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ON LOCAL SPECTRAL PROPERTIES OF
GENERALIZED SCALAR OPERATORS

Jong-Kwang Yoo* and Hyuk Han**

Abstract. In this paper, we prove that if T ∈ L(X) is a general-
ized scalar operator then Ker T p is the quasi-nilpotent part of T for
some positive integer p ∈ N. Moreover, we prove that a generalized
scalar operator with finite spectrum is algebraic. In particular, a
quasi-nilpotent generalized scalar operator is nilpotent.

1. Introduction

We first recall some basic notions and results from local spectra the-
ory. Let X be a complex Banach space and L(X) denotes the Banach
algebra of all bounded linear operators of X itself, equipped with the
usual operator norm. For T ∈ L(X), TX and KerT will denote the
range and kernel, respectively. Given an operator T ∈ L(X), σp(T ),
σ(T ) and ρ(T ) denotes the point spectrum, the spectrum and resolvent
set of T and let Lat(T ) stand for the collection of all T−invariant closed
linear subspaces of X, and for an Y ∈ Lat(T ), T |Y denotes the restric-
tion of T on Y. An operator T ∈ L(X) is called decomposable if for every
open covering {U, V } of the complex plane C, there are T−invariant
closed linear subspaces Y and Z of X such that

Y + Z = X, σ(T |Y ) ⊆ U and σ(T |Z) ⊆ V.

This simple definition is equivalent to the original notion of decompos-
ability, as introduced by Foiás in 1963 and discussed in the classical
book by Colojoarvă and Foiás [8]. The class of decomposable operators
contains all normal operators on Hilbert spaces and, more generally, all
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spectral operators in the sense of Dunford on Banach spaces. More-
over, a simple application of the Riesz functional calculus shows that
all operators with totally disconnected spectrum are decomposable. In
particular, all compact and all algebraic operators are decomposable.

We shall also need some closely related notions. An operator T ∈
L(X) is said to have Bishop’s property (β) if for every open subset U of
C and for every sequence of analytic functions fn : U → X for which
(T − λ)fn(λ) converges uniformly to zero on each compact subset of
U, it follows that also fn(λ) → 0 as n → ∞, locally uniformly on U.
Obviously, property (β) implies that T has the single-valued extension
property(abbreviated to SVEP), which means that for every open U ⊆ C,
the only analytic solution f : U → X of the equation (T − λ)f(λ) = 0
for all λ ∈ U is the constant f ≡ 0. An operator T ∈ L(X) is said to
have the decomposition property (δ) if given an arbitrary open covering
{U1, U2} of C, every x ∈ X has a decomposition x = u1 + u2, where
u1, u2 ∈ X satisfy uk = (T − λ)fk(λ) for all λ ∈ C \ Uk and some
analytic function fk : C \ Uk → X for k = 1, 2.

Albrecht and Eschmeier show that (β) characterizes restrictions of
decomposable operators to closed invariant subspaces, and that quo-
tients of decomposable operators are determined by the decomposition
property (δ). It has been observed in [4] that an operator T ∈ L(X)
is decomposable if and only if it has both properties (β) and (δ). Al-
brecht and Eschmeier further show that the properties (β) and (δ) are
completely dual to each other in the sense that an operator T ∈ L(X)
satisfies (β) if and only if the adjoint operator T ∗ on the dual space X∗
satisfies (δ) and that the corresponding statement remains valid if both
properties are interchanged; see [3] and [5].

Given an arbitrary operator T ∈ L(X), let σT (x) ⊆ C denote the local
spectrum of T at the point x ∈ X, that is, the complement of the set
ρT (x) of all λ ∈ C for which there exist an open neighborhood U of λ in C
and analytic function f : U → X such that (T −µ)f(µ) = x holds for all
µ ∈ U. For every closed subset F of C, let XT (F ) = {x ∈ X : σT (x) ⊆ F}
denote the corresponding analytic spectral subspace of T . These linear
subspaces, while generally not closed, play a fundamental role in the
spectral theory of operators on Banach spaces.

For each closed F ⊆ C, let the local spectral subspace XT (F ) consist
of all x ∈ X for which there exists an analytic function f : C \ F → X
with (T −µ)f(µ) = x for all µ ∈ C \F. It is easy to see that XT (F ) is a
T−invariant linear subspace of X and also hyperinvariant for T. Clearly,
XT (F ) is a linear subspace contained in XT (F ). Moreover, the identity
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XT (F ) = XT (F ) holds for all closed sets F ⊆ C precisely when T has
SVEP. Obviously, property (δ) means precisely that X = XT (U)+XT (V )
for every open covering {U, V } of C.

An operator T ∈ L(X) is said to have Dunford’s property (C) if
XT (F ) is closed for every closed F ⊆ C. It is well known that Bishop’s
property (β) implies Dunford’s property (C), and property (C) implies
the single-valued extension property. Note that neither of the implica-
tions may be reversed in general, see more details [8] and [18].

If A ⊆ C then the algebraic spectral subspace ET (A) is the largest
subspaces of X on which all the restrictions of T − λ, λ ∈ C \ A, are
surjective. Thus ET (A) is the largest subspace of X with this surjectivity
property; this space need not be closed in general. An operator T ∈
L(X) on a Banach space X is said to be admissible if, for each closed
F ⊆ C, the algebraic spectral subspace ET (F ) is closed. This concept
was introduced in [19], but the relevance of the condition was recognized
earlier [12]. Laursen proved in [12] that if ET (F ) is closed then ET (F ) =
XT (F ), and that an admissible operator cannot have non-trivial divisible
subspaces, that is, ET (φ) = {0}. Moreover, T has the SVEP if and only
if XT (φ) = {0}; for more information we refer to [8] and [15].

Given an operator T ∈ L(X), the quasi-nilpotent part of T is the set

H0(T ) := {x ∈ X : lim
n→∞ ‖T

nx‖ 1
n = 0}.

The systematic investigation of these spaces was initiated by Mbekhta
in [16] and [17] after an earlier work of Vrbová [24]. It is clear that
H0(T ) is a linear subspace of X and in fact hyperinvariant under T,
generally, H0(T ) is not closed. It follows from Theorem 1.5 [24] that T
is quasi-nilpotent if and only if H0(T ) = X. Moreover, if T is invertible
then H0(T ) = {0}. It is well known that

KerTn ⊆ N∞(T ) ⊆ H0(T ) ⊆ XT ({0})

for all positive integer n ∈ N, where N∞(T ) :=
⋂∞

n=1 KerTn is the
hyperkernel of T. As shown by Schmoeger [21], the quasi-nilpotent part
of an operator play a significant role in the local spectral and Fredholm
theory of operators on Banach spaces.



308 Jong-Kwang Yoo and Hyuk Han

2. Local spectral properties of generalized scalar operator

We denote by C∞(C) the Fréchet algebra of all infinitely differentiable
complex valued functions defined on the complex plane C with the topol-
ogy of uniform convergence of every derivative on each compact subset
of C. An operator T ∈ L(X) is called a generalized scalar operator if
there exists a continuous algebra homomorphism Φ : C∞(C) → L(X)
satisfying Φ(1) = I, the identity operator on X, and Φ(z) = T where z
denotes the identity function on C, and C∞(C) denotes the Frécht alge-
bra of all infinitely differentiable complex-valued function on C. Such a
continuous function Φ is in fact an operator valued distribution and it
is called a spectral distribution for T .

Theorem 2.1. [9] If T ∈ L(X) is a generalized scalar operator, then

ET (F ) = XT (F ) =
⋂

λ∈C\F
(T − λ)pX,

for all sufficiently large integers p and for all closed F ⊆ C.

In the special case of a normal operator on a Hilbert space p can be
taken to be 1 by a theorem of Pták and Vrbová [20]. Since generalized
scalar operators have SVEP, Curtis and Neumann shows that generalized
scalar operators have no divisible subspace different from zero, see [9].

Given an operator T ∈ L(X) on a Banach space X and an element
x ∈ X,

rT (x) := lim sup
n→∞

‖Tnx‖ 1
n

is called the local spectral radius of T at x. It is well known that

max{|λ| : λ ∈ σT (x)} ≤ rT (x) for all x ∈ X,

but for operators without SVEP, this inequality may well strict, see [10].
It is well known that if T has SVEP and a non-zero element x ∈ X, then
the compact set σT (x) is non-empty and the local spectral radius formula

rT (x) = max{|λ| : λ ∈ σT (x)}
holds, and the spectral radius r(T ) = max{rT (x) : x ∈ X}.

Lemma 2.2. [15] If T ∈ L(X) has the single-valued extension prop-
erty, then

XT ({0}) = {x ∈ X : lim
n→∞ ‖T

nx‖ 1
n = 0}.
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Lemma 2.3. [15] Let T ∈ L(X) be an operator with Bishop’s prop-
erty (β) on a Banach space X. Then for every x ∈ X

rT (x) = lim
n→∞ ||T

nx|| 1n .

For all x ∈ X and for all non-negative integer k and n, we have

‖Tn(T kx)‖ 1
n = (‖Tn+kx‖ 1

n+k )
n+k

n .

It follows from Lemma 2.3 that limn→∞ ‖Tn+kx‖ 1
n+m = rT (x), and

hence rT (x) = rT (T kx) for all x ∈ X.

Theorem 2.4. Let T ∈ L(X) be a generalized scalar operator and
x0 ∈ X. If rT (x0) = 0, then there exists positive integer p ∈ N such that
T px0 = 0. Moreover, KerT p is the quasi-nilpotent part of T, and

H0(T ) = XT ({0}) = ET ({0}) = KerT p =
⋂

λ6=0

(T − λ)pX,

Proof. If T ∈ L(X) is generalized scalar then, by Theorem 2.1,

XT (F ) = ET (F ) =
⋂

λ∈C\F
(T − λ)pX

holds for all closed set F ⊆ C and for all sufficiently large integers p. By
Lemma 2.3 we have,

XT ({0}) = H0(T ) = {x ∈ X : lim
n→∞ ‖T

nx‖ 1
n = 0},

since T has the single-valued extension property. According to Theorem
1.2 of [25], a generalized scalar operator has no divisible linear subspace
different from {0}. At first, we will show that

Ker(T − λ)p = XT ({λ}) = ET ({λ}) for all λ ∈ F.

For each λ ∈ F, (T − µ)ET ({λ}) = ET ({λ}) for all µ 6= λ, and hence

ET ({λ}) = (T − µ)nET ({λ}) ⊆ (T − µ)nX

for all positive integer n ∈ N. By Theorem 2.1, we obtain

(T − λ)pET ({λ}) ⊆ (T − λ)p[
⋂

µ6=λ

(T − µ)pX]

⊆
⋂

µ∈C
(T − µ)pX

= XT (φ)

= {0},
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since T has SVEP. It follows that ET ({λ}) ⊆ Ker(T − λ)p for all λ ∈ F.
On the other hand, by Proposition 1.2.16 of [15], we have,

Ker(T − λ)k ⊆ XT ({λ}) ⊆ ET ({λ})
for all λ ∈ F and k ∈ N. This means that

Ker(T − λ)p = XT ({λ}) = ET ({λ}) for all λ ∈ F,

and therefore we have,

KerT p = XT ({0}) = ET ({0}).
Finally, it follows from Lemma 2.3 and Theorem 2.1 that

XT ({0}) =
⋂

λ 6=0

(T − λ)pX = {x ∈ X : rT (x) = 0}.

This completes the proof.

Recall that an operator T ∈ L(X) on a complex Banach space X is
said to be algebraic if p(T ) = 0 for some non-zero complex polynomial
p.

Theorem 2.5. A generalized scalar operator with finite spectrum is
algebraic. In particular, a quasi-nilpotent generalized scalar operator is
nilpotent.

Proof. Suppose that σ(T ) is a finite set, say σ(T ) = {λ1, · · · , λn}.
Then, by Theorem 2.1, for each closed F ⊆ C

XT (F ) = ET (F ) =
⋂

µ∈C\F
(T − µ)mX

for some positive integer m ∈ N. Thus, for each λk ∈ σ(T ), there exists
positive integer mk ∈ N such that

ET ({λk}) = XT ({λk}) = Ker(T − λk)mk for all k = 1, 2, · · · , n.

Thus we have

XT (σ(T )) = ET (σ(T )) =
⋂

µ∈C\σ(T )

(T − µ)mX = X,

since (T − µ)X = X for all µ ∈ ρ(T ) = C \ σ(T ) and every positive
integer m ∈ N. It follows from Theorem 1 of [22] that

X = XT (σ(T )) = XT ({λ1})⊕XT ({λ2})⊕ · · · ⊕XT ({λn})
= Ker(T − λ1)m1 ⊕Ker(T − λ2)m2 ⊕ · · · ⊕Ker(T − λn)mn
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holds as an algebraic direct sum. Consequently, if p denotes the complex
polynomial given by

p(λ) := (λ− λ1)m1(λ− λ2)m2 · · · (λ− λn)mn for all λ ∈ C,

then we conclude that p(T ) = 0, and hence T is algebraic.

A different proof of Theorem 2.5 is given Proposition 4.1 of [19].
In the following, let X and Y be complex Banach spaces over com-

plex field C and let L(X,Y ) denote the space of all continuous linear
operators from X to Y. For given operator T ∈ L(X) and S ∈ L(Y ), we
consider the corresponding commutator C(S, T ) : L(X, Y ) → L(X, Y )
defined by

C(S, T )(A) := SA−AT for all A ∈ L(X, Y ).

Obviously, for all n ∈ N and A ∈ L(X, Y ) we have

C(S, T )n(A) : = C(S, T )n−1(SA−AT )

=
n∑

k=0

(
n

k

)
(−1)kSn−kAT k.

An operator A ∈ L(X, Y ) is said to intertwine S and T asymptotically
if

lim
n→∞ ‖C(S, T )n(A)‖ 1

n = 0.

This condition has been investigated by Colojoarvă and C. Foiás [8] and
Vasilescu [23] in the context of decomposable operators.

Corollary 2.6. Let T ∈ L(X) and S ∈ L(Y ) be two generalized
scalar operators. Then the following assertions are equivalent.
(a) A ∈ L(X, Y ) intertwines S and T asymptotically.
(b) A∗ ∈ L(Y ∗, X∗) intertwines T ∗ and S∗ asymptotically.
(c) AXT (F ) ⊆ YS(F ) for every closed set F ⊆ C.
(d) AXT (F ) ⊆ YS(F ) for every closed set F ⊆ C.
(e) σC(S,T )(A) = {0}.
(f) C(S, T )pA = 0 for some positive integer p ∈ N.

Proof. It follows from Theorem 4.4.3 [8] that C(S, T ) is also gener-
alized scalar. Since T and S are generalized scalar, T and S are de-
composable. Hence T has property (δ) and S has property (C). Hence
Theorem 2.4 [14] shows that (a) ⇔ (c) ⇔ (d) ⇔ (e). It is clear that if
C(S, T )p(A) = 0 for some p ∈ N, then A ∈ L(X,Y ) intertwines S and
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T asymptotically. If A ∈ L(X,Y ) intertwines S and T asymptotically,
then, by Lemma 2.3,

rC(S,T )(A) = lim
n→∞ ‖C(S, T )n(A)‖ 1

n = 0.

It follows from Theorem 2.5 that C(S, T )pA = 0 for some positive integer
p ∈ N. The final assertion follows immediately from

[C(S, T )n(A)]∗ = (−1)nC(T ∗, S∗)n(A∗)

for all positive integer n ∈ N.

Corollary 2.7. Every generalized scalar operator on a Banach space
of dimension greater than 1 has a non-trivial closed invariant linear sub-
space.
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