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POSITIVE SOLUTIONS FOR CERTAIN ELLIPTIC

SYSTEMS WITH THREE SPECIES INVOLVING

SYMBIOTIC INTERACTIONS

Meejoung Kim* and Inkyung Ahn**

Abstract. Certain elliptic interacting system involving symbiotic
is considered. The sufficient conditions for the existence of positive
solutions of system is provided for four different types of interaction
among three species by using the method of decomposing operator.

1. Introduction

Of concern is the existence of positive steady-state solutions to 3×3

elliptic interacting systems with density-dependent diffusions:

(1.1)





−ϕ1(x, u)∆u = uf1(u, v, w)

−ϕ2(x, v)∆v = vf2(u, v) in Ω

−ϕ3(x,w)∆w = wf3(u,w)

κ1
∂u
∂n

+ β1u = 0 on ∂Ω

κ2
∂v
∂n

+ β2v = 0

κ3
∂w
∂n

+ β3w = 0.

where Ω ⊂ Rn is bounded with smooth boundary, βi, i = 1, 2, 3, are

positive constants and the nonlinear diffusions ϕi, i = 1, 2, 3, are strictly

positive nondecreasing functions.

u, v, w may represent the densities of interacting populations arising

from ecology, microbiology, immunology, etc. The functions fi denote
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the relative growth rates of this populations. Two species are competing

each other if each of their relative growth functions are decreasing in the

other opposer. For predator-prey models, one of the functions involved

will be increasing in the prey while the other decreasing in the predator.

Two species are in cooperation if each of their relative growth rates is

increasing in the other.

It is known that for 2 × 2 systems, the spectral properties of the

linearization at marginal densities determine the positive coexistence

in case of predations and competitions while it is dominated by the

equilibria of the system in symbiotic interactions.

In this paper we study the coexistence of positive solutions of the

system for 4 non-equivalent models involving cooperating interactions.

We will show that the above principle for 2× 2 systems carries over to

3× 3. The methods employed is based on the method of decomposing

operator.

2. Lemmas and Notations

In this section, we state some known lemmas and notations which

will be useful in section 3. The proof of lemmas in this section can

be found in [1] in details. Throughout this paper, we will consider

problems in the space X = C(Ω̄), where is a bounded region in Rn

and let r(T ) denote the spectral radius of a linear operator T. First we

define the classes F ⊂ C(Ω̄× R+) and G ⊂ C(Ω̄× R+) as follow:

Definition 1. Let f = f(x, ξ), f ∈ F if and only if f ∈ C(Ω̄×R+)

satisfies (F1) f ∈ C1 in ξ, fξ(x, ξ) < 0 in Ω×R+, and for some N ∈ R+,

|fξ(x, ξ)| ≤ N, (x, ξ) ∈ Ω× R+.

(F2) f(x, ξ) is concave down in ξ on (x, ξ) where f(x, ξ) < 0.

(F3) f(x, 0) > 0 and f(x, ξ) < 0, where (x, ξ) ∈ Ω× (c0, +∞)

Definition 2. Let ϕ = ϕ(x, ξ). Then ϕ ∈ G if and only if ϕ ∈
C(Ω̄× R) which, in addition, satisfies
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(G1) ϕ(x, ξ) ≥ δ > 0 for some constant δ and ξ ∈ R+, x ∈ Ω.

(G2) ϕ is nondecreasing and concave down in ξ.

Lemma 2.1. Let f ∈ F, ϕ ∈ G. Then the function f(x, u)/ϕ(x, u) is

decreasing in u > 0.

Lemma 2.2. Let P > 0 be a constant and h ∈ Cα(Ω̄). Consider

equation

(2.2) −ϕ(x, u)∆u + Pu = h in Ω, κ∂u/∂n + βu = 0 on ∂Ω,

where β, κ ≥ 0 is a constant. Let m > n as in Definition 2. If 0 6≡
h ≥ 0 and ϕ ∈ G then the equation (2.2) has a unique positive solution

u ∈ C2,α(Ω) for some α ∈ (0, 1). Moreover, if we define the solution

operator T by u = Th and denote it Th := (−ϕ(x, ·)∆ ·+P ·)−1h, then

T is compact, continuous and monotone increasing in the positive cone

K ⊂ C(Ω̄)+ of the ordered Banach space C(Ω).

¿From Lemma 2.2, the next two observations follow easily.

Observation 1. Let a(x) ≥ δ0 > 0, and b(x) ∈ L∞(Ω). Also let P be

positive constant such that P + b(x) > 0 for a.e. x ∈ Ω. Then

(i) λ1(a(x)∆ + b(x)) > 0 ⇐⇒ r[(−a(x)∆ + P )−1(P + b(x))] > 1

(ii)λ1(a(x)∆ + b(x)) < 0 ⇐⇒ r[(−a(x)∆ + P )−1(P + b(x))] < 1

(iii) λ1(a(x)∆ + b(x)) = 0 ⇐⇒ r[(−a(x)∆ + P )−1(P + b(x))] = 1,

where λ1 is the first eigenvalue under homogeneous Robin boundary

condition.

Consider the following equation:

(2.3)

{
−ϕ(x, u)∆u = uf(x, u) in Ω

κ∂u
∂n

+ βu = 0 on ∂Ω,

where β, κ ≥ 0 is a constant.

Observation 2. Suppose that u0 ≥ v0 ≥ 0 are upper and lower so-

lutions of (2.3), respectively. Assume that ϕ ∈ G. Then there exists a

maximal solution u of (2.3) such that v0 ≤ u ≤ u0.
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We shall linearize the equation (2.3) at u = 0. Use Lemma 2.2 to

define the solution operator S in C(Ω̄) by Su = ū, where ū is the unique

solution of
{
−ϕ(x, ū)∆ū + Pū = uf(x, u) + Pu in Ω

κ∂ū
∂n

+ βū = 0 on ∂Ω.

Also we define the solution operator SL of linearization by SLw = v,

where v is the unique solution of
{
−ϕ(x, 0)∆v + Pv = vf(x, 0) + Pw in Ω

κ ∂v
∂n

+ βu = 0 on ∂Ω.

Then we have the following lemma.

Lemma 2.3. Suppose that ϕ ∈ G and f satisfies (F1). The operator

S is Frechet differentiable at u = 0, and S
′
(0) = SL.

We define the ordered interval

[[u1, u2]] := {u ∈ C(Ω̄) : u1 ≤ u ≤ u2 for u1, u2 ∈ C(Ω̄}.
Let e be the unique solution of ∆e = 1 in Ω, κ1

∂e
∂n

+ βe = 0 on ∂Ω.

Define the ordered Banach space Ce(Ω̄) by Ce(Ω̄) = ∪λ∈R+λ[[−e, e]] =

∪λ∈R+ [[−λe, λe]] with norm ||u||e = inf{λ > 0 : −λe ≤ u ≤ λe}. Let

Ke := Ce(Ω̄)+.

Lemma 2.4. Let f ∈ F and ϕ ∈ G. If λ1(ϕ(x, 0)∆ + f(x, 0)) > 0,

then the equation (2.3) has a unique positive solution in C2,α(Ω). More-

over, if λ1(ϕ(x, 0)∆ + f(x, 0)) ≤ 0, then u ≡ 0 is the only nonnegative

solution of (2.3).

According to Lemma 2.4, the equation (2.3) has a unique positive

solution. We denote it by uϕ,f . Let uϕn,fn be the unique positive solution

of

−ϕn(x, u)∆u = ufn(x, u) in Ω, κ
∂u

∂n
+ βu = 0 on ∂Ω.
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Lemma 2.5. Assume f ∈ F and ϕ ∈ G

(i) (ϕ, f) 7→ uϕ,f is a continuous mapping of G × F → C1,α(Ω × R+)

for some α ∈ (0, 1).

(ii) If f1

ϕ1
≥ f2

ϕ2
6≡ f1

ϕ1
, x ∈ Ω, then uϕ1,f1 > uϕ2,f2 or uϕ1,f1 ≡ uϕ2,f2 ≡ 0.

Let X be a Banach space and let F be a strongly positive nonlinear

compact operator X such that F (0) = 0.

Lemma 2.6. Assume F ′(0) exists with r(F ′(0)) > 1. If for all µ ∈
(0, 1] the solution to the equation u = µFu has a priori bound, then F

has a positive fixed point u such that Fu = u in the positive cone K of

X.

Proof. See the proof Theorem 13.2 in [2].

3. Existence Theorem

In this section, we study the existence of positive solutions of sys-

tem involving cooperating interactions. Let λ1,βi
(A) denote the posi-

tive principal eigenvalues of a suitable differential operator A under the

boundary conditions κi
∂·
∂n

+ βi· = 0, i = 1, 2, 3. First we impose the

following hypotheses on the functions fi, ϕi, i = 1, 2, 3 :

(S1) ϕ1, ϕ2, ϕ3 ∈ C(Ω̄× R+), ϕ1(x, ·), ϕ2(x, ·), ϕ3(x, ·) ∈ G.

(S2) f1(u, v, w), f2(u, v), f3(u,w) are of C1-functions in u, v, w and their

partial derivatives are uniformly bounded. Moreover, assume that

Duf1 < 0, Dvf2 < 0, Dwf3 < 0, for u, v, w > 0. For fixed u, v, w ∈
C(Ω̄)+, f1(·, v, w), f2(u, ·), f3(u, ·) ∈ F

(S3) There is a constant c3 > 0 such that f3(0, w) ≤ 0 on w ∈ [c3,∞)

and there is a constant c2 = c2(M) > 0 such that f2(0, v) < 0 on

w ∈ (0,M ] when v > c2 and there is a constant c1 = c1(M,N) > 0

such that f1(u, v, w) < on (u,w) ∈ (0,M ]× (0, N ] when u > c1.

(S4) λ1,β1(ϕ1(x, 0)∆ + f1(0, 0, 0)) > 0, λ1,β2(ϕ2(x, 0)∆ + f2(0, 0)) > 0,

λ1,β3(ϕ3(x, 0)∆ + f3(0, 0)) > 0.
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The assumption (S4) implies that u0, v0, w0 > 0. This means that

the three species can survive by themselves in the absence of the other

species. We will use the following notations for simplicity.

u → v if u preys on v, i.e., Dvf1 ≥ 0, Duf2 ≤ 0.

u ↔ v if u, v compete, i.e., Dvf1 ≤ 0, Duf2 ≤ 0.

u · · · v if u, v cooperate, i.e., Dvf1 ≥ 0, Duf2 ≥ 0.

For example, u → v ↔ w represents a model in which u preys on v and

v, w compete.

¿From Lemma 2.4, we can define the operator S, T : C(Ω̄) → C(Ω̄)

as follows. For u ∈ C(Ω̄), Su is the unique solution of the equation

(3.4) −ϕ2(x, v)∆v = vf2(u, v), κ2
∂v

∂n
+ β2v = 0 on ∂Ω

if λ1,β2(ϕ2(x, ·)∆ + f2(u, 0)) > 0 and Su ≡ 0 otherwise. Tu is deter-

mined similarly from the equation

(3.5) −ϕ3(x,w)∆w = wf3(u,w), κ3
∂w

∂n
+ β3w = 0 on ∂Ω

provided that λ1,β3(ϕ3(·)∆ + f3(x, 0, w)) > 0 and Tu ≡ 0 otherwise.

Let U1 = {u ∈ C(Ω̄) : Su > 0}, U2 = {u ∈ C(Ω̄) : Tu > 0}. By

Lemma 2.5, it is easy to see that the operators S, T are continuous

operators and that if u,w cooperator or u is a prey of w , then T is a

strictly increasing operator in the sense that u1 6≡ u2 ≥ u1 and u2 ∈ U2

implies Tu2 > Tu1 and that if u,w compete or u preys on w, then T is

a strictly decreasing operator in sense that u1 6≡ u2 ≥ u1 and u1 ∈ U2

implies Tu2 < Tu1. Similarly conclusion is true for S with respect to

U1. Define the operator A : C(Ω̄) → C(Ω̄) by the equation

{
−ϕ1(x, z)∆z + Pz = uf1(u, Su, Tu) + Pu

κ1
∂z
∂n

+ β1z = 0 on ∂Ω.

Denote it by

z = Au = (−ϕ1(x, ·)∆ ·+P ·)−1[uf1(u, Su, Tu) + Pu]
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where P > 0 is a constant. Then ū is a fixed point of A in K iff

(ū, Sū, T ū) is a positive solution of the system (1.1). Also it is not hard

to see that in our four different models, there is an a-priori bound for

the positive fixed point of A. For ui, vi, wi, i = 1, 2, denote

< (u1, v1, w1), (u2, v2, w2) >:= {(u, v, w) ∈ C(Ω̄)⊕ C(Ω̄)⊕ C(Ω̄) :

(u1, v1, w1) < (u, v, w) < (u2, v2, w2) ∈ Ω}.

Theorem 3.1. Assume that (S1)-(S4) for fi, ϕi, i = 1, 2, 3.

Case 1. v · · · u · · ·w.

If the system (1.1) has a positive equilibrium (C1, C2, C3), then it

has a positive solution in < (u0, v0, w0), (C1, C2, C3) > .

Case 2. v · · · u ← w.

Assume that λ1,β1(ϕ1(x, ·)∆ + f1(0, v0, w0)) > 0 and the subsystem

−ϕ1(x, u)∆u = uf1(u, v, 0), −ϕ2(x, v)∆v = vf2(u, v) has a positive

equilibrium (C1, C2), i.e., f1(C1, C2, 0) = f2(C1, C2) = 0. Then system

(1.1) has a positive solution in < (0, v0, w0), (C1, C2,∞) > .

Case 3. v · · · u ↔ w.

Assume −ϕ1(x, u)∆u = uf1(u, v, 0), −ϕ2(x, v)∆v = vf2(u, v) has

a positive equilibrium (C1, C2) and λ1,β1(ϕ1(x, ·)∆ + f1(0, v0, w0)) >

0, λ1,β3(ϕ3(x, ·)∆ + f3(C1, 0)) > 0. Then system (1.1) has a positive

solution in < (0, v0, 0), (C1, C2, w0) > .

Case 4. v · · · u → w.

Let C = maxx∈Ω̄ w0(x). Assume −ϕ1(x, u)∆u = uf1(u, v, C),

− ϕ2(x, v)∆v = vf2(u, v) has a positive equilibrium (C1, C2) and

λ1,β3(ϕ3(x, ·)∆ + f3(C1, 0)) > 0. Then system (1.1) has a positive solu-

tion in < (u0, v0, 0), (C1, C2, w0) > .

Proof. Case 1. In this case Dvf1, Dwf1, Duf2, Duf3 > 0. Note that

S and T are both increasing. Then −ϕ1(x, u0)∆u0 = u0f1(u0, 0, 0) <

u0f1(u0, Su0, Tu0) and this implies u0 < Au0. The equation

(3.6) −ϕ2(x, v)∆v = vf2(C1, v) in Ω, κ2
∂v

∂n
+ β2v = 0 on ∂Ω
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has a unique positive solution v1 = SC1. The constant C2 is an upper

solution of (3.6) and the function εv1 is a lower solution to (3.6) for

ε ∈ (0, 1]. When ε is small, we have εv1 < C2. Therefore by Observa-

tion 2 there exists a positive solution v∼ of (3.6) in [[εv1, C2]]. By the

uniqueness v∼ = v1. This shows that SC1 ≤ C2. Similarly, TC1 ≤ C3.

So −ϕ1(x,C1)∆C1 ≥ C1f1(C1, SC1, TC1), thus C1 ≥ AC1. By the sim-

ilar argument, we see that u0 ≤ C1. By Corollary 6.2 [2] A has a

positive fixed point ū in [[u0, C1]]. Therefore (ū, Sū, T ū) is a positive

solution of (1.1). Also C1 6≡ ū ≤ C1 implies v0 = S0 < SC1 ≤ C2

and w0 = T0 < Tū < TC1 ≤ C3 by the strict monotonocity of

the operators S, T. Since for all v ∈< v0, C2 > and w ∈< w0, C3 >,

−ϕ1(x, u0)∆u0 = u0f1(u0, 0, 0) < u0f1(u0, v, w) and C1f1(C1, v, w) <

C1f1(C1, C2, C3) = −ϕ1(x,C1)∆C1, we conclude that u0 < ū < C1.

Thus (ū, Sū, T ū) in < (u0, v0, w0), (C1, C2, C3) > .

Case 2. In this case Dvf1, Duf2, Duf3 > 0, Dwf1 < 0. Note that S and T

both are increasing. Since A′(0) = (−ϕ1(x, ·)∆+P )−1(f1(0, v0, w0)+P )

and λ1(ϕ1(x, ·)∆+f1(0, v0, w0)) > 0, we have r(A′(0)) > 1, by Observa-

tion 1. Note that the restriction of A on Ce(Ω̄) is strongly positive. By

Krein-Rutman theorem, r(A′(0)) is an eigenvalue of A′(0) with a posi-

tive eigenvector and A′(0) has no other eigenvalues with positive eigen-

vectors. Let Aθ = θA and R = C1. Suppose Aθu = u with u ∈ ∂BR(0)∩
K for some θ ∈ (0, 1]. Then −ϕ1(x, u/θ)∆u = θuf1(u, Su, Tu) + P (θ−
1)u. Since u, Su, Tu are in W 2,p(Ω) for any p > 0 and f is C1, we see

that u ∈ W 3,p(Ω) for any p > 0. By the Sobolev imbedding theorem u ∈
C2(Ω̄). Now u ≤ C1 implies Su ≤ C2. If u attains its maximum at x0 ∈
Ω, let u(x0) = maxx∈Ω̄u(x) = C1 > 0. Since Tu > T0 = w0 > 0, we

have 0 ≤ −ϕ1(x, u(x0)/θ)∆u(x0) ≤ θu(x0)f(u(x0), Su(x0), Tu(x0)) <

θu(x0)f(u(x0), C2, w0(x0)) ≤ θC1f(C1, C2, 0) = 0, a contradiction. If u

attains its maximum only on ∂Ω, let u(x0) = maxx∈Ω̄u(x) = C1 > 0,

for some x0 ∈ ∂Ω. Since ∂Ω is smooth, we can choose a ball B ⊂ Ω
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such that f(u(x0), Su(x0), Tu(x0)) < f(C1, C2, 0) = 0, can be chosen

so small f(u(x), Su(x), Tu(x)) < 0 that on B̄. We have −ϕ1(x, u(x)/θ)

∆u(x) ≤ θu(x)f1(u(x), Su(x), Tu(x)) < 0 on B̄. Applying the Hopf

lemma to u in the domain B we conclude that ∂u(x0)
∂n

> 0 with respect

to ∂Ω. Then κ1
∂u(x0)

∂n
+ β1u(x0) > 0, contradicting to the boundary

condition. In any case it shows that Aθ has no fixed point on ∂BR(0)∩K
for θ ∈ (0, 1]. Therefore Au 6= λu, for all λ ∈ [1,∞), u ∈ ∂BR(0) ∩ K.

By Proposition 13.2 [2], the operator A has a positive fixed point ū ∈
[[0, C1]]. So (ū, Sū, T ū) is a positive solution of (1.1). T ū > T0 = w0.

C1 6≡ ū ≤ C1 implies v0 = S0 < Sū < SC1 ≤ C2. Using the similar

argument as in the proof of Case 1, we have that ū < C1.

Case 3. In this case Dvf1, Duf2 > 0, Duf3, Dwf1 < 0. Note that S is

increasing and T is decreasing. Since λ1,β1(ϕ1(x, ·)∆ + f1(0, v0, w0)) >

0, r(A′(0)) > 1, we can show that there exists u > 0 with u < C1 and

Au > u. Since SC1 ≤ C2 and TC1 ≥ 0, we have,

−∆C1 = 0 =
C1f1(C1, C2, 0)

ϕ(x,C1)
≥ C1f1(C1, SC1, TC1)

ϕ(x,C1)
,

and this show C1 ≥ AC1. By Corollary 6.2 [2] A has a positive fixed

point ū ∈ [[u,C1]]. Therefore (ū, Sū, T ū) is a positive solution of (1.1).

Also C1 6≡ ū ≤ C1 implies 0 < v0 = S0 < Sū < SC1 ≤ C2 and

< TC1 < Tū < T0 = w0. It follows that ū < C1 by the argument used

in the proof of Case 2. Thus (ū, Sū, T ū) ∈< (0, v0, 0), (C1, C2, w0) > .

Case 4. In this case Dvf1, Dwf1, Duf2 > 0, Duf3 < 0 and so S is

increasing and T is decreasing. Similarly as in Case 2, the operator has

a positive fixed point ū ∈ [[0, C1]] and ū 6= C1. Therefore v0 = S0 <

Sū < SC1 ≤ C2 and w0 = T0 > Tū > TC1 ≥ 0. Thus u0 < ū < C1

and (ū, Sū, T ū) is a positive solution of system (1.1).
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