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TRIPLE CIRCULANT CODES BASED ON QUADRATIC
RESIDUES

Sunghyu Han*

Abstract. One of the most interesting classes of algebraic codes
is the class of quadratic residue (QR) codes over a finite field. A
natural construction doubling the lengths of QR codes seems to
be the double circulant constructions based on quadratic residues
given by Karlin, Pless, Gaborit, et. al. In this paper we define a
class of triple circulant linear codes based on quadratic residues.
We construct many new optimal codes or codes with the highest
known parameters using this construction. In particular, we find
the first example of a ternary [58, 20, 20] code, which improves the
previously known highest minimum distance of any ternary [58, 20]
codes.

1. Introduction

One of the classical problems in algebraic coding theory is to find
linear (or nonlinear) codes with the highest minimum distance given the
code lengths and cardinalities. Geometrically, this problem corresponds
to an extremal problem in the Hamming space. Furthermore, finding
good linear or nonlinear codes may affect the sphere packing problems
in Euclidean spaces [2]. When the code rate is 1/2, quadratic residue
(QR) codes have been an interesting family of codes with high minimum
distances. Some examples of extended quadratic residue codes include
the famous binary [24, 12, 8] Golay code, the ternary [12, 6, 6] Golay code,
and the [6, 3, 4] hexacode over GF (4). It is still hard to determine the
minimum distances of long binary QR codes as well as their asymptotic
relative minimum distances (see [9], [11]).

Besides, Karlin [8] and Pless [10] found many good codes by sys-
tematic double circulant codes over GF (2) and GF (3) using quadratic
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residues respectively. In [3], Gaborit gave a double circulant code scheme
which generalizes the constructions of Karlin and Pless over any field and
for any length n = pm, where p is an odd prime. Furthermore, Karlin
considered binary circulant [3p+1, p+1] and [3p, p] codes using quadratic
residues and nonresidues [8].

The purpose of this paper is to generalize Karlin’s latter construction
using Gaborit’s general scheme [3]. Our construction produces many
good (extended) triple circulant codes over various finite fields. We give
such codes over finite fields GF (p), when p = 2, 3, 4, 5, 7, 8, and 9. Most
of our codes are inequivalent to the codes in the Magma database [1]. In
particular, we give a new [58, 20, 20] ternary linear code which is better
than any previously known [58, 20, 19] codes. We also give a general
result related to the automorphism groups of our codes. We have used
Magma [1] for computations.

2. Preliminaries

First we describe some definitions from [10], [3]. We let l be a power
of a prime number and q be a power of an odd prime number, and let
GF (l) (GF (q), respectively) be the finite field with l (q, respectively)
elements. Let r, s and t be elements of GF (l). Assume that a is a one-
to-one mapping from the set of integers 0, 1, . . . , q − 1 to GF (q). In the
case when q is a prime, we choose a to be the identity. We now set the
matrix Qq(r, s, t) to be the q×q matrix on GF (l) labeled on its rows and
its columns by the elements of GF (q): a(0), a(1), a(2), . . . , a(q−1). The
entries qij in Qq(r, s, t) for 0 ≤ i, j ≤ q− 1 are defined as qij := χ(a(j)−
a(i)), where χ: GF (q) → GF (l) is given by χ(0) = r, χ(a(k)) = s if
a(k) is a nonzero quadratic residue in GF (q), and χ(a(k)) = t if a(k) is
a quadratic nonresidue in GF (q) for 0 ≤ k ≤ q − 1.

Now we are ready to describe our construction. Let α, β, r1, s1, t1, r2,
s2, and t2 be elements of GF (l). We define [3q, q] and [3q + 1, q + 1]
linear codes over GF (l) using the following matrices, respectively:

Pq(r1, s1, t1, r2, s2, t2) = [Iq | Qq(r1, s1, t1) | Qq(r2, s2, t2)],
Bq(α, β, r1, s1, t1, r2, s2, t2)

=


1 0 · · · 0 α · · · α β · · · β
0
... Iq Qq(r1, s1, t1) Qq(r2, s2, t2)
0

 .
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We define C(Pq) to be the code over GF (l) generated by

Pq := Pq(r1, s1, t1, r2, s2, t2),

and C(Bq) to be the code over GF (l) generated by

Bq := Bq(α, β, r1, s1, t1, r2, s2, t2).

Note that the codes Karlin constructed in [8] are special cases of ours
given by C(Pq(r, 1, 0, r, 0, 1)) and C(Bq(1, 1, r, 1, 0, r, 0, 1)) over GF (2)
where q is a prime, r = 0 if q ≡ 3 (mod 8), and r = 1 if q ≡ −3 (mod 8).
When q is a prime, Pq is equivalent to a systematic quasi-cyclic code of
order 3, since Qq(r, s, t) is a circulant matrix.

3. Square root bound and automorphism group

In this section we discuss the square root bound of the code C(Pp)
over GF (2) and the automorphism groups of C(Pq) and C(Bq) over
GF (l).

Theorem 3.1. (Square root bound)
(i) Let p ≡ ±3 (mod 8) be a prime. For any r, s, t ∈ GF (2), the

minimum distance dp of C(Pp(0, 1, 0, r, s, t)), C(Pp(0, 0, 1, r, s, t)),
C(Pp(r, s, t, 0, 1, 0)), and C(Pp(r, s, t, 0, 0, 1)) over GF (2) is

dp ≥
2(p +

√
p)

√
p + 3

.

(ii) Let p ≡ −1 (mod 8) be a prime. For any r, s, t ∈ GF (2), the
minimum distance dp of C(Pp(0, 1, 0, r, s, t)), C(Pp(0, 0, 1, r, s, t)),
C(Pp(r, s, t, 0, 1, 0)), and C(Pp(r, s, t, 0, 0, 1)) over GF (2) is dp ≥√

p.
(iii) Let p ≡ 1 (mod 8) be a prime. For any r, s, t ∈ GF (2), the mini-

mum distance dp of C(Pp(1, 1, 0, r, s, t)), C(Pp(1, 0, 1, r, s, t)),
C(Pp(r, s, t, 1, 1, 0)), and C(Pp(r, s, t, 1, 0, 1)) over GF (2) is dp ≥√

p.

Proof. For (i), the binary code C(Pp(0, 1, 0, r, s, t)) punctured on the
last column block is identical with the double circulant quadratic residue
codes Cp defined in [6] by Helleseth and Voloch. Thus its minimum
distance dp follows from [6, Theorem 1]. In a similar manner, one can
see that this is true for C(Pp(0, 0, 1, r, s, t)), C(Pp(r, s, t, 0, 1, 0)), and
C(Pp(r, s, t, 0, 0, 1)).

When p ≡ −1 (mod 8), C(Pp(0, 1, 0, r, s, t)) punctured on the first
and last column block is the well known quadratic residue code, hence
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satisfies dp ≥ √
p (see [7, Ch. 6]). Similarly when p ≡ 1 (mod 8),

C(Pp(1, 1, 0, r, s, t)) punctured on the first and last column block is the
well known quadratic residue code, hence satisfies dp ≥ √

p (see [7,
Ch. 6]). Similarly, for each case the remaining three codes satisfy the
square root bound. Thus this proves items (ii) and (iii).

Next we discuss the automorphism groups of C(Pq) and C(Bq). It
turns out that they contain a relatively large subgroup. First we define
Aut(Pq) to be the automorphism group of C(Pq), and Aut(Bq) to be
the automorphism group of C(Bq).

Let

e0 = (1, 0, . . . , 0), . . . , ei = (0, . . . , 0, 1i+1, 0, . . . , 0), . . . , eq−1 = (0, . . . , 0, 1)

be a set of basis vectors in GF (l)q. For each b in GF (q) we define the
shift transformation S(b) by eiS(b) = ea−1[a(i)+b], 0 ≤ j ≤ q − 1, and
for any b 6= 0 in GF (q) we define T (b2), the square transformation, by
eiT (b2) = ea−1[b2a(i)], 0 ≤ j ≤ q − 1.

Noting that the C(Pq) and C(Bq) are invariant under the action of
S(b) and T (b2) acting simultaneously on the three blocks of size p using
the ideas in [3] or [10], we have the following.

Theorem 3.2. Let q be a power of an odd prime and l be a power of
a prime. Then both Aut(Pq) and Aut(Bq) contain the group generated
by permutation matrices corresponding to S(b) and T (b2) and the global

scalar multiplications by nonzeros, whose order is q · q−1
2 · (l − 1).

Remark 3.3. The group orders in the conclusion of Theorem 3.2 are
tight in the following sense:

|Aut(B29(0, 1, 0, 0, 1, 0, 1, 0))| = 406 with l = 2,
|Aut(B5(1, 1, 0, 0, 1, 0, 1, 2))| = 20 with l = 3,
|Aut(P7(0, 0, 1, 1, 2, 1))| = 42 with l = 3,
|Aut(B7(1, 1, 0, 0, 1, 1, 2, 1))| = 42 with l = 3,
|Aut(B19(0, 1, 1, 0, 1, 0, 1, 2))| = 342 with l = 3,
|Aut(B5(1, 1, 0, 0, 1, 1, 2, 3))| = 40 with l = 5,
|Aut(P7(0, 0, 1, 1, 2, 3))| = 84 with l = 5,
|Aut(B5(1, 1, 1, 0, 3, 6, 1, 5))| = 60 with l = 7,
|Aut(P7(0, 1, 2, 0, 1, 5))| = 126 with l = 7,
|Aut(B7(1, 1, 0, 0, 1, 1, 5, 6))| = 126 with l = 7.
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4. Construction results

In this section we present construction results using C(Pq) and C(Bq).
We have constructed several good linear codes over various finite fields
including GF (2), GF (3), GF (4), GF (5), GF (7), GF (8), and GF (9). To
save space, we only show our results on optimal codes or codes with the
best known parameters in Tables 1-7. The codes with other values of q
are available upon request. In each table, the first column denotes the
size of the ground field GF (q), the second column gives the code length,
the third column gives the code dimension, the fourth column shows the
maximum minimum distance dmax among various C(Pq) or C(Bq), and
the fifth column gives the best known minimum distance of linear codes
(see [4]) of the same length and dimension as our code. In the sixth
column, we compare our maximum minimum distance dmax with the
best known minimum distance of linear codes and present a generator
matrix Pq or Bq which corresponds to the maximum minimum distance
code. (For Table 1 through Table 5, we give the order of automorphism
group for the corresponding code.) The seventh column of Table 1 gives
the total number of inequivalent codes C(Pq) or C(Bq) with dmax for all
possibilities of a, b, r1, s1, t1, r2, s2, t2 except for the case q = 29, in which
case we find one code with the best known minimum distance because
of calculation complexity. In Table 3, w denotes a primitive element of
GF (4) satisfying w2 + w + 1 = 0. Similarly, in Table 6, w denotes a
primitive element of GF (8) satisfying w3 + w + 1 = 0, and in Table 7,
w denotes a primitive element of GF (9) satisfying w2 + 2w + 2 = 0.

In particular, we construct a new [58, 20, 20] ternary linear code which
is better than previously known [58, 20, 19] codes [5].

Theorem 4.1. The code C(B19(0, 1, 1, 0, 1, 0, 1, 2)) is a [58, 20, 20]
ternary linear code.

We note that the second row of B19(0, 1, 1, 0, 1, 0, 1, 2) is the following.

01000000000000000000 1011000010101111001 0122111121212222112

The weight distribution of C(B19(0, 1, 1, 0, 1, 0, 1, 2)) is given by

WC(1, y) = 1 + 6614y20 + 20862y21 + 25650y22 + 68172y23 +
193458y24 + 437076y25 + · · · .

M. Grassl has figured out that the code C(B19(0, 1, 1, 0, 1, 0, 1, 2)) can
be constructed as follows [4].
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(1) [1, 1, 1] cyclic linear code over GF (3) (the repetition code of length
1)

(2) [57, 1, 19] quasi-cyclic of degree 3 linear code over GF (3) with gen-
erating polynomials: 0, 0, x18 + x17 + x16 + x15 + x14 + x13 + x12 +
x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

(3) [57, 19, 20] quasi-cyclic of degree 3 linear code over GF (3) with
generating polynomials: x17, x17 + x16 + x13 + x12 + x11 + x10 +
x8 +x6 +x+1, x18 +2x16 +x15 +x14 +2x13 +2x12 +2x11 +2x10 +
x9 + 2x8 + x7 + 2x6 + x5 + x4 + x3 + x2 + 2x + 2 (note that it is
the code C(P19(1, 0, 1, 0, 1, 2)).)

(4) [57, 20, 19] linear code over GF (3), the vector space sum: (2) +
(3)

(5) [58, 20, 20] linear code over GF (3), Construction X [9, p.581] using
(3), (4) and (1)

Remark 4.2. Inspired by our code, Grassl constructed a new ternary
[58, 21, 19] code which is better than previously known [58, 21, 18] code
using C(P19(1, 0, 1, 0, 1, 2)) (see [4], [5].)
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Table 1. Codes obtained from Pq and Bq over GF (2)

q n k dmax Linear, d Comments, a code, |Aut| #(Codes)
3 9 3 4 4 optimal, P3(0, 0, 1, 0, 1, 1), 48 3
3 10 4 4 4 optimal, B3(0, 1, 0, 0, 1, 0, 1, 1), 192 6
5 15 5 7 7 optimal, P5(1, 0, 1, 1, 1, 0), 20160 1
5 16 6 6 6 optimal, B5(0, 1, 0, 0, 1, 1, 0, 1), 120 8
7 21 7 8 8 optimal, P7(0, 0, 1, 0, 1, 1), 1344 1
7 22 8 8 8 optimal, B7(0, 1, 0, 1, 1, 0, 0, 1), 1344 1
13 39 13 12 12-13 best known, P13(0, 0, 1, 0, 1, 0), 156 2
19 57 19 16 16-19 best known, P19(1, 0, 1, 1, 1, 0), 342 2
29 87 29 24 24-28 best known, P29(0, 0, 1, 0, 1, 0), 812 ≥ 1
29 88 30 23 23-28 best known, B29(0, 1, 0, 0, 1, 0, 1, 0), 406 ≥ 1
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Table 2. Codes obtained from Pq and Bq over GF (3)

q n k dmax Linear, d Comments, a code, |Aut|
3 9 3 6 6 optimal, P3(0, 1, 1, 1, 1, 2), 864

5 15 5 8 8 optimal, P5(0, 1, 1, 0, 1, 2), 80

5 16 6 7 7 optimal, B5(1, 1, 0, 0, 1, 0, 1, 2), 20

7 21 7 10 10 optimal, P7(0, 0, 1, 1, 2, 1), 42

7 22 8 9 9-10 best known, B7(1, 1, 0, 0, 1, 1, 2, 1), 42

17 51 17 18 18-23 best known, P17(0, 0, 1, 0, 1, 2), 272

19 57 19 20 20-26 best known, P19(0, 0, 1, 1, 2, 0), 684

19 58 20 20 19-26 exceeds, B19(0, 1, 1, 0, 1, 0, 1, 2), 342

Table 3. Codes obtained from Pq and Bq over GF (4)

q n k dmax Linear, d Comments, a code, |Aut|
3 9 3 6 6 optimal, P3(1, 1, ω, 1, 1, ω2), 162

5 15 5 8 8 optimal, P5(1, 1, ω, 1, ω, 1), 2160

5 16 6 8 8 optimal, B5(1, 1, 1, 1, ω, ω2, ω, ω2), 8640

7 21 7 11 11 optimal, P7(0, 1, ω, 0, 1, ω2), 378

Table 4. Codes obtained from Pq and Bq over GF (5)

q n k dmax Linear, d Comments, a code, |Aut|
3 9 3 6 6 optimal, P3(0, 1, 1, 1, 1, 2), 24

3 10 4 6 6 optimal, B3(1, 1, 0, 1, 1, 2, 3, 3), 24

5 16 6 8 8-9 best known, B5(1, 1, 0, 0, 1, 1, 2, 3), 40

7 21 7 11 11-12 best known, P7(0, 0, 1, 1, 2, 3), 84

Table 5. Codes obtained from Pq and Bq over GF (7)

q n k dmax Linear, d Comments, a code, |Aut|
3 9 3 6 6 optimal, P3(0, 1, 1, 1, 1, 2), 36

3 10 4 6 6 optimal, B3(1, 1, 0, 1, 1, 2, 2, 3), 36

5 15 5 9 9 optimal, P5(0, 1, 2, 0, 1, 4), 120

5 16 6 9 9 optimal, B5(1, 1, 1, 0, 3, 6, 1, 5), 60

7 21 7 12 12-13 best known, P7(0, 1, 2, 0, 1, 5), 126

7 22 8 11 11-13 best known, B7(1, 1, 0, 0, 1, 1, 5, 6), 126

11 33 11 16 16-20 best known, P11(0, 1, 2, 0, 1, 3), 660

Table 6. Codes obtained from Pq and Bq over GF (8)

q n k dmax Linear, d Comments

3 9 3 7 7 optimal, P3(1, ω, ω5, 1, ω3, ω2)

3 10 4 6 6 optimal, B3(1, 1, 1, 1, ω, ω, ω2, ω4)

5 16 6 9 9-10 best known, B5(1, 1, 1, ω, ω2, ω, ω5, 1)

7 21 7 12 12-13 best known, P7(1, ω, ω2, 1, ω, ω4)
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Table 7. Codes obtained from Pq and Bq over GF (9)

q n k dmax Linear, d Comments

3 9 3 7 7 optimal P3(1, ω, ω3, 1, ω3, ω)

3 10 4 7 7 optimal B3(1, 1, 1, ω, ω3, 2, ω7, ω5)

7 21 7 12 12-13 best known P7(1, ω, 2, 1, ω, ω6)

7 22 8 12 12-13 best known B7(1, 1, 1, ω, 2, ω, ω2, ω7)
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