WARING'S PROBLEM FOR LINEAR FRACTIONAL TRANSFORMATIONS

Dong-Il Kim*

ABSTRACT. Waring's problem deals with representing any nonconstant function in a set of functions as a sum of kth powers of nonconstant functions in the same set. Consider $\sum_{i=1}^p f_i(z)^k = z$. Suppose that $k \geq 2$. Let p be the smallest number of functions that give the above identity. We consider Waring's problem for the set of linear fractional transformations and obtain p = k.

1. Introduction

Waring's problem for a set S of functions is the following question: "For a given integer k satisfying $k \geq 2$, what is the smallest positive integer n such that any nonconstant function f in S can be expressed in the form $f = f_1^k + f_2^k + \cdots + f_n^k$ for some choice of nonconstant functions f_1, f_2, \ldots, f_k in S?" We allow complex coefficients in these problems.

Suppose that $k \geq 2$ and that $n \geq 2$. Consider the equation of the form

$$\sum_{i=1}^{n} f_i(z)^k = f(z),$$

where f_1, f_2, \ldots, f_n and f are nonconstant polynomials with complex coefficients. Suppose that

(1.1)
$$\sum_{i=1}^{n} f_i(z)^k = z.$$

Received March 15, 2010; Accepted June 01, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 30D35; Secondary 30D05.

Key words and phrases: Waring's problem, linear fractional transformations.

This research was supported by Hallym University Research Fund, 2009(HRF-2009-024).

Then we get

$$\sum_{i=1}^{n} f_i(f(z))^k = f(z)$$

by the substitution of f(z) for z. Thus any nonconstant polynomial f(z) can be represented by the sum of n kth powers of nonconstant polynomials. Therefore studying the equation (1.1) is important.

DEFINITION 1.1. Suppose that $k \geq 2$ and that $n \geq 2$. Let f_1, f_2, \ldots, f_n be nonconstant functions in a set S of functions satisfying

(1.2)
$$\sum_{i=1}^{n} f_i(z)^k = z.$$

 $W_S(k)$ denotes the smallest number n (which depends on k) satisfying the equation (1.2).

We denote the sets of linear polynomials, polynomials, entire functions, rational functions, and meromorphic functions by L, P, E, R and M respectively. By a meromorphic function we mean a meromorphic function in the whole complex plane. Newman and Slater showed that the identity function z can be always represented as a sum of k kth powers of nonconstant linear polynomials [7]. Therefore Waring's problems for L, P, E, R and M are solvable and k is an upper bound for $W_L(k)$, $W_P(k)$, $W_E(k)$, $W_R(k)$ and $W_M(k)$. S. Hurwitz has conjectured that $W_P(k) = k$ [7]. Also, Heilbronn has conjectured that k is minimal even if entire functions are allowed, i.e., $W_E(k) = k$ [3].

THEOREM 1.2 ([4], [7]). We have

(1.3)
$$W_P(k) > \frac{1}{2} + \sqrt{k + \frac{1}{4}}, \qquad k \ge 3.$$

THEOREM 1.3 ([4]). We have

(1.4)
$$W_E(k) \ge \frac{1}{2} + \sqrt{k + \frac{1}{4}}, \qquad k \ge 2.$$

THEOREM 1.4 ([2], [4]). We have

(1.5)
$$W_R(k) > \sqrt{k+1}, \qquad k \ge 2.$$

Theorem 1.5 ([4]). We have

(1.6)
$$W_M(k) \ge \sqrt{k+1}, \qquad k \ge 2.$$

THEOREM 1.6 ([6]). We have

$$(1.7) W_L(k) = k.$$

More details and results can be found in the survey paper; see [5].

Definition 1.7. A linear fractional transformation, also called a Möbius transformation or a bilinear transformation, is a map

(1.8)
$$f(z) = \frac{az+b}{cz+d}, \ (ad-bc \neq 0).$$

We denote the set of linear fractional transformations by T. There is some interest in the representation. Since the class T is closed under composition, we can deduce the representability of all nonconstant functions in T from that of z.

2. The representation of a function by linear fractional transformations

Now we prove our theorems.

THEOREM 2.1. Suppose that $k \geq 2$ and that $n \geq 2$. Let f_1, f_2, \ldots, f_n be nonconstant linear fractional transformations satisfying

(2.1)
$$\sum_{i=1}^{n} f_i(z)^k = z.$$

Suppose that at least one of the f_i is not a linear polynomial and that p is the smallest number n satisfying the equation (2.1). Then, $p \ge 2k$.

We do not need to consider the case that all functions f_i are linear polynomials because of Theorem 1.6.

Proof. Let p be the smallest number n satisfying the equation (2.1). Suppose that

(2.2)
$$\sum_{j=1}^{p} f_j(z)^k = z,$$

where each f_j is a linear fractional transformation. Suppose that f_1, \ldots, f_q are linear polynomials (if q = 0, then there are no linear polynomials) while the remaining f_j have finite poles. Any f_j with a finite pole can be written as $(az + b)/(z - z_0)$. Divide the functions f_j with finite poles into groups so that those in a group have the same finite pole. Consider any such group, say labeled so that it consists of f_m, \ldots, f_v ,

where $q < m \le v$, with pole at z_0 . Since all the other functions appearing in the equation (2.2) have no pole at z_0 , it must be the case that

$$(2.3) \sum_{j=m}^{v} f_j(z)^k$$

has no pole at z_0 . For $m \leq j \leq v$, we can write

$$f_i(z) = (a_i z + b_i)/(z - z_0).$$

Then we get

$$\sum_{j=m}^{v} f_j(z)^k = \frac{1}{(z-z_0)^k} \sum_{j=m}^{v} (a_j z + b_j)^k.$$

It follows that

$$\sum_{j=m}^{v} (a_j z + b_j)^k,$$

which is a polynomial of degree at most k, must have a zero of order at least k at z_0 . Hence for some constant C, we must have

(2.4)
$$\sum_{j=m}^{c} (a_j z + b_j)^k = C(z - z_0)^k.$$

Incidentally, since no individual function f_j is constant, this requires that in this group we have at least two functions (and possibly many more), that is, $v - m \ge 1$. Hence we get

$$\sum_{j=m}^{v} f_j(z)^k = \sum_{j=m}^{v} \frac{(a_j z + b_j)^k}{(z - z_0)^k} = C$$

and so any other such group adds up to a constant as well. Since the right hand side of the equation (2.2) is z, it follows that we must have some linear polynomials as well, that is, we have $q \geq 1$. Thus, denoting the sum of all those groups by a constant d, we see that

$$\sum_{j=1}^{q} f_j(z)^k = z - d,$$

and replacing z-d by z and noting that each $f_j(z+d)$ is a linear polynomial for $1 \le j \le q$, we find that $q \ge k$ by Theorem 1.6. So $p \ge k$, and further, if there are functions f_j with a finite pole, then $p \ge k + 2$.

But let us now ask how many functions we need for the equation (2.4) to hold. Since we may replace $z-z_0$ by z and assume that C=1 without

really changing the problem, we are asking how large, for a given k, the number n needs to be so that we can have

(2.5)
$$\sum_{j=1}^{n} (a_j z + b_j)^k = z^k.$$

Because $v-m \ge 1$ in the equation (2.4), we can suppose that $n \ge 2$. Now, we suppose that n < k and will obtain a contradiction. According to the minimality of n, all the $(a_jz+b_j)^k$ are linearly independent. Thus we can have $b_j = 0$ for at most one j. Then $(b_j+a_jz)^k = b_j^k \left(1+\frac{a_j}{b_j}z\right)^k$ if $b_j \ne 0$. Suppose that $b_j^k = \beta_j$ and that $\frac{a_j}{b_j} = \alpha_j$ for each j. Suppose that $b_n = 0$ and $b_j \ne 0$ for $1 \le j \le n-1$. Then

$$\sum_{j=1}^{n} (b_j + a_j z)^k = a_n^k z^k + \sum_{j=1}^{n-1} \beta_j (1 + \alpha_j z)^k$$

$$= a_n^k z^k + \sum_{j=1}^{n-1} \beta_j \left(\sum_{r=0}^k \binom{k}{r} \alpha_j^r z^r \right)$$

$$= a_n^k z^k + \sum_{r=0}^k \binom{k}{r} z^r \left(\sum_{j=1}^{n-1} \beta_j \alpha_j^r \right).$$

Since the right hand side of the equation (2.5) is equal to z^k , we get, in particular, the system of equations

(2.6)
$$\sum_{j=1}^{n-1} \alpha_j^r \beta_j = 0 \quad \text{for } 0 \le r \le k-1.$$

Because n < k, we use n - 1 equations for $0 \le r \le n - 2$. Now consider β_j for $1 \le j \le n - 1$ as unknowns. Then the coefficients form a square matrix M_1 whose determinant is given by

$$|M_1| = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_{n-1} \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_{n-1}^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{n-2} & \alpha_2^{n-2} & \cdots & \alpha_{n-1}^{n-2} \end{vmatrix}.$$

Since the determinant of M_1 is the van der Monde determinant [1], we get

$$|M_1| = \prod_{i < j} (\alpha_j - \alpha_i).$$

Since all the $(a_j z + b_j)^k$ are linearly independent, we have $\alpha_i \neq \alpha_j$ for $i \neq j$ and we get $|M_1| \neq 0$. Hence the system (2.6) of homogeneous linear equations has only the trivial solution and so $b_j^k = \beta_j = 0$ for all j with $1 \leq j \leq n-1$. This is a contradiction.

Suppose that $b_j \neq 0$ for each j. Then

$$\sum_{j=1}^{n} (b_j + a_j z)^k = \sum_{r=0}^{k} {k \choose r} z^r \left(\sum_{j=1}^{n} \beta_j \alpha_j^r \right).$$

Because the right hand side of the equation (2.5) is equal to z^k , we get

(2.7)
$$\sum_{j=1}^{n} \alpha_j^r \beta_j = 0 \quad \text{for } 0 \le r \le k-1.$$

By using n equations for $0 \le r \le n-1$, we have a coefficient matrix M_2 whose determinant is given by

$$|M_2| = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \cdots & \alpha_n^{n-1} \end{vmatrix}.$$

Since $|M_2| \neq 0$, the system (2.7) has only the trivial solution and so $b_j^k = \beta_j = 0$ for all j. This is a contradiction. Therefore we get $n \geq k$.

Hence, if not all the f_j are linear polynomials in the equation (2.2), the number of linear polynomials is greater than or equal to k and the number of linear fractional transformations with finite poles is also greater than or equal to k. Therefore we get $p \geq 2k$.

THEOREM 2.2. We have

$$W_T(k) = k.$$

Proof. We get this result by Theorem 1.6 and Theorem 2.1. \square

References

- [1] C. W. Curtis, Linear Algebra, Springer-Verlag, New York, 1984, 161–162.
- [2] M. Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43–75.
- [3] W. K. Hayman, Research Problems in Function Theory, Athlone Press, London, 1967, p. 16.
- [4] W. K. Hayman, Waring's problem für analytische Funktionen, Bayer. Akad. Wiss. Math.—Natur. Kl. Sitzungsber. 1984 (1985), 1–13.

- [5] W. K. Hayman, The strength of Cartan's version of Nevanlinna theory, Bull. London Math. Soc. **36** (2004), 433–454.
- [6] D.-I. Kim, Waring's problem for linear polynomials and Laurent polynomials, Rocky Mountain J. Math. **35** (2005), no. 2, 1533–1553.
- [7] D. Newman and M. Slater, Waring's problem for the ring of polynomials, J. Number Theory 11 (1979), 477–487.

*

Department of Mathematics Hallym University Chuncheon 200-702, Republic of Korea *E-mail*: dikim@hallym.ac.kr