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WARING’S PROBLEM FOR LINEAR FRACTIONAL
TRANSFORMATIONS

Dong-Il Kim*

Abstract. Waring’s problem deals with representing any noncon-
stant function in a set of functions as a sum of kth powers of non-
constant functions in the same set. Consider

∑p
i=1 fi(z)k = z.

Suppose that k ≥ 2. Let p be the smallest number of functions that
give the above identity. We consider Waring’s problem for the set
of linear fractional transformations and obtain p = k.

1. Introduction

Waring’s problem for a set S of functions is the following question:
“For a given integer k satisfying k ≥ 2, what is the smallest positive
integer n such that any nonconstant function f in S can be expressed
in the form f = f1

k + f2
k + · · · + fn

k for some choice of nonconstant
functions f1, f2, . . . , fk in S?” We allow complex coefficients in these
problems.

Suppose that k ≥ 2 and that n ≥ 2. Consider the equation of the
form

n∑

i=1

fi(z)k = f(z),

where f1, f2, . . . , fn and f are nonconstant polynomials with complex
coefficients. Suppose that

(1.1)
n∑

i=1

fi(z)k = z.
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Then we get
n∑

i=1

fi(f(z))k = f(z)

by the substitution of f(z) for z. Thus any nonconstant polynomial
f(z) can be represented by the sum of n kth powers of nonconstant
polynomials. Therefore studying the equation (1.1) is important.

Definition 1.1. Suppose that k ≥ 2 and that n ≥ 2. Let f1, f2, . . . , fn

be nonconstant functions in a set S of functions satisfying

(1.2)
n∑

i=1

fi(z)k = z.

WS(k) denotes the smallest number n (which depends on k) satisfying
the equation (1.2).

We denote the sets of linear polynomials, polynomials, entire func-
tions, rational functions, and meromorphic functions by L, P , E, R
and M respectively. By a meromorphic function we mean a meromor-
phic function in the whole complex plane. Newman and Slater showed
that the identity function z can be always represented as a sum of k
kth powers of nonconstant linear polynomials [7]. Therefore Waring’s
problems for L, P , E, R and M are solvable and k is an upper bound for
WL(k), WP (k), WE(k), WR(k) and WM (k). S. Hurwitz has conjectured
that WP (k) = k [7]. Also, Heilbronn has conjectured that k is minimal
even if entire functions are allowed, i.e., WE(k) = k [3].

Theorem 1.2 ([4], [7]). We have

(1.3) WP (k) >
1
2

+

√
k +

1
4
, k ≥ 3.

Theorem 1.3 ([4]). We have

(1.4) WE(k) ≥ 1
2

+

√
k +

1
4
, k ≥ 2.

Theorem 1.4 ([2], [4]). We have

(1.5) WR(k) >
√

k + 1, k ≥ 2.

Theorem 1.5 ([4]). We have

(1.6) WM (k) ≥
√

k + 1, k ≥ 2.
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Theorem 1.6 ([6]). We have

(1.7) WL(k) = k.

More details and results can be found in the survey paper; see [5].

Definition 1.7. A linear fractional transformation, also called a
Möbius transformation or a bilinear transformation, is a map

(1.8) f(z) =
az + b

cz + d
, (ad− bc 6= 0).

We denote the set of linear fractional transformations by T . There
is some interest in the representation. Since the class T is closed un-
der composition, we can deduce the representability of all nonconstant
functions in T from that of z.

2. The representation of a function by linear fractional trans-
formations

Now we prove our theorems.

Theorem 2.1. Suppose that k ≥ 2 and that n ≥ 2. Let f1, f2, . . . , fn

be nonconstant linear fractional transformations satisfying

(2.1)
n∑

i=1

fi(z)k = z.

Suppose that at least one of the fi is not a linear polynomial and that
p is the smallest number n satisfying the equation (2.1). Then, p ≥ 2k.

We do not need to consider the case that all functions fi are linear
polynomials because of Theorem 1.6.

Proof. Let p be the smallest number n satisfying the equation (2.1).
Suppose that

(2.2)
p∑

j=1

fj(z)k = z,

where each fj is a linear fractional transformation. Suppose that f1, . . . ,
fq are linear polynomials (if q = 0, then there are no linear polynomials)
while the remaining fj have finite poles. Any fj with a finite pole can
be written as (az + b)/(z − z0). Divide the functions fj with finite
poles into groups so that those in a group have the same finite pole.
Consider any such group, say labeled so that it consists of fm, . . . , fv,
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where q < m ≤ v, with pole at z0. Since all the other functions appearing
in the equation (2.2) have no pole at z0, it must be the case that

(2.3)
v∑

j=m

fj(z)k

has no pole at z0. For m ≤ j ≤ v, we can write

fj(z) = (ajz + bj)/(z − z0).

Then we get
v∑

j=m

fj(z)k =
1

(z − z0)k

v∑

j=m

(ajz + bj)k.

It follows that
v∑

j=m

(ajz + bj)k,

which is a polynomial of degree at most k, must have a zero of order at
least k at z0. Hence for some constant C, we must have

(2.4)
v∑

j=m

(ajz + bj)k = C(z − z0)k.

Incidentally, since no individual function fj is constant, this requires
that in this group we have at least two functions (and possibly many
more), that is, v −m ≥ 1. Hence we get

v∑

j=m

fj(z)k =
v∑

j=m

(ajz + bj)k

(z − z0)k
= C

and so any other such group adds up to a constant as well. Since the
right hand side of the equation (2.2) is z, it follows that we must have
some linear polynomials as well, that is, we have q ≥ 1. Thus, denoting
the sum of all those groups by a constant d, we see that

q∑

j=1

fj(z)k = z − d,

and replacing z − d by z and noting that each fj(z + d) is a linear
polynomial for 1 ≤ j ≤ q, we find that q ≥ k by Theorem 1.6. So p ≥ k,
and further, if there are functions fj with a finite pole, then p ≥ k + 2.

But let us now ask how many functions we need for the equation (2.4)
to hold. Since we may replace z−z0 by z and assume that C = 1 without
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really changing the problem, we are asking how large, for a given k, the
number n needs to be so that we can have

(2.5)
n∑

j=1

(ajz + bj)k = zk.

Because v −m ≥ 1 in the equation (2.4), we can suppose that n ≥ 2.
Now, we suppose that n < k and will obtain a contradiction. According
to the minimality of n, all the (ajz+bj)k are linearly independent. Thus

we can have bj = 0 for at most one j. Then (bj +ajz)k = bj
k
(
1 + aj

bj
z
)k

if bj 6= 0. Suppose that bj
k = βj and that aj

bj
= αj for each j.

Suppose that bn = 0 and bj 6= 0 for 1 ≤ j ≤ n− 1. Then
n∑

j=1

(bj + ajz)k = an
kzk +

n−1∑

j=1

βj(1 + αjz)k

= an
kzk +

n−1∑

j=1

βj

(
k∑

r=0

(
k

r

)
αj

rzr

)

= an
kzk +

k∑

r=0

(
k

r

)
zr




n−1∑

j=1

βjαj
r


 .

Since the right hand side of the equation (2.5) is equal to zk, we get, in
particular, the system of equations

(2.6)
n−1∑

j=1

αj
rβj = 0 for 0 ≤ r ≤ k − 1.

Because n < k, we use n− 1 equations for 0 ≤ r ≤ n− 2. Now consider
βj for 1 ≤ j ≤ n − 1 as unknowns. Then the coefficients form a square
matrix M1 whose determinant is given by

|M1| =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α1 α2 · · · αn−1

α1
2 α2

2 · · · αn−1
2

...
...

. . .
...

α1
n−2 α2

n−2 · · · αn−1
n−2

∣∣∣∣∣∣∣∣∣∣∣

.

Since the determinant of M1 is the van der Monde determinant [1], we
get

|M1| =
∏

i<j

(αj − αi).
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Since all the (ajz + bj)k are linearly independent, we have αi 6= αj for
i 6= j and we get |M1| 6= 0. Hence the system (2.6) of homogeneous
linear equations has only the trivial solution and so bj

k = βj = 0 for all
j with 1 ≤ j ≤ n− 1. This is a contradiction.

Suppose that bj 6= 0 for each j. Then

n∑

j=1

(bj + ajz)k =
k∑

r=0

(
k

r

)
zr




n∑

j=1

βjαj
r


 .

Because the right hand side of the equation (2.5) is equal to zk, we get

(2.7)
n∑

j=1

αj
rβj = 0 for 0 ≤ r ≤ k − 1.

By using n equations for 0 ≤ r ≤ n− 1, we have a coefficient matrix M2

whose determinant is given by

|M2| =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α1 α2 · · · αn

α1
2 α2

2 · · · αn
2

...
...

. . .
...

α1
n−1 α2

n−1 · · · αn
n−1

∣∣∣∣∣∣∣∣∣∣∣

.

Since |M2| 6= 0, the system (2.7) has only the trivial solution and so
bj

k = βj = 0 for all j. This is a contradiction. Therefore we get n ≥ k.
Hence, if not all the fj are linear polynomials in the equation (2.2),

the number of linear polynomials is greater than or equal to k and
the number of linear fractional transformations with finite poles is also
greater than or equal to k. Therefore we get p ≥ 2k.

Theorem 2.2. We have

WT (k) = k.

Proof. We get this result by Theorem 1.6 and Theorem 2.1.
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