ON CHARACTERIZATIONS OF THE WEIBULL DISTRIBUTION BY THE INDEPENDENT PROPERTY OF RECORD VALUES

MIN-YOUNG LEE* AND EUN-HYUK LIM**

ABSTRACT. We present characterizations of the Weibull distribution by the independent property of record values that F(x) has a Weibull distribution if and only if $\frac{X_{U(n)}}{X_{U(n)}}$ and $X_{U(n)}$ or $\frac{X_{U(n)}}{X_{U(n)} \pm X_{U(m)}}$ and $X_{U(n)}$ are independent for $1 \leq m < n$.

1. Introduction

Let $\{X_n, n \geq 1\}$ be a sequence of independent identically distributed (i.i.d.) random variables with cumulative distribution function(cdf) F(x) and probability density function(pdf) f(x). Let $Y_n = max(min)$ $\{X_1, X_2, \dots, X_n\}$ for $n \geq 1$. We say X_j is an upper(lower) record value of this sequence, if $Y_j > (<)Y_{j-1}$ for j > 1. By definition, X_1 is an upper as well as a lower record value. The indices at which the upper record values occur are given by the record times $\{U(n), n \geq 1\}$, where $U(n) = min\{j \mid j > U(n-1), X_j > X_{U(n-1)}, n \geq 2\}$ with U(1) = 1. We assume that all upper record values $X_{U(i)}$ for $i \geq 1$ occur at a sequence $\{X_n, n \geq 1\}$ of i.i.d. random variables.

We call the random variable $X \in WEI(\alpha)$ if the corresponding probability cdf F(x) of X is of the form

$$F(x) = \begin{cases} 1 - e^{-x^{\alpha}}, & x > 0, \ \alpha > 0 \\ 0, & otherwise. \end{cases}$$

Received January 14, 2010; Accepted April 23, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 60E05, 62G30, 62H05.

Key words and phrases: absolutely continuous, characterizations, independent identically distributed, Weibull distribution, record values.

Correspondence should be addressed to Min-Young Lee, leemy@dankook.ac.kr.

The research was conducted by the research fund of Dankook university in 2009.

Absanullah(1995) proved that $F(x)=1-e^{-\frac{x}{\alpha}}, x>0, \alpha>0$, if and only if $X_{U(n)}-X_{U(m)}$ and $X_{U(m)},\ 0< m< n$ are independent. Also, Lee and Chang(2008) obtained characterization that $F(x)=1-e^{-x^{\alpha}}$ for all x>0 and $\alpha>0$, if and only if $\frac{X_{U(n+1)}}{X_{U(n+1)}+X_{U(n)}}$ and $X_{U(n+1)}$ are independent for $n\geq 1$.

In this paper we generalize the results of Lee and Chang(2008) and obtain characterizations of the Weibull distribution by the independent property of record values.

2. Main results

THEOREM 2.1. Let $\{X_n, n \geq 1\}$ be a sequence of i.i.d. random variables with cdf F(x) which is absolutely continuous with pdf f(x) and F(0) = 0 and F(x) < 1 for all x > 0. Then $F(x) = 1 - e^{-x^{\alpha}}$ for all x > 0, $\alpha > 0$, if and only if $\frac{X_{U(n)}}{X_{U(n)}}$ and $X_{U(n)}$ are independent for $1 \leq m < n$.

Proof. If $F(x) = 1 - e^{-x^{\alpha}}$ for all x > 0, $\alpha > 0$, then the joint pdf $f_{m,n}(x,y)$ of $X_{U(m)}$ and $X_{U(n)}$ is found to be

$$f_{m,n}(x,y) = \frac{\alpha^2}{\Gamma(m)\Gamma(n-m)} x^{\alpha m-1} \{ y^{\alpha} - x^{\alpha} \}^{n-m-1} y^{\alpha - 1} e^{-y^{\alpha}}$$

for all $1 \le m < n$, $\alpha > 0$.

Consider the functions $V = \frac{X}{Y}$ and W = Y. It follows that x = vw, y = w and the absolute value of Jacobian of the transformation is |J| = w. Thus we can write the joint pdf $f_{V,W}(v,w)$ of V and W as

(2.1)
$$f_{V,W}(v,w) = \frac{\alpha^2}{\Gamma(m)\Gamma(n-m)} v^{\alpha m-1} (1-v^{\alpha})^{n-m-1} w^{\alpha n-1} e^{-w^{\alpha}}$$

for all 0 < v < 1, w > 0 and $\alpha > 0$.

The marginal pdf of V is given by

(2.2)
$$f_V(v) = \int_0^\infty f_{V,W}(v,w)dw$$
$$= \frac{\alpha \Gamma(n)}{\Gamma(m)\Gamma(n-m)} v^{\alpha m-1} (1-v^\alpha)^{n-m-1},$$

for all $1 \le m < n, \alpha > 0$.

Also, the pdf $f_W(w)$ of W is given by

(2.3)
$$f_W(w) = \frac{R(w)^{n-1}}{\Gamma(n)} f(w)$$
$$= \frac{\alpha w^{\alpha n-1}}{\Gamma(n)} e^{-w^{\alpha}}, \text{ where } R(w) = -\ln(1 - F(w)).$$

From (2.1), (2.2) and (2.3), we obtain $f_{V,W}(v,w) = f_V(v)f_W(w)$. Hence V and W are independent for $1 \le m < n$.

Now we will prove the sufficient condition. Let us use the transformation $V = \frac{X_{U(n)}}{X_{U(n)}}$ and $W = X_{U(n)}$. It follows that |J| = w. Thus we can write the joint pdf $f_{V,W}(v, w)$ of V and W as

(2.4)
$$f_{V,W}(v,w) = \frac{R(vw)^{m-1}}{\Gamma(m)} r(vw) \frac{\{R(w) - R(vw)\}^{n-m-1}}{\Gamma(n-m)} w f(w)$$

for all 0 < v < 1, w > 0 and $\alpha > 0$, where $r(x) = \frac{d}{dx}(R(x))$. The pdf $f_W(w)$ of W is given by

(2.5)
$$f_W(w) = \frac{R(w)^{n-1}}{\Gamma(n)} f(w)$$

for $n \geq 2$.

We get the pdf $f_V(v)$ of V from (2.4) and (2.5) as

$$f_V(v) = \frac{\Gamma(n)}{\Gamma(m)\Gamma(n-m)} \frac{R(vw)^{m-1}}{R(w)^{n-1}} r(vw) w (R(w) - R(vw))^{n-m-1}$$
$$= \frac{\Gamma(n)}{\Gamma(m)\Gamma(n-m)} \left(1 - \frac{R(vw)}{R(w)}\right)^{n-m-1} \left(\frac{R(vw)}{R(w)}\right)^{m-1} \left(\frac{\partial}{\partial v} \frac{R(vw)}{R(w)}\right).$$

By the independent property of V and W, the pdf $f_V(v)$ of V is a function of v only [see Ahsanullah(1995), p.48]. Thus we must have

$$(2.6) R(vw) = R(v)R(w).$$

By functional equations[see aczel(1996)], the only continuous solution of (2.6) with the boundary condition R(0) = 0 is

$$R(x) = x^{\alpha}$$

for all x > 0 and $\alpha > 0$. Thus we have $F(x) = 1 - e^{-x^{\alpha}}$. This completes the proof.

THEOREM 2.2. Let $\{X_n, n \geq 1\}$ be a sequence of i.i.d. random variables with cdf F(x) which is absolutely continuous with pdf f(x) and F(0) = 0 and F(x) < 1 for all x > 0. Then $F(x) = 1 - e^{-x^{\alpha}}$ for all

x>0 and $\alpha>0$, if and only if $\frac{X_{U(n)}}{X_{U(n)}+X_{U(m)}}$ and $X_{U(n)}$ are independent for $1 \le m < n$.

Proof. The joint pdf $f_{m,n}(x,y)$ of $X_{U(m)}$ and $X_{U(n)}$ is

$$f_{m,n}(x,y) = \frac{R(x)^{m-1}}{\Gamma(m)} r(x) \frac{\{R(y) - R(x)\}^{n-m-1}}{\Gamma(n-m)} f(y)$$

for all $1 \le m < n$, $\alpha > 0$, where R(x) = -ln(1 - F(x)) and r(x) = $\frac{d}{dx}(R(x)).$

Consider the functions $V = \frac{X_{U(n)}}{X_{U(n)} + X_{U(n)}}$ and $W = X_{U(n)}$. It follows that $x_{U(m)} = \frac{w(1-v)}{v}$, $x_{U(n)} = w$ and $|J| = \frac{w}{v^2}$. Thus we can write the joint pdf $f_{V,W}(v,w)$ of V and W as

 $f_{V,W}(v,w)$

$$=\frac{R(\frac{w(1-v)}{v})^{m-1}}{\Gamma(m)}r(\frac{w(1-v)}{v})\frac{\{R(w)-R(\frac{w(1-v)}{v})\}^{n-m-1}}{\Gamma(n-m)}\frac{w}{v^2}f(w).$$

for all $\frac{1}{2} < v < 1$, w > 0 and $\alpha > 0$. If $F(x) = 1 - e^{-x^{\alpha}}$ for all x > 0, $\alpha > 0$, then we get

(2.7)
$$f_{V,W}(v,w) = \frac{\alpha^2}{v^2 \Gamma(m) \Gamma(n-m)} \left(\frac{1-v}{v}\right)^{\alpha m-1} \times \left(1 - \left(\frac{1-v}{v}\right)^{\alpha}\right)^{n-m-1} w^{\alpha n-1} e^{-w^{\alpha}}.$$

The marginal pdf of V is given by

(2.8)
$$f_{V}(v) = \int_{0}^{\infty} f_{V,W}(v,w)dw$$

$$= \frac{\alpha\Gamma(n)}{v^{2}\Gamma(m)\Gamma(n-m)} \left(\frac{1-v}{v}\right)^{\alpha m-1} \left(1 - \left(\frac{1-v}{v}\right)^{\alpha}\right)^{n-m-1},$$

for all $1 \le m < n$, $\alpha > 0$.

Also, the pdf $f_W(w)$ of W is given by

(2.9)
$$f_W(w) = \frac{R(w)^{n-1}}{\Gamma(n)} f(w) = \frac{\alpha w^{\alpha n-1}}{\Gamma(n)} e^{-w^{\alpha}}.$$

From (2.7), (2.8) and (2.9), we obtain $f_{V,W}(v,w) = f_V(v)f_W(w)$.

Hence V and W are independent for $1 \le m < n$.

Now we will prove the sufficient condition. Let us use the transformation $V = \frac{X_{U(n)}}{X_{U(n)} + X_{U(n)}}$ and $W = X_{U(n)}$. The Jacobian of the

transformation is $|J| = \frac{w}{v^2}$. Thus we can write the joint pdf $f_{V,W}(v,w)$ of V and W as

(2.10)
$$f_{V,W}(v,w) = \frac{R(\frac{w(1-v)}{v})^{m-1}}{\Gamma(m)} r(\frac{w(1-v)}{v}) \times \frac{\{R(w) - R(\frac{w(1-v)}{v})\}^{n-m-1}}{\Gamma(n-m)} \frac{w}{v^2} f(w)$$

for all $\frac{1}{2} < v < 1$, w > 0 and $\alpha > 0$.

The pdf
$$f_W(w)$$
 of W is given by
$$f_W(w) = \frac{R(w)^{n-1}}{\Gamma(n)} f(w)$$

for $n \geq 2$.

(2.11)

Since V and W are independent, we get the pdf $f_V(v)$ of V from (2.10) and (2.11) as

$$f_{V}(v) = \frac{\Gamma(n)}{\Gamma(m)\Gamma(n-m)} \frac{R(\frac{w(1-v)}{v})^{m-1}}{R(w)^{n-1}} r(\frac{w(1-v)}{v}) \frac{w}{v^{2}}$$

$$\times \left(R(w) - R(\frac{w(1-v)}{v})\right)^{n-m-1}$$

$$= \frac{\Gamma(n)}{\Gamma(m)\Gamma(n-m)} \left(1 - \frac{R(\frac{w(1-v)}{v})}{R(w)}\right)^{n-m-1}$$

$$\times \left(\frac{R(\frac{w(1-v)}{v})}{R(w)}\right)^{m-1} \left(-\frac{\partial}{\partial v} \frac{R(\frac{w(1-v)}{v})}{R(w)}\right).$$

By the independent property of V and W, the pdf $f_V(v)$ of V is a function of v only. Thus we must have

(2.12)
$$R\left(\frac{w(1-v)}{v}\right) = R(w)R\left(\frac{(1-v)}{v}\right).$$

By functional equations [see aczel (1996)], the only continuous solution of (2.12) with the boundary condition R(0) = 0 is

$$R(x) = x^{\alpha}$$

for all x > 0 and $\alpha > 0$. Thus we have $F(x) = 1 - e^{-x^{\alpha}}$.

This completes the proof.

THEOREM 2.3. Let $\{X_n, n \geq 1\}$ be a sequence of i.i.d. random variables with common distribution function F(x) which is absolutely continuous with pdf f(x) and F(0) = 0 and F(x) < 1 for all x > 0. Then $F(x) = 1 - e^{-x^{\alpha}}$ for all x > 0 and $\alpha > 0$, if and only if $\frac{X_{U(n)}}{X_{U(n)} - X_{U(m)}}$ and $X_{U(n)}$ are independent for $1 \le m < n$.

Proof. We can prove it by the same way as in Theorem 2.2. \Box

References

- J. Aczel, Lectures on Functional Equations and Their Applications, Academic Press, NY, 1996.
- [2] M. Ahsanullah, Record Statistics, Inc, Dommack NY, 1995.
- [3] J. Galambos & S. Kotz, Characterization of Probability Distributions, Lecture Notes in Mathematics, **675**, Springer-Verlag, NY, 1978.
- [4] M.Y. Lee & S.K. Chang, Characterizations of the weibull distribution by the independence of the record values, J. Appl. Math. & Computing, 15 (2008), 163-167.

*

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: leemy@dankook.ac.kr

**

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: ehlim@dankook.ac.kr