+σ − u2

2

}
du

)n
.

Hence (F ∗G)α ∈ Eσ(Q).

In the following theorem, we fix w ∈ K(Q) and consider δF (y|w) as
a function of y, while in Theorem 2.4 we fix y ∈ K(Q) and consider
δF (y|w) as a function of w.
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Theorem 2.3. Let F ∈ Eσ(Q) be given by (1.7) and let w ∈ K(Q).
Then

(2.5) δF (y|w) = p(〈~θ, y〉)
for y ∈ K(Q) where

(2.6) p(~λ) =
n∑

j=1

〈θj , w〉fj(~λ).

Furthermore, as a function of y ∈ K(Q), δF (y|w) is an element of Eσ(Q).

Proof. For y ∈ K(Q),

δF (y|w) =
∂

∂t
f(〈~θ, y〉+ t〈~θ, w〉)|t=0

=
n∑

j=1

〈θj , w〉fj(〈~θ, y〉) = p(〈~θ, y〉)

where p is given by (2.6). Since f(~λ) is an entire function, fj(~λ) and so
p(~λ) are entire functions. By the Cauchy integral formula, we have

fj(λ1, · · · , λj , · · · , λn) =
1

2πi

∫

|ζ−λj |=1

f(λ1, · · · , ζ, · · · , λn)
(ζ − λj)2

dζ.

By the inequality (1.8), for any ζ with |ζ − λj | = 1, we have
∣∣∣f(λ1, · · · , ζ, · · · , λn)

(ζ − λj)2

∣∣∣

≤AF exp{BF [|λ1|1+σ + · · ·+ |ζ|1+σ + · · ·+ |λn|1+σ]}

≤AF exp
{

21+σBF

[ n∑

j=1

|λj |1+σ + 1
]}

.

Hence

|fj(~λ)| ≤ AF exp{21+σBF } exp
{

21+σBF

n∑

j=1

|λj |1+σ
}

,

and so

|p(~λ)| ≤
n∑

j=1

|〈θj , w〉||fj(~λ)| ≤ AδF (·|w) exp
{

BδF (·|w)

n∑

j=1

|λj |1+σ
}

where

AδF (·|w) = AF exp{21+σBF }‖w‖∞
n∑

j=1

Cj < ∞
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with Cj given by (1.6) and BδF (·|w) = 21+σBF .

Theorem 2.4. Let y ∈ K(Q) and let F ∈ Eσ(Q) be given by (1.7).
Then

(2.7) δF (y|w) = q(〈~θ, w〉)
for w ∈ K(Q) where

(2.8) q(~λ) =
n∑

j=1

λjfj(〈~θ, y〉).

Furthermore, as a function of w, δF (y|w) is an element of Eσ(Q).

Proof. Equations (2.7) and (2.8) are immediate from the first part in
the proof of Theorem 2.3. Clearly q(~λ) is an entire function. Next, using
the estimation for |fj | in the proof of Theorem 2.3 above, we obtain

|q(~λ)| ≤
n∑

j=1

|λjfj(〈~θ, y〉)|

≤AF e21+σBF exp{21+σBF ‖y‖1+σ
∞ (C1+σ

1 + · · ·+ C1+σ
n )}

n∑

j=1

|λj |.

Since t ≤ exp{t1+σ} for all t ≥ 0,
n∑

j=1

|λj | ≤ exp
{( n∑

j=1

|λj |
)1+σ}

≤ exp
{

n1+σ
n∑

j=1

|λj |1+σ
}

and so

|q(~λ)| ≤ AδF (y|·) exp
{

BδF (y|·)
n∑

j=1

|λj |1+σ
}

where BδF (y|·) = n1+σ and

AδF (y|·) = AF e21+σBF exp{21+σBF ‖y‖1+σ
∞ (C1+σ

1 + · · ·+ C1+σ
n )} < ∞.

Hence, as a function of w, δF (y|w) ∈ Eσ(Q).

3. Further results

3.1. Relationships involving two concepts

In this subsection, we establish all of the various relationships involv-
ing exactly two of the three concepts of “integral transform”, “convolu-
tion product” and “first variation” for functionals belonging to Eσ(Q).
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The seven distinct relationships, as well as alternative expressions for
some of them, are given by equations (3.1) through (3.7) below.

In view of Theorem 2.1 through Theorem 2.4 above, all of the func-
tionals that occur in this section are elements of Eσ(Q). For example,
let F and G be any functionals in Eσ(Q). Then by Theorem 2.2, the
functional (F ∗ G)α belongs to Eσ(Q), and hence by Theorem 2.1, the
functional Fα,β(F ∗ G)α also belongs to Eσ(Q). By similar arguments,
all of the functionals that arise in equations (3.1) through (3.11) below,
exist and belong to Eσ(Q).

Once we have shown the existence theorems (Theorems 2.1 through
2.4 above), the proofs of the Formulas 3.1 through 3.7 below are similar
to those in [12]. Hence we just state the formulas without proofs.

Formula 3.1. The integral transform of the convolution product
equals the product of the integral transforms:

Fα,β(F ∗G)α(y) =Fα,βF
( y√

2

)
Fα,βG

( y√
2

)

=Fα,β/
√

2F (y)Fα,β/
√

2G(y)
(3.1)

for all y in K(Q).

Formula 3.2. A formula for the convolution product of the integral
transform of functionals from Eσ(Q):

(Fα,βF ∗ Fα,βG)α(y)

=(2π)−3n/2

∫

R3n

f
(
α~r +

β√
2
〈~θ, y〉+

βα√
2
~u
)

g
(
α~s +

β√
2
〈~θ, y〉 − βα√

2
~u
)

exp
{
−‖~u‖

2 + ‖~r‖2 + ‖~s‖2

2

}
d~u d~r d~s

(3.2)

for all y in K(Q).

Formula 3.3. The integral transform with respect to the first argu-
ment of the variation equals 1/β times the first variation of the integral
transform:

(3.3) Fα,β(δF (·|w))(y) =
1
β

δFα,βF (y|w) =
n∑

j=1

〈θj , w〉Fα,βFj(y)

for all y and w in K(Q).

Formula 3.4. The transform with respect to the second argument
of the variation equals β times the first variation of the functional:

(3.4) Fα,β(δF (y|·))(w) = βδF (y|w)
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for all y and w in K(Q).

Formula 3.5. A formula for the first variation of the convolution
product of functionals from Eσ(Q):

(3.5) δ(F ∗G)α(y|w) =
n∑

j=1

〈θj , w〉√
2

[(Fj ∗G)α(y) + (F ∗Gj)α(y)]

for all y and w in K(Q).

Formula 3.6. A formula for the convolution product, with respect
to the first argument of the variation, of the first variation of functionals
from Eσ(Q):

(3.6) (δF (·|w) ∗ δG(·|w))α(y) =
n∑

j=1

n∑

l=1

〈θj , w〉〈θl, w〉(Fj ∗Gl)α(y)

for all y and w in K(Q).

Formula 3.7. A formula for the convolution product, with respect to
the second argument of the variation, of the first variation of functionals
from Eσ(Q):

(3.7) (δF (y|·) ∗ δG(y|·))α(w) =
1
2
δF (y|w)δG(y|w)− α2

2

n∑

j=1

Fj(y)Gj(y)

for all y and w in K(Q).

3.2. Parseval’s and Plancherel’s relation

Let H0 = H0(Q) be the space of real-valued functions f on Q which
are absolutely continuous and whose derivative Df is in L2(Q). The
inner product on H0 is given by

〈f, g〉 =
∫

Q
(Df)(s)(Dg)(s) ds.

Then H0 is a real separable infinite dimensional Hilbert space. Let
B0 = B0(Q) be the Yeh-Wiener space C(Q) and equip B0 with the sup
norm. Then (H0, B0,mY ) is an abstract Wiener space.

We restrict our attention, in this subsection, to the space E0(Q)
rather than Eσ(Q). Now it is well known, see for example [6, 15], that
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for all F ∈ E0(Q), all y ∈ K(Q) and all complex numbers a, b and c,
∫

C(Q)

∫

C(Q)
F (ax + by + cw) mY (dx) mY (dy)

=
∫

C(Q)
F (

√
a2 + b2z + cw) mY (dz)

(3.8)

and that

(3.9) Fα,β(Fα′,β′F )(y) = F (y) = Fα′,β′(Fα,βF )(y)

provided ββ′ = 1 and α2 + (βα′)2 = 0.

Theorem 3.8. Let F, G ∈ E0(Q) and let α′ be a complex number
such that α2 + (βα′)2 = 0. Then Parseval’s relation

∫

C(Q)
Fα,βF

(α′y√
2

)
Fα,βG

(α′y√
2

)
mY (dy)

=
∫

C(Q)
F

( αy√
2

)
G

(
− αy√

2

)
mY (dy)

(3.10)

holds. In particular, if β = i, we have
∫

C(Q)
Fα,iF

( αy√
2

)
G

( αy√
2

)
mY (dy)

=
∫

C(Q)
F

( αy√
2

)
Fα,iG

( αy√
2

)
mY (dy).

(3.11)

Moreover, formula (3.11) induces Plancherel’s relation of the form

(3.12)
∫

C(Q)

∣∣∣Fα,iF
( αy√

2

)∣∣∣
2
mY (dy) =

∫

C(Q)

∣∣∣F
( αy√

2

)∣∣∣
2
mY (dy).

Proof. From Formula 3.1 and Definition 1.1, it follows that the left
hand side of (3.10) is equal to

∫

C(Q)
Fα,β(F ∗G)α(α′y) mY (dy)

=
∫

C(Q)

∫

C(Q)
(F ∗G)α(αx + βα′y) mY (dx) mY (dy).

But by (3.8) and the fact that α2 + (βα′)2 = 0, the last integral is equal
to (F ∗G)α(0), which is equal to the right hand side of (3.10).
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From (3.9), we know that Fα,i(Fα,−iG)(y) = G(y) and so we have
∫

C(Q)
Fα,iF

( αy√
2

)
G

( αy√
2

)
mY (dy)

=
∫

C(Q)
Fα,iF

( αy√
2

)
Fα,i(Fα,−iG)

( αy√
2

)
mY (dy)

=
∫

C(Q)
F

( αy√
2

)
Fα,−iG

(
−αy√

2

)
mY (dy),

where the second equality is obtained by (3.10). But it is easy to see
that Fα,−iG(−αy/

√
2) = Fα,iG(αy/

√
2) and this completes the proof of

(3.11).
Finally, since Fα,iF (αy/

√
2) = Fα,−iα/αF (αy/

√
2), by (3.11), we

have ∫

C(Q)

∣∣∣Fα,iF
( αy√

2

)∣∣∣
2
mY (dy)

=
∫

C(Q)
F

( αy√
2

)
Fα,iFα,−iα/αF

( αy√
2

)
mY (dy).

But by (3.8), it is easy to see that Fα,iFα,−iα/αF (αy/
√

2) = F (αy/
√

2)
and this completes the proof of (3.12).

3.3. Classes of functionals

Several classes of functionals were introduced during the study of
Fourier-Wiener transform and integral transform on Wiener spaces. For
example,

(i) Cameron and Martin [3] and Yeh [19] introduced the spaces E0

and Em on classical Wiener space.
(ii) Lee [15] and Chang, Kim and Yoo [6] introduced the spaces E0 and

Ea on abstract Wiener space.
(iii) Kim, Kim and Skoug [12] introduced the spaces E0 and Eσ on

classical Wiener space.
The class Eσ(Q) introduced in Section 1 of this paper and work with

in this paper is the Yeh-Wiener space version of the class Eσ on Wiener
space. And it is very natural class of functionals in which to study the
relationships that exist among the integral transform, the convolution
product and the first variation. (See Remark 1.5 in [12].)

Next we briefly summarize relationships between the above classes of
functionals.
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Remark 3.9. (i) The class E0 is a subclass of Ea. (See [6].)
(ii) When B is the classical Wiener space C0[0, 1], E0 is the space E0

and Ea contains the space Em. (See [6].)
(iii) If σ = 0, then the class Eσ(Q) = E0(Q) corresponds to the Yeh-

Wiener space version of the class E0.
(iv) For 0 < σ1 < σ2 < 1, E0 ⊂ Eσ1 ⊂ Eσ2 ⊂ L2(C0[0, T ]) (see

[12]) and E0(Q) ⊂ Eσ1(Q) ⊂ Eσ2(Q) ⊂ L2(C(Q)), where all the
inclusions are proper.

Now we introduce one more class of functionals Ea(Q), the Yeh-
Wiener space version of the space Ea.

Let Ea(Q) be the space of all functionals F : K(Q) → C which satisfy
the following conditions:

(i) F (x + λy) is an entire function of the complex variable λ for all x
and y in K(Q), and

(ii) there exist positive constants c and d depending only on F such
that

(3.13) |F (y)| ≤ c exp{d‖y‖∞}
for all y ∈ K(Q).

It is well known, see for example [6,15], that equation (3.8) holds for
all F ∈ E0(Q) or F ∈ Ea(Q). But we do not know whether (3.8) holds
for F ∈ Eσ(Q) or not. This is why we restrict our attention to the
functional F ∈ E0(Q) in Theorem 3.8 above.

Our final example shows that neither Eσ(Q) nor Ea(Q) contains the
other as a subset.

Example 3.10. Let θ(s, t) = 1/
√

ST and let 0 < σ < 1. Then
F (y) = exp{〈θ, y〉1+σ} belongs to Eσ(Q). Suppose that Eσ(Q) ⊆ Ea(Q).
Then we must have

exp{〈θ, y〉1+σ} ≤ c exp{d‖y‖∞}
for some fixed positive constants c and d, that is, we must have

( |y(S, T )|√
ST

)1+σ
≤ ln c + d‖y‖∞

for all y ∈ K(Q). Pick, for each positive integer n, yn ∈ K(Q) such that
yn(S, T ) = ‖yn‖∞ = n. Then we must have

( n√
ST

)1+σ
≤ ln c + dn

for all n. But this is impossible since σ > 0, and so Eσ(Q) 6⊆ Ea(Q).
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On the other hand, let {θj}∞j=1 be a complete orthonormal sequence
of functions in L2(Q), each of bounded variation on Q. Let

F (y) = exp
{ ∞∑

j=1

〈θj , y〉
2jCj

}

with Cj given by (1.6). Then F is not an element of Eσ(Q) for 0 ≤ σ < 1
because it depends upon 〈θm, y〉 for every m = 1, 2, . . . and so it can not
be written in the form (1.7) for any positive integer n. But by the
inequality (1.5), we have

|F (y)| ≤ exp{‖y‖∞}
and so F belongs to Ea(Q). Hence Ea(Q) 6⊆ Eσ(Q).
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