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WARING’S PROBLEM FOR LINEAR FRACTIONAL
TRANSFORMATIONS

Donec-I1. Kiv*

ABSTRACT. Waring’s problem deals with representing any noncon-
stant function in a set of functions as a sum of kth powers of non-
constant functions in the same set. Consider > | fi(2)F = 2.
Suppose that k& > 2. Let p be the smallest number of functions that
give the above identity. We consider Waring’s problem for the set
of linear fractional transformations and obtain p = k.

1. Introduction

Waring’s problem for a set S of functions is the following question:
“For a given integer k satisfying k > 2, what is the smallest positive
integer n such that any nonconstant function f in S can be expressed
in the form f = fi* + fo¥ +--- + f,* for some choice of nonconstant
functions fi, fa,..., fr in 77 We allow complex coefficients in these
problems.

Suppose that & > 2 and that n > 2. Consider the equation of the
form

S ) = £,
=1

where f1, fa,..., fn and f are nonconstant polynomials with complex
coefficients. Suppose that

(1.1) Y filz)f =
i=1
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Then we get
L) = f2)
i=1

by the substitution of f(z) for z. Thus any nonconstant polynomial
f(z) can be represented by the sum of n kth powers of nonconstant
polynomials. Therefore studying the equation (1.1) is important.

DEFINITION 1.1. Suppose that £ > 2 and that n > 2. Let f1, fa,..., fn
be nonconstant functions in a set S of functions satisfying

(1.2) Y filz)f ==
=1

Ws(k) denotes the smallest number n (which depends on k) satisfying
the equation (1.2).

We denote the sets of linear polynomials, polynomials, entire func-
tions, rational functions, and meromorphic functions by L, P, FE, R
and M respectively. By a meromorphic function we mean a meromor-
phic function in the whole complex plane. Newman and Slater showed
that the identity function z can be always represented as a sum of &
kth powers of nonconstant linear polynomials [7]. Therefore Waring’s
problems for L, P, E, R and M are solvable and k is an upper bound for
Wr(k), Wp(k), Wg(k), Wg(k) and Wis(k). S. Hurwitz has conjectured
that Wp(k) = k [7]. Also, Heilbronn has conjectured that k is minimal
even if entire functions are allowed, i.e., Wg(k) = k [3].

THEOREM 1.2 ([4], [7]). We have

1 1
(1.3) Wp(k)> S+ fk+ 5, k=3

THEOREM 1.3 ([4]). We have

(1.4) Wﬂ@2%+dk+i k> 2.

THEOREM 1.4 ([2], [4]). We have

(1.5) Wr(k) > Vk +1, k> 2.
THEOREM 1.5 ([4]). We have

(1.6) Wi (k) > VE +1, k>2.
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THEOREM 1.6 ([6]). We have
(1.7) Wr(k) = k.
More details and results can be found in the survey paper; see [5].

DEFINITION 1.7. A linear fractional transformation, also called a
Mébius transformation or a bilinear transformation, is a map

az+b

(1.8) flz) = ot d (ad — be # 0).

We denote the set of linear fractional transformations by 7. There
is some interest in the representation. Since the class T is closed un-
der composition, we can deduce the representability of all nonconstant
functions in T from that of z.

2. The representation of a function by linear fractional trans-
formations

Now we prove our theorems.

THEOREM 2.1. Suppose that k > 2 and that n > 2. Let fi1, fa,..., fn
be nonconstant linear fractional transformations satisfying

(2.1) Z fi(2)k = 2.
i=1

Suppose that at least one of the f; is not a linear polynomial and that
p is the smallest number n satisfying the equation (2.1). Then, p > 2k.

We do not need to consider the case that all functions f; are linear
polynomials because of Theorem 1.6.

Proof. Let p be the smallest number n satisfying the equation (2.1).
Suppose that

(2.2) ij(z)k =z,
j=1

where each f; is a linear fractional transformation. Suppose that fi,...,
fq are linear polynomials (if ¢ = 0, then there are no linear polynomials)
while the remaining f; have finite poles. Any f; with a finite pole can
be written as (az + b)/(z — 29). Divide the functions f; with finite
poles into groups so that those in a group have the same finite pole.
Consider any such group, say labeled so that it consists of fi,,..., fu,
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where ¢ < m < v, with pole at zg. Since all the other functions appearing
in the equation (2.2) have no pole at zp, it must be the case that

(2.3) > )
j=m

has no pole at zg. For m < j < v, we can write

fi(z) = (a2 +b;)/(z — 20)-
Then we get

Zv: [0 — zv:(ajz + b))k,
, (z — z0)F +

It follows that

v

> a5z + b)),

j=m
which is a polynomial of degree at most k£, must have a zero of order at
least k at zg. Hence for some constant C, we must have

v
(2.4) D (a2 +b;)F = C(z — 20)*.
j=m
Incidentally, since no individual function f; is constant, this requires

that in this group we have at least two functions (and possibly many
more), that is, v —m > 1. Hence we get

v v
RN~ (a2 b))
2 1) = 2 e = ¢
j=m j=m

and so any other such group adds up to a constant as well. Since the
right hand side of the equation (2.2) is z, it follows that we must have
some linear polynomials as well, that is, we have ¢ > 1. Thus, denoting
the sum of all those groups by a constant d, we see that

q
ij(z)k =z—d,
i=1

and replacing z — d by z and noting that each f;(z + d) is a linear
polynomial for 1 < j < ¢, we find that ¢ > k& by Theorem 1.6. So p > k,
and further, if there are functions f; with a finite pole, then p > k + 2.

But let us now ask how many functions we need for the equation (2.4)
to hold. Since we may replace z—zp by z and assume that C' = 1 without
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really changing the problem, we are asking how large, for a given k, the

number n needs to be so that we can have
n

(2.5) > (ajz +bj)F = 2"

j=1
Because v —m > 1 in the equation (2.4), we can suppose that n > 2.
Now, we suppose that n < k and will obtain a contradiction. According
to the minimality of n, all the (a;z+ bj)k are linearly independent. Thus

a

) k
we can have b; = 0 for at most one j. Then (b; +a;2)* = b;* (1 + b—;;:)
if b; # 0. Suppose that bjk = (3; and that Z—j = «; for each j.
Suppose that b, =0 and b; # 0 for 1 < j <n — 1. Then

n

n—1
Z (bj +aj2)f = a, 2"+ Z Bi(1+ ajz)*

Jj=1 Jj=1

n—1 k k
= a,f + Z Bj (Z (r) aszT>
j=1

r=0

k L n—1
ankzk + Z (7’) 2" Z ﬁjO&jT
r=0 j=1

Since the right hand side of the equation (2.5) is equal to 2* we get, in
particular, the system of equations

n—1
(2.6) o Bi=0 for0<r<k-1.
j=1
Because n < k, we use n — 1 equations for 0 < r <n — 2. Now consider

Bj for 1 < j < n —1 as unknowns. Then the coefficients form a square
matrix M; whose determinant is given by

aq az o Qpe
2 2 2
M| =| @ o Q1
aln—Q azn—Q . an—ln_Q

Since the determinant of M; is the van der Monde determinant [1], we

get
M| = [ [y — )
i<j
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Since all the (a;jz + b;)* are linearly independent, we have a; # «; for
i # j and we get |M;| # 0. Hence the system (2.6) of homogeneous
linear equations has only the trivial solution and so bjk' = f; = 0 for all
7 with 1 < j <n —1. This is a contradiction.

Suppose that b; # 0 for each j. Then

n k

k n
(bj + ajz)k = Z <’l“> z" Z ﬂjO&jT
j=1

1 r=0

J

Because the right hand side of the equation (2.5) is equal to z*, we get
n

(2.7) > aBi=0 for0<r<k-1
j=1

By using n equations for 0 < r < n — 1, we have a coefficient matrix Mo
whose determinant is given by

1 1 ce 1
2 2 . 2
]M2| = a1 (&%) Qn
aln—l a2n—1 ann—l

Since |Ma| # 0, the system (2.7) has only the trivial solution and so
bjk = (3; = 0 for all j. This is a contradiction. Therefore we get n > k.

Hence, if not all the f; are linear polynomials in the equation (2.2),
the number of linear polynomials is greater than or equal to k£ and
the number of linear fractional transformations with finite poles is also

greater than or equal to k. Therefore we get p > 2k. O
THEOREM 2.2. We have
Wrp(k) = k.
Proof. We get this result by Theorem 1.6 and Theorem 2.1. 0
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