
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 23, No. 3, September 2010

ON THE REPRESENTATION OF
THE ∗g–ME–VECTOR IN ∗g–MEXn

Ki-Jo Yoo*

Abstract. An Einstein’s connection which takes the form (2.23) is called
a ∗g-ME-connection and the corresponding vector is called a ∗g-ME-vector.
The ∗g-ME-manifold is a generalized n-dimensional Riemannian manifold
Xn on which the differential geometric structure is imposed by the uni-
fied field tensor ∗gλν , satisfying certain conditions, through the ∗g-ME-
connection and we denote it by ∗g-MEXn. The purpose of this paper is to
derive a general representation and a special representation of the ∗g-ME-
vector in ∗g-MEXn.

1. Introduction

Einstein [6] proposed a new unified field theory that would include both

gravitation and electromagnetism. It may be characterized as a set of geo-

metrical postulates for the space time X4. However, the geometrical conse-

quences of these postulates are not developed very far by Einstein. Charac-

terizing Einstein’s unified field theory as a set of geometrical postulates in

X4, Hlavatý [7] gave its mathematical foundation for the first time. Since

then the geometrical consequence of these postulates have been developed

very far by numbers of mathematicians and theoretical physicists.

Generalizing X4 to n-dimensional generalized Riemannian manifold Xn,

n-dimensional generalization of this theory, so called Einstein’s n-dimensional

unified field theory(denoted by n-g-UFT ), has been attempted by Wrede [11]

and Mishra [10]. Corresponding to n-g-UFT , Chung [1] introduced a new

unified field theory, called the Einstein’s n-dimensional ∗g-unified field the-

ory(denoted by n-∗g-UFT ), which is more useful than n-g-UFT in some

physical aspects.
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On the other hand, Yano [12] and Imai [8,12] assigned a semi-symmetric

metric connection to an n-dimensional Riemannian manifold and found

many results concerning this manifold. Recently, Chung [3] introduced a

new concept of n-dimensional SE-manifold, imposing the semi-symmetric

condition to Xn and Ko [9] also introduced a new concept of ME-manifold

in n-g-UFT , assigning to Xn a ME-connection which is similar to Yano

and Imai’s semi-symmetric metric connection.

The purpose of the present paper is to study a general representation

of the ∗g-ME-vector which holds for a general n and all possible classes.

Furthermore, we introduce a special kind of representation of Xλ which

holds for an even n and for the first class.

2. Preliminaries

This section is a brief collection of the basic concepts, notations, and

results which are needed in our subsequent considerations in the present

paper. The detailed proof are given in Hlavatý [7].

A. Generalized Riemannian manifold

Let Xn be a generalized n-dimensional Riemannian manifold referred

to a real coordinate system xν , which obeys coordinate transformations

xν −→ x̄ν for which

(2.1) Det

(
∂x̄

∂x

)
6= 0.

The manifold Xn is endowed which a general real non-symmetric tensor

gλµ which may be split into its symmetric part hλµ and skew-symmetric

part kλµ :

(2.2) gλµ = hλµ + kλµ,

where

(2.3) Det(gλµ) 6= 0, Det(hλµ) 6= 0.

Hence we may define a unique tensor hλν by

(2.4) hλµhλν = δν
µ.
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The tensor hλµ and hλν will serve for raising and/or lowering indices of

tensor in Xn in the usual manner.

The manifold Xn is assumed to be connected by a real general real con-

nection Γν
λµ with the following transformation rule :

(2.5) Γ̄ν
λµ =

∂x̄ν

∂xα

(
∂xβ

∂x̄λ

∂xγ

∂x̄µ
Γα

βγ +
∂2xα

∂x̄λ∂x̄µ

)

B. n-dimensional ∗g-unified field theory

Hlavatý characterized Einstein’s 4-dimensional unified field theory(4-g-

UFT ) as a set of geometrical postulates in a space-time X4 for the first

time and gave its mathematical foundation. Generalizing this theory, we

may consider Einstein’s n-dimensional unified field theory. Similarly, our

n-dimensional ∗g-unified field field theory(n-∗g-UFT ), initiated by Chung

[1] and originally suggested by Hlavatý[7], is based on the following three

principles.

Principle A. The algebraic structure in n-∗g-UFT is imposed on Xn by

the basic real tensor ∗gλν defined by

(2.6) gλµ
∗gλν = gµλ

∗gνλ = δν
µ.

It may be decomposed into its symmetric part ∗hλν and skew-symmetric

part ∗kλν :

(2.7) ∗gλν = ∗hλν + ∗kλν .

Since Det(∗hλν) 6= 0, we may define a unique tensor ∗hλµ by

(2.8) ∗hλµ
∗hλν = δν

µ.

In n-∗g-UFT , we use both ∗hλν and ∗hλµ as a tensors for raising and/or

lowering indices of all tensor defined in Xn in the usual manner.

Principle B. The differential geometric structure is imposed on Xn by the

tensor ∗gλν by means of the connection Γν
λµ defined by a system of Einstein’s

equations

(2.9) Dω
∗gλµ = −2Sωα

µ∗gλα,
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where Dω denotes the symbol of the covariant derivative with respect to

Γν
λµ, and Sλµ

ν is the torsion tensor of Γν
λµ. The connection Γν

λµ satisfying

(2.9) is called an Einstein’s connection. In virtue of (2.6), the system (2.9)

is equivalent to the system of the original Einstein’s equations

(2.10) Dωgλµ = 2Sωµ
αgλα.

Principle C. In order to obtain ∗gλν involved in the solution for Γν
λµ, certain

conditions are imposed, which may be condensed to

(2.11a)

Sλ = Sλα
α = 0, R[µλ] = ∂[µXλ], R(µλ) =

1
2

(Rµλ + Rλµ) = 0,

where Xλ is an arbitrary vector, Sλ is the torsion vector, and

(2.11b) Rωµλ
ν = 2

(
∂[µΓν

|λ|ω] + Γν
α[µΓα

|λ|ω]

)
,

(2.11c) Rµλ = Rαµλ
α, Vωµ = Rωµα

α

are curvature tensors of Xn.

The following quantities will be frequently used in our subsequent con-

siderations:

(2.12a) ∗g = Det(∗gλµ) 6= 0, ∗h = Det(∗hλµ) 6= 0, ∗k = Det(∗kλµ).

(2.12b) ∗g =
∗g
∗h

∗k =
∗k
∗h

,

(2.13) σ =
{

0 if n is even,

1 if n is odd,

(2.14a) (0)∗kλν = δν
λ, (p)∗kλ

ν = (p−1)∗kλ
α∗kα

ν ,

(2.14b) K0 = 1, Kp = ∗k[α1
α1∗kα2

α2 · · · ∗kαp]
αp , (p = 1, 2, 3 · · · )
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(2.15) Kωµν = ∇ω
∗kνµ +∇µ

∗kων +∇ν
∗kωµ,

where ∇ω is the symbolic vector of the covariant derivative with respect to

the Christoffel symbol ∗
{

ν
λµ

}
defined by ∗hλµ.

It has been shown that the following relations hold in Xn ([1],[2],[5]):

(2.16a) Kp =
{

0 if p is odd,
∗k if p is even,

(2.16b) Det(M∗hλµ + ∗kλµ) = ∗h
n−σ∑
s=0

KsM
n−s, (M : a real number),

(2.17)
n−σ∑
s=0

Ks
(n−s)∗kλ

ν = 0.

Here and in what follows, the index s is assumed to take the value 0, 2, 4, 6 · · ·
in the specified range.

It has also been shown that if the equations (2.9) admits a solution Γν
λµ,

the symmetric part of (2.9) implies that it must be of the form

(2.18) Γν
λµ = ∗

{
ν
λµ

}
+ Sλµ

ν + ∗Uν
λµ,

where

(2.19) ∗Uν
λµ = Sβ(λ

ν∗kµ)
β + Sν

β(λ
∗kµ)

β − Sβ
(λµ)

∗kβ
ν .

The skew-symmetric part of (2.9) gives the following relations satisfied by

the torsion tensor Sωµν :

(2.20) Bωµν = Sωµν +
101

S ωµν +
011

S ωµν +
110

S ωµν ,

where

(2.21) Bωµν =
1
2

(
Kωµν + 3K[αβγ]

∗kω
α∗kµ

β∗kν
γ
)
,

(2.22)
pqr

S ωµν = Sαβγ
(p)∗kω

α(q)∗kµ
β(r)∗kν

γ , (p, q, r = 1, 2, 3 · · · ).
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C. The manifold ∗g-MEXn in n-∗g-UFT

All results and symbols in this subsection are based on [4].

Definition 2.1 The Einstein’s connection Γν
λµ which take the form

(2.23) Γν
λµ = ∗

{
ν
λµ

}
+ 2δν

λXµ − 2∗gλµXν

for a non-null vector Xλ is called a ∗g-ME-connection in n-∗g-UFT , and

Xλ is the corresponding ∗g-ME-vector.

If Xn admits a ∗g-ME-connection Γν
λµ, it must be of the form (2.18).

Hence, comparing (2.18) and (2.23) we have the following relations :

(2.24) Sλµ
ν = 2δν

[λXµ] − 2∗kλµXν ,

(2.25) ∗Uν
λµ = 2δν

(λXµ) − 2∗hλµXν .

Theorem 2.2. A necessary and sufficient condition for the system (2.9)

to admit a ∗g-ME-connection Γν
λµ of the form (2.23) is that the tensor field

∗gλµ satisfies the relation

(2.26) ∇ω
∗kλµ = 2

(∗hω[λ
∗gµ]β − ∗hωβ

∗kλµ

)
CαBαβ .

If this condition is satisfied, then

(2.27) Xν = CαBαν ,

where

(2.28) Cλ = ∇α
∗kλ

α.

Hence, if the system (2.27) is satisfied, we note that there always exists

a unique ∗g-ME-connection Γν
λµ in our n-∗g-UFT . In virtue of (2.23) and

(2.27), this connection may be written as

(2.29) Γν
λµ = ∗

{
ν
λµ

}
+ 2

(
δν
λ
∗hµβ − ∗gλµδν

β

)
CαAαβ .

In our further considerations in this paper, we use the word ”present

condition” to describe the situtations that the condition (2.12a) and (2.26)

are imposed on the unified field tensor ∗gλν .

Definition 2.3 An n-dimensional generalized Riemannian manifold Xn,

on which the differential geometric structure is imposed by the tensor ∗gλν

under the present condition by means of the ∗g-ME-connection given by

(2.29), is called an n-dimensional ∗g-ME-manifold and denoted by ∗g-

MEXn.
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3. A general representation of the ∗g-ME-vector in ∗g-MEXn

This section is concerned mainly with a general representation of the
∗g-ME-vector which holds for a general n and all possible classes.

In our further considerations, we use the following abbreviation for an

arbitrary real vector Aλ :

(3.1a) (p)Aλ = (p)∗kλ
αAα,

(3.1b) (p)Aν = (−1)p(p)∗kα
νAα, (p = 0, 1, 2, · · · ).

We need a symmetric tensor :

(3.2a) Pλµ = (2)∗kλµ − ∗hλµ,

and its unique inverse tensor Qλν defined by

(3.2b) PλµQλν = δν
µ.

We use the following quantities :

(3.3a) N =
1− n

2
,

(3.3b) K̂s =
s∑

t=0

KtN
s−t,

(3.3c) Yω =
1
2
QνµBωµν .

In virtue of (3.3a) and (3.3b), direct calculations show that

(3.4) K̂s = Ks + K̂s−2N
2.

By multiplying Aν to both sides of (2.17) and using (3.1b), every vector Aω

satisfies the following recurrence relation :

(3.5a)
n−σ∑
s=0

Ks
(n−s)Aω = 0,

or equivalently

(3.5b) (n)Aω + K2
(n−2)Aω + · · ·+ Kn−σ−2

(σ+2)Aω + Kn−σ
(σ)Aω = 0.
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Theorem 3.1. Under the present condition, the following relation holds

in ∗g-MEXn :

(3.6) Bωµν = −2Pν[ωXµ] + 2∗kω
αPαµXν .

Proof. Employing the abbreviations introduced in (2.22) and making use

of (2.24) and (3.1a), it following that

(3.7)

pqr

S ωµν = (∗hγαXβ − ∗hγβXα − 2∗kαβXγ) (p)∗kω
α(q)∗kµ

β(r)∗kν
γ

= (−1)r(p+r)∗kων
(q)Xα − (−1)q(q+r)∗kνµ

(q)Xω

− 2(−1)q(p+q+r)∗kωµ
(r)Xν .

Consequently, using (3.7) the relation (2.20) is reduced to (3.6) as in the

following way :

Bωµν = Sωµν +
101

S ωµν +
011

S ωµν +
110

S ωµν

= 2
(
∗hν[ω − (2)∗kν[ω

)
Xµ] + 2

(
(3)∗kωµ − ∗kωµ

)
Xν

= −2Pν[ωXµ] + 2∗kω
αPαµXν .

¤

Theorem 3.2. Under the present condition, the following relation holds

in ∗g-MEXn :

(3.8) (p)Xω = (p−1)Yω + N (p−2)Yω + N2(p−2)Xω, (p = 1, 2, 3, · · · ).

Proof. Multiplying Qνµ to both sides of (3.6) and making use of (3.2a),

we have

(3.9a) QνµBωµν = (n− 1)Xω + 2∗kω
αXα = (n− 1)Xω + 2(1)Xω.

Comparing (3.3c) and (3.9a) we have the following condition

(3.9b) (1)Xω = Yω + NXω.

Our assertion (3.8) immediately follows from (3.1a) and (3.9). ¤

Now, we are ready to prove a general representation of a ∗g-ME-vector

in the following theorem.



On the representation of the
∗g-ME-vector in

∗g-MEXn 503

Theorem 3.3. Under the present condition, the ∗g-ME-vector Xω in
∗g-MEXn may be given by

(3.10)

(σ − 1− σN)K̂n−σXω

=
n−σ−2∑

s=0

K̂s

(
(n−s−1)Yω + N (n−s−2)Yω

)
+ σK̂n−σYω.

Proof. Substituting (3.8) into (3.5b) with Aω replaced by Xω and using

(3.3b) and (3.4), we have

(3.11a)
K̂0

(
(n−1)Yω + N (n−2)Yω

)
+ (K2 + N2)(n−2)Xω + K4

(n−4)Xω

+ · · ·+ K(n−σ−2)
(σ+2)Xω + Kn−σ

(σ)Xω = 0.

Substituting (n−2)Xω again from (3.8) into (3.11a), we have

(3.11b)

K̂0

(
(n−1)Yω + N (n−2)Yω

)
+ K̂2

(
(n−3)Yω + N (n−4)Yω

)

+ (K4 + N2)(n−4)Xω + K6
(n−6)Xω + · · ·+ K̂(n−σ−2)

(σ+2)Xω

+ K̂n−σ
(σ)Xω = 0.

After n−σ
2 steps of successive repeated substitutions for (p)Xω, we have

(3.11c)

K̂0

(
(n−1)Yω + N (n−2)Yω

)
+ K̂2

(
(n−3)Yω + N (n−4)Yω

)

+ K̂4

(
(n−5)Yω + N (n−6)Yω

)
+ · · ·

+ K̂(n−σ−2)

(
(σ+1)Yω + N (σ)Yω

)

+ K̂n−σ
(σ)Xω = 0.

On the other hand, it follows from (3.1a) and (3.9b) that

(3.12) (σ)Xω = σYω + (σN − σ + 1)Xω.

Substituting (3.12) into (3.11c), we finally have the representation (3.10).

¤
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Theorem 3.4. there exists a unique ∗g-ME-vector in ∗g-MEXn if and

only if the following condition holds for ∗gλµ :

(3.13) K̂n−σ 6= 0.

Proof. In virtue of (3.10), there exists a unique Xω if (σ−1−σN)K̂n−σ 6=
0. Hence the condition (3.13) immediately follows since (σ − 1 − σN) 6= 0.

¤

4. A special representation of the ∗g-ME-vector in ∗g-MEXn

In this section we present a quite different type of a representation of a ∗g-

ME-vector from the general one found in the previous section, which holds

in an even-dimensional ∗g-ME-manifold with a certain special condition

imposed on ∗gλµ.

In this section we need a tensor Fλµ defined by

(4.1) Fλµ = ∗kλµ − 2(2)∗kλµ.

Lemma 4.1. The tensor Fλµ is of rank n if and only if the tensor field
∗gλµ satisfied the following condition:

(4.2) ∗k
n−σ∑
s=0

2sKs 6= 0.

Proof. In virtue of (4.1), we have

(4.3) Fλµ = 2∗kλα

(
1
2
∗hµβ + ∗kµβ

)
∗hαβ .

Our assertion follows from the following relation which may be obtained

from (4.3) and (2.16b) :

Det(Fλµ) = 2n∗k

(
∗h

n−σ∑
s=0

Ks(
1
2
)n−s

)
1
∗h

= ∗k
n−σ∑
s=0

2sKs.

¤
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In our further considerations in this section, we restrict ourselves to an

even-dimensional ∗g-ME-manifold and use the word ”special condition” to

describe the situations that the tensor field ∗gλµ satisfies the condition

(4.4)
n−σ∑
s=0

2sKs 6= 0.

Therefore, under the special condition the tensor Fλµ is of rank n, so that

there exists a unique inverse tensor Gλν defined by

(4.5) GλνFλµ = GνλFµλ = δν
µ.

Theorem 4.2. Under the special condition in an even-dimensional ∗g-

ME-manifold, ∗g-ME-vector Xω may be given by the following relation:

(4.6) Xν = −1
2
Gνλ∂α(log ∗g).

Proof. Multiplying gλµ to both sides of (2.9), we have

(4.7) ∂ωlog ∗g + 2Γα
αω = −2Sωα

α.

On the other hand, multiply ∗hλµ to both sides of the symmetric part of

(2.9) and making use of (2.12), (2.14) and (2.24) to obtain

(4.8) ∂ωlog ∗h + 2Γα
αω = −2Sωα

α − 2
(
∗kωα − 2(2)∗kωα

)
Xα.

Subtraction of (4.8) from (4.7) and using of (2.12b) and (4.1) gives the

following relation:

(4.9) ∂ωlog ∗g = 2
(
∗kωα − 2(2)∗kωα

)
Xα = −2FνωXν .

The representation (4.6) immediately follows by multiplying Gλω to both

sides of (4.9) and making use of (4.5). ¤

Remark 4.3 In virtue of Theorem 4.2, our investigation of the ∗g-ME-

vector under the special condition is reduced to the study of the tensor Gλν .

In order to know the ∗g-ME-vector it is necessary and sufficient to know an

explicit representation of Gλν in terms of ∗gλµ.
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In our further consideration, we need the abbreviation (p)Xλν for an

arbitrary tensor Xλν and notations
†
Ks defined by

(4.10) (0)Xλν = Xλν , (p)Xλν = (p)∗kλ
αXαν (p = 1, 2, 3, · · · ),

(4.11)
†
Ks =

1
4

s∑
t=0

1
2t

Ks−t.

The following relations are immediately consequence of (4.10) and (4.11)

(4.12) (p)∗kλ
µ
(q)Xµν = (p+q)Xλν , (q = 1, 2, 3, · · · ),

(4.13) (p)∗kλ
ω(q)Xω

ν = (p+q)Xλ
ν ,

(4.14a)
†
K0 =

1
4
,

†
K2 =

1
4
(K2 +

1
4
),

†
K4 =

1
4
(K4 +

1
4
K2 +

1
16

), · · · ,

(4.14b)
†
Ks =

1
4

(
Ks +

†
Ks−2

)
.

Theorem 4.4. In an even-dimensional ∗g-MEXn, the tensor (p)Gλν sat-

isfies the following recurrence relation :

(4.15a)
n∑

s=0

Ks
(n−s)Gλν = 0,

or equivalently

(4.15b) (n)Gλν + K2
(n−2)Gλν + · · ·+ Kn−2

(2)Gλν + KnGλν = 0.

Proof. The relations (4.15a) and (4.15b) follow by multiplying Gλµ to

both sides of (2.17) and using (4.10). Note that n − s is even, so that
(n−s)∗kλµ is symmetric. ¤
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Theorem 4.5. Under the special condition, the following relations hold

in ∗g-MEXn :

(4.16a) (p+2)Gλν +
1
2

(p+1)Gλν +
1
2

(p)∗kλν = 0, (p = 0, 1, 2, · · · ),

(4.16b) (q)Gλν =
1
4

(q−2)Gλν − 1
2

(q−2)∗kλν +
1
4

(q−3)∗kλν , (q = 3, 4, 5, · · · ).

Proof. Substituting of (4.1) into (4.5) and making use of (2.8) gives

(4.17) 2(2)Gλµ + (1)Gλµ + ∗hλµ = 0.

The relation (4.16a) may be obtained by multiplying 1
2
(p)∗kν

λ to both sides

of (4.17). Using (4.16a) twice, we have the relation (4.16b). ¤

Lemma 4.6. If the tensor field Gλν satisfies the following equation under

the special condition in ∗g-MEXn,

(4.18a) A(2)Gλν + BGλν + Λλν = 0,

then the tensor Gλν must be of the form

(4.18b) B(A + 4B)Gλν = 2AB∗hλν + A2∗kλν − (A + 4B)Λλν − 2A(1)Λλν ,

where A,B and Λλν are functions of ∗gλµ.

Proof. Substitution (4.17) into (4.18a) for (2)Gλν gives

(4.19a) A(1)Gλν = 2BGλν −A∗hλν + 2Λλν .

Multiplying ∗kµ
λ to both sides of (4.19a), we have

(4.19b) A(2)Gλν = 2B(1)Gλν −A∗kλν + 2Λλν .

Substitution of (4.17) into (4.19b) for (2)Gλν again gives

(4.19c) (
A

2
+ 2B)(1)Gλν = −A

2
∗hλν + A∗kλν − 2(1)Λλν .

Consequently, our assertion (4.18b) follows by elliminating the tensor (1)Gλν

from (4.19a) and (4.19c). ¤

Now, we are ready to prove the following main theorem in this section,

which present a representation of the tensor Gλν under the special condition.
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Theorem 4.7. Under the special condition in an even-dimensional ∗g-

MEXn, the tensor Gλν may be given by

(4.20)
2∗k

†
KnGλν =

†
Kn−2

(
∗k∗hλν + 2

†
Kn−2

∗kλν

)

− 2
†
KnΛλν −

†
Kn−2

(1)Λλν ,

where

(4.21) Λλν =
n−4∑
s=0

†
Ks

(
−2(n−2−s)∗kλν + (n−3−s)∗kλν

)
.

Proof. Substituting (4.16b) into (4.15b) for (n)Gλν and making use of

(4.14), we have

(4.22a)

†
K0

(
−2(n−2)∗kλν + (n−3)∗kλν

)
+ 4

†
K2

(n−2)Gλν + · · ·

+
†
Kn−2

(2)Gλν +
†
KnGλν = 0.

Substituting again for (n−2)Gλν into (4.22a) from (4.16b) gives

(4.22b)

†
K0

(
−2(n−2)∗kλν + (n−3)∗kλν

)
+

†
K2

(
−2(n−4)∗kλν + (n−5)∗kλν

)

+ 4
†
K4

(n−4)Gλν + · · ·+ Kn−2
(2)Gλν + KnGλν = 0.

After n−2
2 steps of successive repeated substitution for (q)Gλν , we have in

virtue of (4.21)

(4.22c) Λλν + 4
†
Kn−2

(2)Gλν + KnGλν = 0.

Comparison of (4.22c) with (4.19b) gives

(4.23) A = 4
†
Kn−2, B = Kn = ∗k.

Consequently, the relation (4.20) follows by substituting (4.23) into (4.18b)

and making use of (4.14b). ¤

Now that we have obtained a representation of Gλν in Theorem 4.7, under

the special condition it is possible for us to represent the ∗g-ME-vector Xν

in terms of ∗gλν by only substituting (4.20) into (4.6).
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Theorem 4.8. Under the special condition in an even-dimensional ∗g-

MEXn, the ∗g-ME-vector Xν may be given by

(4.24)
4∗k

†
KnXν = −(

†
Kn−2(∗k∗hνα + 2

†
Kn−2

∗kνα)

− 2
†
KnΛνα +

†
Kn−2

(1)Λνα)∂α(log ∗g).

Remark 4.9 In virtue of (2.14a), (4.10), (4.14b) and (4.21), we may

represent the last two terms on the right-hand side of (4.24) as follows :

(4.25)

− 2
†
KnΛνα +

†
Kn−2

(1)Λνα

=
n−4∑
s=0

†
Ks

(
2
†
Kn−2

(n−1−s)∗kνα + ∗k(n−2−s)∗kλν − 2
†
Kn

(n−3−s)∗kνα

)
.

Therefore, we know that the ∗g-ME-vector Xν representation in terms of
∗gλµ.
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