JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 23, No. 3, September 2010

ON THE REPRESENTATION OF THE *g-ME-VECTOR **IN** $*g-MEX_n$

KI-Jo Yoo*

ABSTRACT. An Einstein's connection which takes the form (2.23) is called a *g-ME-connection and the corresponding vector is called a *g-ME-vector. The *g-ME-manifold is a generalized *n*-dimensional Riemannian manifold X_n on which the differential geometric structure is imposed by the unified field tensor * $g^{\lambda\nu}$, satisfying certain conditions, through the *g-MEconnection and we denote it by *g-MEX_n. The purpose of this paper is to derive a general representation and a special representation of the *g-MEvector in *g-MEX_n.

1. Introduction

Einstein [6] proposed a new unified field theory that would include both gravitation and electromagnetism. It may be characterized as a set of geometrical postulates for the space time X_4 . However, the geometrical consequences of these postulates are not developed very far by Einstein. Characterizing Einstein's unified field theory as a set of geometrical postulates in X_4 , Hlavatý [7] gave its mathematical foundation for the first time. Since then the geometrical consequence of these postulates have been developed very far by numbers of mathematicians and theoretical physicists.

Generalizing X_4 to *n*-dimensional generalized Riemannian manifold X_n , *n*-dimensional generalization of this theory, so called *Einstein's n-dimensional unified field theory*(denoted by *n-g-UFT*), has been attempted by Wrede [11] and Mishra [10]. Corresponding to *n-g-UFT*, Chung [1] introduced a new unified field theory, called *the Einstein's n-dimensional *g-unified field theory*(denoted by *n-*g-UFT*), which is more useful than *n-g-UFT* in some physical aspects.

Received May 12, 2010; Accepted August 12, 2010.

²⁰¹⁰ Mathematics Subject Classifications: Prmary 53A30, 53C07, 53C25.

Key words and phrases: $*g-MEX_n$, *g-ME-connection, *g-ME-vector.

This work was supported by Mokpo National University Research Grant in 2007.

On the other hand, Yano [12] and Imai [8,12] assigned a semi-symmetric metric connection to an *n*-dimensional Riemannian manifold and found many results concerning this manifold. Recently, Chung [3] introduced a new concept of *n*-dimensional *SE*-manifold, imposing the semi-symmetric condition to X_n and Ko [9] also introduced a new concept of *ME*-manifold in *n*-*g*-*UFT*, assigning to X_n a *ME*-connection which is similar to Yano and Imai's semi-symmetric metric connection.

The purpose of the present paper is to study a general representation of the *g-ME-vector which holds for a general n and all possible classes. Furthermore, we introduce a special kind of representation of X_{λ} which holds for an even n and for the first class.

2. Preliminaries

This section is a brief collection of the basic concepts, notations, and results which are needed in our subsequent considerations in the present paper. The detailed proof are given in Hlavatý [7].

A. Generalized Riemannian manifold

Let X_n be a generalized *n*-dimensional Riemannian manifold referred to a real coordinate system x^{ν} , which obeys coordinate transformations $x^{\nu} \longrightarrow \bar{x}^{\nu}$ for which

(2.1)
$$Det\left(\frac{\partial \bar{x}}{\partial x}\right) \neq 0.$$

The manifold X_n is endowed which a general real non-symmetric tensor $g_{\lambda\mu}$ which may be split into its symmetric part $h_{\lambda\mu}$ and skew-symmetric part $k_{\lambda\mu}$:

(2.2)
$$g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu},$$

where

(2.3)
$$Det(g_{\lambda\mu}) \neq 0, \qquad Det(h_{\lambda\mu}) \neq 0.$$

Hence we may define a unique tensor $h^{\lambda\nu}$ by

(2.4)
$$h_{\lambda\mu}h^{\lambda\nu} = \delta^{\nu}_{\mu}.$$

The tensor $h_{\lambda\mu}$ and $h^{\lambda\nu}$ will serve for raising and/or lowering indices of tensor in X_n in the usual manner.

The manifold X_n is assumed to be connected by a real general real connection $\Gamma^{\nu}_{\lambda\mu}$ with the following transformation rule :

(2.5)
$$\bar{\Gamma}^{\nu}_{\lambda\mu} = \frac{\partial \bar{x}^{\nu}}{\partial x^{\alpha}} \left(\frac{\partial x^{\beta}}{\partial \bar{x}^{\lambda}} \frac{\partial x^{\gamma}}{\partial \bar{x}^{\mu}} \Gamma^{\alpha}_{\beta\gamma} + \frac{\partial^2 x^{\alpha}}{\partial \bar{x}^{\lambda} \partial \bar{x}^{\mu}} \right)$$

B. *n*-dimensional **g*-unified field theory

Hlavatý characterized Einstein's 4-dimensional unified field theory(4-g-UFT) as a set of geometrical postulates in a space-time X_4 for the first time and gave its mathematical foundation. Generalizing this theory, we may consider Einstein's *n*-dimensional unified field theory. Similarly, our *n*-dimensional *g-unified field field theory(n-*g-UFT), initiated by Chung [1] and originally suggested by Hlavatý[7], is based on the following three principles.

Principle A. The algebraic structure in n-*g-UFT is imposed on X_n by the basic real tensor * $g^{\lambda\nu}$ defined by

(2.6)
$$g_{\lambda\mu}{}^*g^{\lambda\nu} = g_{\mu\lambda}{}^*g^{\nu\lambda} = \delta^{\nu}_{\mu}.$$

It may be decomposed into its symmetric part ${}^*h^{\lambda\nu}$ and skew-symmetric part ${}^*k^{\lambda\nu}$:

(2.7)
$${}^*g^{\lambda\nu} = {}^*h^{\lambda\nu} + {}^*k^{\lambda\nu}.$$

Since $Det({}^{*}h^{\lambda\nu}) \neq 0$, we may define a unique tensor ${}^{*}h_{\lambda\mu}$ by

(2.8)
$${}^*h_{\lambda\mu}{}^*h^{\lambda\nu} = \delta^{\nu}_{\mu}.$$

In n-*g-UFT, we use both * $h^{\lambda\nu}$ and * $h_{\lambda\mu}$ as a tensors for raising and/or lowering indices of all tensor defined in X_n in the usual manner.

Principle B. The differential geometric structure is imposed on X_n by the tensor ${}^*g^{\lambda\nu}$ by means of the connection $\Gamma^{\nu}_{\lambda\mu}$ defined by a system of Einstein's equations

(2.9)
$$D_{\omega}^{*}g^{\lambda\mu} = -2S_{\omega\alpha}^{\mu*}g^{\lambda\alpha},$$

where D_{ω} denotes the symbol of the covariant derivative with respect to $\Gamma^{\nu}_{\lambda\mu}$, and $S_{\lambda\mu}{}^{\nu}$ is the torsion tensor of $\Gamma^{\nu}_{\lambda\mu}$. The connection $\Gamma^{\nu}_{\lambda\mu}$ satisfying (2.9) is called an *Einstein's connection*. In virtue of (2.6), the system (2.9) is equivalent to the system of the original Einstein's equations

$$(2.10) D_{\omega}g_{\lambda\mu} = 2S_{\omega\mu}{}^{\alpha}g_{\lambda\alpha}.$$

Principle C. In order to obtain ${}^*g^{\lambda\nu}$ involved in the solution for $\Gamma^{\nu}_{\lambda\mu}$, certain conditions are imposed, which may be condensed to (2.11a)

$$S_{\lambda} = S_{\lambda\alpha}{}^{\alpha} = 0, \qquad R_{[\mu\lambda]} = \partial_{[\mu}X_{\lambda]}, \qquad R_{(\mu\lambda)} = \frac{1}{2}\left(R_{\mu\lambda} + R_{\lambda\mu}\right) = 0,$$

where X_{λ} is an arbitrary vector, S_{λ} is the torsion vector, and

(2.11b)
$$R_{\omega\mu\lambda}^{\nu} = 2\left(\partial_{[\mu}\Gamma^{\nu}_{|\lambda|\omega]} + \Gamma^{\nu}_{\alpha[\mu}\Gamma^{\alpha}_{|\lambda|\omega]}\right),$$

(2.11c)
$$R_{\mu\lambda} = R_{\alpha\mu\lambda}{}^{\alpha}, \quad V_{\omega\mu} = R_{\omega\mu\alpha}{}^{\alpha}$$

are curvature tensors of X_n .

The following quantities will be frequently used in our subsequent considerations:

(2.12a)
$$^*\mathfrak{g} = Det(^*g_{\lambda\mu}) \neq 0, \quad ^*\mathfrak{h} = Det(^*h_{\lambda\mu}) \neq 0, \quad ^*\mathfrak{k} = Det(^*k_{\lambda\mu}).$$

(2.12b)
$${}^*g = \frac{{}^*\mathfrak{g}}{{}^*\mathfrak{h}} \qquad {}^*k = \frac{{}^*\mathfrak{k}}{{}^*\mathfrak{h}},$$

(2.13)
$$\sigma = \begin{cases} 0 & \text{if } n \text{ is even,} \\ 1 & \text{if } n \text{ is odd,} \end{cases}$$

(2.14a)
$${}^{(0)*}k_{\lambda^{\nu}} = \delta^{\nu}_{\lambda}, \quad {}^{(p)*}k_{\lambda}{}^{\nu} = {}^{(p-1)*}k_{\lambda}{}^{\alpha*}k_{\alpha}{}^{\nu},$$

(2.14b)
$$K_0 = 1, \quad K_p = {}^*k_{[\alpha_1}{}^{\alpha_1}{}^*k_{\alpha_2}{}^{\alpha_2}\cdots{}^*k_{\alpha_p}]^{\alpha_p}, \quad (p = 1, 2, 3\cdots)$$

On the representation of the *g -ME-vector in *g -MEX $_n$

(2.15)
$$K_{\omega\mu\nu} = \nabla_{\omega}^{*} k_{\nu\mu} + \nabla_{\mu}^{*} k_{\omega\nu} + \nabla_{\nu}^{*} k_{\omega\mu},$$

where ∇_{ω} is the symbolic vector of the covariant derivative with respect to the Christoffel symbol * $\left\{ \begin{array}{c} \nu \\ \lambda \mu \end{array} \right\}$ defined by * $h_{\lambda \mu}$.

It has been shown that the following relations hold in X_n ([1],[2],[5]):

(2.16a)
$$K_p = \begin{cases} 0 & \text{if } p \text{ is odd,} \\ *k & \text{if } p \text{ is even,} \end{cases}$$

(2.16b)
$$Det(M^*h_{\lambda\mu} + {}^*k_{\lambda\mu}) = {}^*\mathfrak{h}\sum_{s=0}^{n-\sigma} K_s M^{n-s}, \quad (M: \text{ a real number}),$$

(2.17)
$$\sum_{s=0}^{n-\sigma} K_s^{(n-s)*} k_{\lambda}^{\nu} = 0.$$

Here and in what follows, the index s is assumed to take the value $0, 2, 4, 6 \cdots$ in the specified range.

It has also been shown that if the equations (2.9) admits a solution $\Gamma^{\nu}_{\lambda\mu}$, the symmetric part of (2.9) implies that it must be of the form

(2.18)
$$\Gamma^{\nu}_{\lambda\mu} = {}^{*} \left\{ \begin{array}{c} \nu\\ \lambda\mu \end{array} \right\} + S_{\lambda\mu}{}^{\nu} + {}^{*}U^{\nu}{}_{\lambda\mu},$$

where

(2.19)
$${}^{*}U^{\nu}{}_{\lambda\mu} = S_{\beta(\lambda}{}^{\nu*}k_{\mu}{}^{\beta} + S^{\nu}{}_{\beta(\lambda}{}^{*}k_{\mu}{}^{\beta} - S^{\beta}{}_{(\lambda\mu)}{}^{*}k_{\beta}{}^{\nu}.$$

The skew-symmetric part of (2.9) gives the following relations satisfied by the torsion tensor $S_{\omega\mu\nu}$:

(2.20)
$$B_{\omega\mu\nu} = S_{\omega\mu\nu} + \overset{101}{S}_{\omega\mu\nu} + \overset{011}{S}_{\omega\mu\nu} + \overset{110}{S}_{\omega\mu\nu},$$

where

(2.21)
$$B_{\omega\mu\nu} = \frac{1}{2} \left(K_{\omega\mu\nu} + 3K_{[\alpha\beta\gamma]}^* k_{\omega}^{\ \alpha*} k_{\mu}^{\ \beta*} k_{\nu}^{\ \gamma} \right),$$

(2.22)
$$S^{pqr}_{\ \omega\mu\nu} = S_{\alpha\beta\gamma}{}^{(p)*}k_{\omega}{}^{\alpha(q)*}k_{\mu}{}^{\beta(r)*}k_{\nu}{}^{\gamma}, \quad (p,q,r=1,2,3\cdots).$$

C. The manifold *g-MEX_n in n-*g-UFT

All results and symbols in this subsection are based on [4].

DEFINITION 2.1 The Einstein's connection $\Gamma^{\nu}_{\lambda\mu}$ which take the form

(2.23)
$$\Gamma^{\nu}_{\lambda\mu} = {}^{*} \left\{ \begin{array}{c} \nu\\ \lambda\mu \end{array} \right\} + 2\delta^{\nu}_{\lambda}X_{\mu} - 2{}^{*}g_{\lambda\mu}X^{\nu}$$

for a non-null vector X_{λ} is called a *g-ME-connection in n-*g-UFT, and X_{λ} is the corresponding *g-ME-vector.

If X_n admits a *g-ME-connection $\Gamma^{\nu}_{\lambda\mu}$, it must be of the form (2.18). Hence, comparing (2.18) and (2.23) we have the following relations :

(2.24)
$$S_{\lambda\mu}{}^{\nu} = 2\delta^{\nu}_{[\lambda}X_{\mu]} - 2^*k_{\lambda\mu}X^{\nu},$$

(2.25)
$${}^*U^{\nu}{}_{\lambda\mu} = 2\delta^{\nu}_{(\lambda}X_{\mu)} - 2^*h_{\lambda\mu}X^{\nu}$$

THEOREM 2.2. A necessary and sufficient condition for the system (2.9) to admit a *g-ME-connection $\Gamma^{\nu}_{\lambda\mu}$ of the form (2.23) is that the tensor field ${}^{*}g_{\lambda\mu}$ satisfies the relation

(2.26)
$$\nabla_{\omega}^{*}k_{\lambda\mu} = 2\left({}^{*}h_{\omega[\lambda}{}^{*}g_{\mu]\beta} - {}^{*}h_{\omega\beta}{}^{*}k_{\lambda\mu}\right)C_{\alpha}B^{\alpha\beta}.$$

If this condition is satisfied, then

(2.27)
$$X^{\nu} = C_{\alpha} B^{\alpha \nu},$$

where

(2.28)
$$C_{\lambda} = \nabla_{\alpha}{}^* k_{\lambda}{}^{\alpha}$$

Hence, if the system (2.27) is satisfied, we note that there always exists a unique *g -ME-connection $\Gamma^{\nu}_{\lambda\mu}$ in our n- *g -UFT. In virtue of (2.23) and (2.27), this connection may be written as

(2.29)
$$\Gamma^{\nu}_{\lambda\mu} = * \left\{ \begin{matrix} \nu \\ \lambda\mu \end{matrix} \right\} + 2 \left(\delta^{\nu*}_{\lambda} h_{\mu\beta} - *g_{\lambda\mu} \delta^{\nu}_{\beta} \right) C_{\alpha} A^{\alpha\beta}.$$

In our further considerations in this paper, we use the word "present condition" to describe the situations that the condition (2.12a) and (2.26) are imposed on the unified field tensor ${}^*g^{\lambda\nu}$.

DEFINITION 2.3 An *n*-dimensional generalized Riemannian manifold X_n , on which the differential geometric structure is imposed by the tensor $*g^{\lambda\nu}$ under the present condition by means of the *g-ME-connection given by (2.29), is called an *n*-dimensional *g-ME-manifold and denoted by *g-MEX_n.

3. A general representation of the *g-ME-vector in *g-MEX_n

This section is concerned mainly with a general representation of the *g-ME-vector which holds for a general n and all possible classes.

In our further considerations, we use the following abbreviation for an arbitrary real vector A_{λ} :

(3.1a)
$${}^{(p)}A_{\lambda} = {}^{(p)*}k_{\lambda}{}^{\alpha}A_{\alpha},$$

(3.1b)
$${}^{(p)}A^{\nu} = (-1)^{p(p)*}k_{\alpha}{}^{\nu}A^{\alpha}, \quad (p = 0, 1, 2, \cdots).$$

We need a symmetric tensor :

(3.2a)
$$P_{\lambda\mu} = {}^{(2)*}k_{\lambda\mu} - {}^*h_{\lambda\mu}$$

and its unique inverse tensor $Q^{\lambda\nu}$ defined by

(3.2b)
$$P_{\lambda\mu}Q^{\lambda\nu} = \delta^{\nu}_{\mu}.$$

We use the following quantities :

$$(3.3a) N = \frac{1-n}{2},$$

(3.3b)
$$\widehat{K}_s = \sum_{t=0}^s K_t N^{s-t},$$

(3.3c)
$$Y_{\omega} = \frac{1}{2} Q^{\nu\mu} B_{\omega\mu\nu}$$

In virtue of (3.3a) and (3.3b), direct calculations show that

$$(3.4)\qquad \qquad \widehat{K}_s = K_s + \widehat{K}_{s-2}N^2.$$

By multiplying A_{ν} to both sides of (2.17) and using (3.1b), every vector A_{ω} satisfies the following recurrence relation :

(3.5a)
$$\sum_{s=0}^{n-\sigma} K_s^{(n-s)} A_{\omega} = 0,$$

or equivalently

(3.5b)
$${}^{(n)}A_{\omega} + K_2{}^{(n-2)}A_{\omega} + \dots + K_{n-\sigma-2}{}^{(\sigma+2)}A_{\omega} + K_{n-\sigma}{}^{(\sigma)}A_{\omega} = 0.$$

THEOREM 3.1. Under the present condition, the following relation holds in $*g-MEX_n$:

(3.6)
$$B_{\omega\mu\nu} = -2P_{\nu[\omega}X_{\mu]} + 2^*k_{\omega}{}^{\alpha}P_{\alpha\mu}X_{\nu}.$$

Proof. Employing the abbreviations introduced in (2.22) and making use of (2.24) and (3.1a), it following that

(3.7)

$$\begin{array}{l}
 p_{qr} \\
 S_{\ \omega\mu\nu} = (*h_{\gamma\alpha}X_{\beta} - *h_{\gamma\beta}X_{\alpha} - 2^{*}k_{\alpha\beta}X_{\gamma})^{\ (p)*}k_{\omega}{}^{\alpha(q)*}k_{\mu}{}^{\beta(r)*}k_{\nu}{}^{\gamma} \\
 = (-1)^{r\ (p+r)*}k_{\omega\nu}{}^{(q)}X_{\alpha} - (-1)^{q\ (q+r)*}k_{\nu\mu}{}^{(q)}X_{\omega} \\
 - 2(-1)^{q\ (p+q+r)*}k_{\omega\mu}{}^{(r)}X_{\nu}.
\end{array}$$

Consequently, using (3.7) the relation (2.20) is reduced to (3.6) as in the following way :

$$B_{\omega\mu\nu} = S_{\omega\mu\nu} + \overset{101}{S}_{\omega\mu\nu} + \overset{011}{S}_{\omega\mu\nu} + \overset{110}{S}_{\omega\mu\nu}$$

= $2 \left({}^{*}h_{\nu[\omega} - {}^{(2)*}k_{\nu[\omega} \right) X_{\mu]} + 2 \left({}^{(3)*}k_{\omega\mu} - {}^{*}k_{\omega\mu} \right) X_{\nu}$
= $-2P_{\nu[\omega}X_{\mu]} + 2{}^{*}k_{\omega}{}^{\alpha}P_{\alpha\mu}X_{\nu}.$

THEOREM 3.2. Under the present condition, the following relation holds in $*g-MEX_n$:

(3.8)
$$^{(p)}X_{\omega} = {}^{(p-1)}Y_{\omega} + N^{(p-2)}Y_{\omega} + N^{2(p-2)}X_{\omega}, \quad (p = 1, 2, 3, \cdots).$$

Proof. Multiplying $Q^{\nu\mu}$ to both sides of (3.6) and making use of (3.2a), we have

(3.9a)
$$Q^{\nu\mu}B_{\omega\mu\nu} = (n-1)X_{\omega} + 2^*k_{\omega}{}^{\alpha}X_{\alpha} = (n-1)X_{\omega} + 2^{(1)}X_{\omega}.$$

Comparing (3.3c) and (3.9a) we have the following condition

$$(3.9b) (1) X_{\omega} = Y_{\omega} + N X_{\omega}.$$

Our assertion (3.8) immediately follows from (3.1a) and (3.9). $\hfill \Box$

Now, we are ready to prove a general representation of a ${}^*g\text{-}ME\text{-vector}$ in the following theorem.

THEOREM 3.3. Under the present condition, the *g-ME-vector X_{ω} in $*g-MEX_n$ may be given by

(3.10)
$$(\sigma - 1 - \sigma N)\widehat{K}_{n-\sigma}X_{\omega}$$
$$= \sum_{s=0}^{n-\sigma-2} \widehat{K}_s \left({}^{(n-s-1)}Y_{\omega} + N^{(n-s-2)}Y_{\omega} \right) + \sigma \widehat{K}_{n-\sigma}Y_{\omega}.$$

Proof. Substituting (3.8) into (3.5b) with A_{ω} replaced by X_{ω} and using (3.3b) and (3.4), we have

(3.11a)
$$\widehat{K}_0 \left({}^{(n-1)}Y_\omega + N^{(n-2)}Y_\omega \right) + (K_2 + N^2)^{(n-2)}X_\omega + K_4{}^{(n-4)}X_\omega + \cdots + K_{(n-\sigma-2)}{}^{(\sigma+2)}X_\omega + K_{n-\sigma}{}^{(\sigma)}X_\omega = 0.$$

Substituting ${}^{(n-2)}X_{\omega}$ again from (3.8) into (3.11a), we have

$$(3.11b) \qquad \widehat{K}_0 \left({}^{(n-1)}Y_\omega + N^{(n-2)}Y_\omega \right) + \widehat{K}_2 \left({}^{(n-3)}Y_\omega + N^{(n-4)}Y_\omega \right) + (K_4 + N^2)^{(n-4)}X_\omega + K_6^{(n-6)}X_\omega + \dots + \widehat{K}_{(n-\sigma-2)}^{(\sigma+2)}X_\omega + \widehat{K}_{n-\sigma}^{(\sigma)}X_\omega = 0.$$

After $\frac{n-\sigma}{2}$ steps of successive repeated substitutions for ${}^{(p)}X_{\omega}$, we have

(3.11c)

$$\widehat{K}_{0}\left(^{(n-1)}Y_{\omega} + N^{(n-2)}Y_{\omega}\right) + \widehat{K}_{2}\left(^{(n-3)}Y_{\omega} + N^{(n-4)}Y_{\omega}\right) \\
+ \widehat{K}_{4}\left(^{(n-5)}Y_{\omega} + N^{(n-6)}Y_{\omega}\right) + \cdots \\
+ \widehat{K}_{(n-\sigma-2)}\left(^{(\sigma+1)}Y_{\omega} + N^{(\sigma)}Y_{\omega}\right) \\
+ \widehat{K}_{n-\sigma}{}^{(\sigma)}X_{\omega} = 0.$$

On the other hand, it follows from (3.1a) and (3.9b) that

(3.12)
$${}^{(\sigma)}X_{\omega} = \sigma Y_{\omega} + (\sigma N - \sigma + 1)X_{\omega}.$$

Substituting (3.12) into (3.11c), we finally have the representation (3.10).

THEOREM 3.4. there exists a unique *g-ME-vector in *g-MEX_n if and only if the following condition holds for $*g_{\lambda\mu}$:

Proof. In virtue of (3.10), there exists a unique X_{ω} if $(\sigma - 1 - \sigma N)\hat{K}_{n-\sigma} \neq 0$. 0. Hence the condition (3.13) immediately follows since $(\sigma - 1 - \sigma N) \neq 0$.

4. A special representation of the *g-ME-vector in *g-MEX_n

In this section we present a quite different type of a representation of a *g-ME-vector from the general one found in the previous section, which holds in an even-dimensional *g-ME-manifold with a certain special condition imposed on $*g_{\lambda\mu}$.

In this section we need a tensor $F_{\lambda\mu}$ defined by

(4.1)
$$F_{\lambda\mu} = {}^{*}k_{\lambda\mu} - 2^{(2)*}k_{\lambda\mu}$$

LEMMA 4.1. The tensor $F_{\lambda\mu}$ is of rank *n* if and only if the tensor field ${}^*g_{\lambda\mu}$ satisfied the following condition:

(4.2)
$$*\mathfrak{k}\sum_{s=0}^{n-\sigma}2^sK_s\neq 0.$$

Proof. In virtue of (4.1), we have

(4.3)
$$F_{\lambda\mu} = 2^* k_{\lambda\alpha} \left(\frac{1}{2} h_{\mu\beta} + k_{\mu\beta}\right)^* h^{\alpha\beta}$$

Our assertion follows from the following relation which may be obtained from (4.3) and (2.16b):

$$Det(F_{\lambda\mu}) = 2^{n*\mathfrak{k}} \left(*\mathfrak{h} \sum_{s=0}^{n-\sigma} K_s(\frac{1}{2})^{n-s} \right) \frac{1}{*\mathfrak{h}} = *\mathfrak{k} \sum_{s=0}^{n-\sigma} 2^s K_s.$$

In our further considerations in this section, we restrict ourselves to an even-dimensional *g-ME-manifold and use the word "special condition" to describe the situations that the tensor field $*g_{\lambda\mu}$ satisfies the condition

(4.4)
$$\sum_{s=0}^{n-\sigma} 2^s K_s \neq 0.$$

Therefore, under the special condition the tensor $F_{\lambda\mu}$ is of rank n, so that there exists a unique inverse tensor $G^{\lambda\nu}$ defined by

(4.5)
$$G^{\lambda\nu}F_{\lambda\mu} = G^{\nu\lambda}F_{\mu\lambda} = \delta^{\nu}_{\mu}.$$

THEOREM 4.2. Under the special condition in an even-dimensional *g-ME-manifold, *g-ME-vector X_{ω} may be given by the following relation:

(4.6)
$$X^{\nu} = -\frac{1}{2} G^{\nu\lambda} \partial_{\alpha} (\log {}^{*}g).$$

Proof. Multiplying $g_{\lambda\mu}$ to both sides of (2.9), we have

(4.7)
$$\partial_{\omega} \log^* \mathfrak{g} + 2\Gamma^{\alpha}_{\alpha\omega} = -2S_{\omega\alpha}{}^{\alpha}$$

On the other hand, multiply ${}^{*}h_{\lambda\mu}$ to both sides of the symmetric part of (2.9) and making use of (2.12), (2.14) and (2.24) to obtain

(4.8)
$$\partial_{\omega} \log^{*} \mathfrak{h} + 2\Gamma^{\alpha}_{\alpha\omega} = -2S_{\omega\alpha}{}^{\alpha} - 2\left({}^{*}k_{\omega\alpha} - 2^{(2)*}k_{\omega\alpha}\right)X^{\alpha}.$$

Subtraction of (4.8) from (4.7) and using of (2.12b) and (4.1) gives the following relation:

(4.9)
$$\partial_{\omega} \log {}^*g = 2\left({}^*k_{\omega\alpha} - 2^{(2)*}k_{\omega\alpha}\right)X_{\alpha} = -2F_{\nu\omega}X^{\nu}.$$

The representation (4.6) immediately follows by multiplying $G^{\lambda\omega}$ to both sides of (4.9) and making use of (4.5).

REMARK 4.3 In virtue of Theorem 4.2, our investigation of the *g-MEvector under the special condition is reduced to the study of the tensor $G^{\lambda\nu}$. In order to know the *g-ME-vector it is necessary and sufficient to know an explicit representation of $G^{\lambda\nu}$ in terms of $*g_{\lambda\mu}$.

In our further consideration, we need the abbreviation ${}^{(p)}X^{\lambda\nu}$ for an arbitrary tensor $X^{\lambda\nu}$ and notations $\overset{\dagger}{K}_s$ defined by

(4.10)
$${}^{(0)}X^{\lambda\nu} = X^{\lambda\nu}, {}^{(p)}X^{\lambda\nu} = {}^{(p)*}k^{\lambda}{}_{\alpha}X^{\alpha\nu} \quad (p = 1, 2, 3, \cdots),$$

(4.11)
$$\dot{\vec{K}}_s = \frac{1}{4} \sum_{t=0}^s \frac{1}{2^t} K_{s-t}.$$

The following relations are immediately consequence of (4.10) and (4.11)

(4.12)
$${}^{(p)*}k^{\lambda}{}_{\mu}{}^{(q)}X^{\mu\nu} = {}^{(p+q)}X^{\lambda\nu}, \quad (q=1,2,3,\cdots),$$

(4.13)
$${}^{(p)*}k_{\lambda}{}^{\omega(q)}X_{\omega}{}^{\nu} = {}^{(p+q)}X_{\lambda}{}^{\nu},$$

(4.14a)
$$\overset{\dagger}{K}_0 = \frac{1}{4}, \quad \overset{\dagger}{K}_2 = \frac{1}{4}(K_2 + \frac{1}{4}), \quad \overset{\dagger}{K}_4 = \frac{1}{4}(K_4 + \frac{1}{4}K_2 + \frac{1}{16}), \cdots,$$

(4.14b)
$$\dot{K}_s = \frac{1}{4} \left(K_s + \dot{K}_{s-2} \right).$$

THEOREM 4.4. In an even-dimensional ${}^*g-MEX_n$, the tensor ${}^{(p)}G^{\lambda\nu}$ satisfies the following recurrence relation :

(4.15a)
$$\sum_{s=0}^{n} K_s^{(n-s)} G^{\lambda \nu} = 0,$$

or equivalently

(4.15b)
$${}^{(n)}G^{\lambda\nu} + K_2{}^{(n-2)}G^{\lambda\nu} + \dots + K_{n-2}{}^{(2)}G^{\lambda\nu} + K_nG^{\lambda\nu} = 0.$$

Proof. The relations (4.15a) and (4.15b) follow by multiplying $G^{\lambda\mu}$ to both sides of (2.17) and using (4.10). Note that n-s is even, so that $(n-s)^*k_{\lambda\mu}$ is symmetric.

THEOREM 4.5. Under the special condition, the following relations hold in $*g-MEX_n$:

(4.16a)
$$^{(p+2)}G^{\lambda\nu} + \frac{1}{2}{}^{(p+1)}G^{\lambda\nu} + \frac{1}{2}{}^{(p)*}k^{\lambda\nu} = 0, \quad (p = 0, 1, 2, \cdots),$$

(4.16b)
$$^{(q)}G^{\lambda\nu} = \frac{1}{4}{}^{(q-2)}G^{\lambda\nu} - \frac{1}{2}{}^{(q-2)*}k^{\lambda\nu} + \frac{1}{4}{}^{(q-3)*}k^{\lambda\nu}, \quad (q = 3, 4, 5, \cdots).$$

Proof. Substituting of (4.1) into (4.5) and making use of (2.8) gives

(4.17)
$$2^{(2)}G^{\lambda\mu} + {}^{(1)}G^{\lambda\mu} + {}^*h^{\lambda\mu} = 0.$$

The relation (4.16a) may be obtained by multiplying $\frac{1}{2}^{(p)*}k^{\nu}{}_{\lambda}$ to both sides of (4.17). Using (4.16a) twice, we have the relation (4.16b).

LEMMA 4.6. If the tensor field $G^{\lambda\nu}$ satisfies the following equation under the special condition in *g-MEX_n,

(4.18a)
$$A^{(2)}G^{\lambda\nu} + BG^{\lambda\nu} + \Lambda^{\lambda\nu} = 0,$$

then the tensor $G^{\lambda\nu}$ must be of the form

(4.18b)
$$B(A+4B)G^{\lambda\nu} = 2AB^*h^{\lambda\nu} + A^{2*}k^{\lambda\nu} - (A+4B)\Lambda^{\lambda\nu} - 2A^{(1)}\Lambda^{\lambda\nu},$$

where A, B and $\Lambda^{\lambda\nu}$ are functions of ${}^*g_{\lambda\mu}$.

Proof. Substitution (4.17) into (4.18a) for ${}^{(2)}G^{\lambda\nu}$ gives

(4.19a)
$$A^{(1)}G^{\lambda\nu} = 2BG^{\lambda\nu} - A^*h^{\lambda\nu} + 2\Lambda^{\lambda\nu}.$$

Multiplying ${}^{*}k^{\mu}{}_{\lambda}$ to both sides of (4.19a), we have

(4.19b)
$$A^{(2)}G^{\lambda\nu} = 2B^{(1)}G^{\lambda\nu} - A^*k^{\lambda\nu} + 2\Lambda^{\lambda\nu}.$$

Substitution of (4.17) into (4.19b) for ${}^{(2)}G^{\lambda\nu}$ again gives

(4.19c)
$$(\frac{A}{2} + 2B)^{(1)}G^{\lambda\nu} = -\frac{A}{2} {}^*h^{\lambda\nu} + A^*k^{\lambda\nu} - 2^{(1)}\Lambda^{\lambda\nu}.$$

Consequently, our assertion (4.18b) follows by elliminating the tensor ${}^{(1)}G^{\lambda\nu}$ from (4.19a) and (4.19c).

Now, we are ready to prove the following main theorem in this section, which present a representation of the tensor $G^{\lambda\nu}$ under the special condition.

THEOREM 4.7. Under the special condition in an even-dimensional *g- MEX_n , the tensor $G^{\lambda\nu}$ may be given by

(4.20)
$$2^{*}k\overset{\dagger}{K}_{n}G^{\lambda\nu} = \overset{\dagger}{K}_{n-2}\left(^{*}k^{*}h^{\lambda\nu} + 2\overset{\dagger}{K}_{n-2}^{*}k^{\lambda\nu}\right) - 2\overset{\dagger}{K}_{n}\Lambda^{\lambda\nu} - \overset{\dagger}{K}_{n-2}^{(1)}\Lambda^{\lambda\nu},$$

where

(4.21)
$$\Lambda^{\lambda\nu} = \sum_{s=0}^{n-4} \overset{\dagger}{K}_s \left(-2^{(n-2-s)*} k^{\lambda\nu} + {}^{(n-3-s)*} k^{\lambda\nu} \right).$$

Proof. Substituting (4.16b) into (4.15b) for ${}^{(n)}G^{\lambda\nu}$ and making use of (4.14), we have

(4.22a)
$$\overset{\dagger}{K_0} \left(-2^{(n-2)*} k^{\lambda\nu} + {}^{(n-3)*} k^{\lambda\nu} \right) + 4 \overset{\dagger}{K_2} {}^{(n-2)} G^{\lambda\nu} + \cdots + \overset{\dagger}{K_{n-2}} {}^{(2)} G^{\lambda\nu} + \overset{\dagger}{K_n} G^{\lambda\nu} = 0.$$

Substituting again for ${}^{(n-2)}G^{\lambda\nu}$ into (4.22a) from (4.16b) gives

(4.22b)
$$\overset{\dagger}{K}_{0} \left(-2^{(n-2)*} k^{\lambda\nu} + {}^{(n-3)*} k^{\lambda\nu} \right) + \overset{\dagger}{K}_{2} \left(-2^{(n-4)*} k^{\lambda\nu} + {}^{(n-5)*} k^{\lambda\nu} \right)$$
$$+ 4 \overset{\dagger}{K}_{4}{}^{(n-4)} G^{\lambda\nu} + \dots + K_{n-2}{}^{(2)} G^{\lambda\nu} + K_{n} G^{\lambda\nu} = 0.$$

After $\frac{n-2}{2}$ steps of successive repeated substitution for ${}^{(q)}G^{\lambda\nu}$, we have in virtue of (4.21)

(4.22c)
$$\Lambda^{\lambda\nu} + 4 \overset{\dagger}{K}_{n-2}{}^{(2)}G^{\lambda\nu} + K_n G^{\lambda\nu} = 0.$$

Comparison of (4.22c) with (4.19b) gives

(4.23)
$$A = 4 \overset{\dagger}{K}_{n-2}, \quad B = K_n = {}^*k.$$

Consequently, the relation (4.20) follows by substituting (4.23) into (4.18b) and making use of (4.14b). $\hfill \Box$

Now that we have obtained a representation of $G^{\lambda\nu}$ in Theorem 4.7, under the special condition it is possible for us to represent the *g-ME-vector X^{ν} in terms of * $g^{\lambda\nu}$ by only substituting (4.20) into (4.6).

509

THEOREM 4.8. Under the special condition in an even-dimensional *g- MEX_n , the *g-ME-vector X^{ν} may be given by

(4.24)
$$4^{*}k\overset{\dagger}{K}_{n}X^{\nu} = -(\overset{\dagger}{K}_{n-2}(^{*}k^{*}h^{\nu\alpha} + 2\overset{\dagger}{K}_{n-2}{}^{*}k^{\nu\alpha}) - 2\overset{\dagger}{K}_{n}\Lambda^{\nu\alpha} + \overset{\dagger}{K}_{n-2}{}^{(1)}\Lambda^{\nu\alpha})\partial_{\alpha}(\log{}^{*}g).$$

REMARK 4.9 In virtue of (2.14a), (4.10), (4.14b) and (4.21), we may represent the last two terms on the right-hand side of (4.24) as follows : (4.25)

$$-2\ddot{K}_{n}\Lambda^{\nu\alpha} + \ddot{K}_{n-2}{}^{(1)}\Lambda^{\nu\alpha}$$
$$= \sum_{s=0}^{n-4} \ddot{K}_{s} \left(2\ddot{K}_{n-2}{}^{(n-1-s)*}k^{\nu\alpha} + {}^{*}k^{(n-2-s)*}k^{\lambda\nu} - 2\ddot{K}_{n}{}^{(n-3-s)*}k^{\nu\alpha} \right)$$

Therefore, we know that the *g-ME-vector X^{ν} representation in terms of $*g_{\lambda\mu}$.

References

- [1] K. T. Chung, Einstein's connection in terms of $*g^{\lambda\nu}$, Nuovo Cimento (X) **27** (1963), 1297-1324.
- [2] K. T. Chung and D. H. Cheoi, A Study on the relations of two dimensional unified field theories, Acta Mathematica Hungarica 45 (1985), no. 1-2, 141-149.
- [3] K. T. Chung and C. H. Cho, On the n-dimensional SE-connection and its conformal change, Nuovo Cimento 100B (1987), no. 4, 537-550.
- [4] K. T. Chung and G. S. Eun, On the ME-manifold in n-*g-UFT and its conformal change Internat. J. Math. and Math. Sci. 14 (1994) no. 1, 79-90.
- [5] K. T. Chung and T. S. Han, *n*-dimensional representations of the unified field tensor ${}^*g^{\lambda\nu}$, International Journal of Theoretical physics **20** (1981), no.10 739-747.
- [6] A. Einstein, The meaning of relativity, Princeton Univ. Press, 1950.
- [7] V. Hlavatý, Geometry of Einstein's unified field theory, Noordhoop Ltd., 1957.
- [8] T. Imai, Notes on semi-symmetric metric connections, Tensor(New Series) 24 (1972), 256-264.
- [9] J. M. Ko, A Study on the curvature tensor in a manifold MEX_n , Ph. D. Thesis, Graduate School, Yeonsei University, 1987.
- [10] R. S. Mishra, n-dimensional considerations of unified field theory of relativity, 9 (1959), 217-225.
- [11] R. C. Wrede, n-dimensional considerations of the basic principles A and B of the unified theory of relativity, Tensor 8 (1958), 95-122.
- [12] K. Yano and T. Imai, On semi-symmetric metric F-connection, Tensor 29 (1975), 134-138

510

* Department of Mathematics Mokpo National University Muan 534-729, Republic of Korea

E-mail: kjyoo@mokpo.ac.kr