JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 23, No. 2, June 2010

SUB-HYPERELLIPTIC CURVES $X_1^+(N)$

DAEYEOL JEON*

ABSTRACT. In this work, we determine all the curves $X_1^+(N)$ which are sub-hyperelliptic.

1. Introduction

A smooth, projective curve X is called *sub-hyperelliptic* if it admits a map of degree 2 from X to the projective line \mathbb{P}^1 . Moreover, if the genus $g(X) \geq 2$, then X is called *hyperelliptic*. If X is a rational curve, then there exists a map $\phi : X \to \mathbb{P}^1$ of degree n for any positive integer n, and so X is sub-hyperelliptic. If X is an elliptic curve, then the projection to x-axis is a map of degree 2 to \mathbb{P}^1 , and X is sub-hyperelliptic too.

Ogg [8] determined all the sub-hyperelliptic modular curves $X_0(N)$. Later Mestre [7] determined all the modular curves $X_1(N)$ which are sub-hyperelliptic. The modular curves $X_0(N)$ carry the action of the Atkin-Lehner involutions W_d for any d || N which denote a positive integer d dividing N with (d, N/d) = 1. Let $X_0^{+d}(N)$ and $X_0^*(N)$ be the quotient of $X_0(N)$ by a W_d and the W_d 's for all d || N respectively. Furumoto and Hasegawa [1], and Hasegawa [2] determined all the modular curves $X_0^{+d}(N)$ and $X_0^*(N)$ which are sub-hyperelliptic respectively.

Apart from $X_0(N)$, some Atkin-Lehner involutions W_d cannot act on $X_1(N)$. But the full Atkin-Lehner involution W_N always acts on $X_1(N)$, and the quotient of $X_1(N)$ by W_N is denoted by $X_1^+(N)$. In this paper, we determine all the sub-hyperelliptic curves $X_1^+(N)$.

Received February 26, 2010; Accepted April 23, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 11G18, 11G30.

Key words and phrases: modular curve, hyperelliptic.

This work was supported by the Korea Science and Engineering Foundation(KOSEF) grant funded by the Korea government(MEST)(No. 2009-0060674).

Daeyeol Jeon

2. Preliminaries

Let $\Gamma(1) = SL_2(\mathbb{Z})$ be the full modular group. For any integer $N \ge 1$, we have subgroups $\Gamma_1(N)$, $\Gamma_0(N)$ of $\Gamma(1)$ defined by matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ congruent modulo N to $\begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix}$, $\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$ respectively. We let $X_1(N)$, $X_0(N)$ be the modular curves defined over \mathbb{Q} associated to $\Gamma_1(N)$, $\Gamma_0(N)$ respectively. The X's are compact Riemann surfaces.

For each divisor d||N, consider the matrices of the form $\begin{pmatrix} dx & y \\ Nz & dw \end{pmatrix}$ with $x, y, z, w \in \mathbb{Z}$ and determinant d. Then these matrices define a unique involution on $X_0(N)$ which is denoted by W_d . Sometimes we regard W_d as a matrix.

Now we fix a matrix W_d . By [5] W_d belongs to the normalizer of $\Gamma_1(N)$ in $PSL_2(\mathbb{R})$, and therefore defines an automorphism of $X_1(N)$. Furthermore W_d , in general, does not give an involution on $X_1(N)$. But when d = N, W_N still gives an involution of $X_1(N)$.

We present a genus formula for estimating the genus of the quotient $v \setminus X$ of a curve X by an involution on X.

PROPOSITION 2.1. Let v be any involution on the compact Riemann surface X, and let # denote the number of fixed points of v on X. Then we have the following genus formula:

$$g(v \setminus X) = \frac{1}{4} \left(2g(X) + 2 - \# \right)$$

Proof. This follows from the Hurwitz formula.

3. Rational and elliptic curves $X_1^+(N)$

A smooth projective curve X over an algebraically closed field \overline{k} is called *d-gonal* if there exists a finite morphism $f: X \to \mathbb{P}^1$ over \overline{k} of degree d. For d = 4 we say that the curve is *tetragonal*.

If $X_1^+(N)$ is sub-hyperellitic, then $X_1(N)$ is tetragonal, since there exists a map of degree 2 from $X_1(N)$ to $X_1^+(N)$. The author, Kim and Park [4] showed that $X_1(N)$ is tetragonal only for N = 1 - 18, 20, 21, 22, 24. Thus it suffices to consider $X_1^+(N)$ for such N. By using the genus formula in [6], one can calculate the genera of $g_1^+(N)$ for N = 1 - 25 which are in the following table:

268

N	$g_1^+(N)$	N	$g_1^+(N)$	N	$g_1^+(N)$	N	$g_1^+(N)$	N	$g_1^+(N)$
1	0	6	0	11	0	16	1	21	2
2	0	7	0	12	0	17	2	22	3
3	0	8	0	13	1	18	1	23	5
4	0	9	0	14	0	19	3	24	2
5	0	10	0	15	0	20	1	25	6

From the table, we have the following results:

THEOREM 3.1. The curve $X_1^+(N)$ is rational if and only if N = 1 - 12, 14, 15.

THEOREM 3.2. The curve $X_1^+(N)$ is elliptic if and only if N = 13, 16, 18, 20.

4. Hyperelliptic curves $X_1^+(N)$

In this section, we determine all the hyperelliptic curves $X_1^+(N)$. It suffices to determine whether the curve $X_1^+(N)$ with N = 17, 21, 22, 24is hyperelliptic or not. Since every curve of genus 2 is hyperelliptic, the curves $X_1^+(17), X_1^+(21)$ and $X_1^+(24)$ are hyperelliptic. Now we prove that $X_1^+(22)$ is hyperelliptic. The author and Kim [3] proved that $X_1(22)$ is bielliptic and W_2 is the unique bielliptic involution. Thus W_2 is defined over \mathbb{Q} and contained in the center of the automorphism group of $X_1(22)$. Thus W_2 defines an involution on $X_1^+(22)$. Now we will show that the quotient $W_2 \setminus X_1^+(22)$ is a rational curve. By Proposition 2.1, the number of fixed points of W_2 on $X_1(22)$ is 10. Let P_1, P_2, \ldots, P_{10} denote the fixed points. Then $W_2(P_i)$'s are also fixed by W_2 . Thus the number of fixed points of W_2 on $X_1^+(22)$ is at least 5. From Proposition 2.1 again, we know that the genus of $W_2 \setminus X_1^+(22)$ should be zero.

Finally, we get the following:

THEOREM 4.1. The curve $X_1^+(N)$ is hyperelliptic if and only if N = 17, 21, 22, 24.

References

- M. Furumoto and Y. Hasegawa, Hyperelliptic quotients of modular curves X₀(N), Tokyo J. Math. 22 (1999), no. 1, 105–125.
- Y. Hasegawa, Hyperelliptic modular curves X^{*}₀(N), Acta Arith. 81 (1997), no. 4, 369–385.

Daeyeol Jeon

- [3] D. Jeon and C. H. Kim, Bielliptic modular curves X₁(N), Acta Arith. 112 (2004), 75–86.
- [4] D. Jeon, C. H. Kim and E. Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. 74 (2006), 1–12.
- [5] C. H. Kim and J. K. Koo, *The normalizer of* $\Gamma_1(N)$ *in* $PSL_2(\mathbb{R})$, Comm. Algebra, **28** (2000), no. 11, 5303–5310.
- [6] C. H. Kim and J. K. Koo, Estimation of genus for certain arithmetic groups, Comm. Algebra, 32 (2004), no. 7, 2479–2495.
- [7] J.-F. Mestre, Corps euclidiens, unités exceptionnelles et courbes élliptiques, J. Number Theory 13 (1981), no. 2, 123-137.
- [8] A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449–462.

*

Department of Mathematics education Kongju National University Kongju 314-701, Korea Republic of Korea *E-mail*: dyjeon@kongju.ac.kr