ON WEAK M-SEMICONTINUITY ON SPACES WITH MINIMAL STRUCTURES

Won Keun Min* and Young Key Kim**

ABSTRACT. We introduce the notion of weak M-semicontinuity which is a generalization of M-semicontinuity defined between spaces with minimal structures. We also investigate some properties and characterizations for such a notion.

1. Introduction

Popa and Noiri [5] introduced the notion of minimal structure which is a generalization of a topology on a given nonempty set. And they introduced the notion of M-continuous function as a function defined between spaces with minimal structures. They showed that the M-continuous functions have properties similar to those of continuous functions between topological spaces.

In [2], we introduced the notions of m-semiopen sets, m-semi-interior and m-semi-closure operators on a space with a minimal structure. For a given nonempty set, if a minimal structure is a topology, the m-semiopen sets are semiopen sets defined in [1]. We also introduced the notion of M-semicontinuous function and studied characterizations for the M-semicontinuity in [2]. In this paper, we introduce the notion of weakly M-semicontinuous function which is a generalization of M-semicontinuous function defined between spaces with minimal structures. And we investigate characterizations for such a notion and relationship between weakly M-semicontinuous function and strongly M-semiclosed graph.

Received December 24, 2009; Accepted April 23, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 54C08.

Key words and phrases: weakly M-semicontinuous, M-semicontinuous, M-continuous, strongly M-semiclosed graph, m-Urysohn, m-semi- T_2 .

Correspondence should be addressed to Won Keun Min, wkmin@kangwon.ac.kr.

2. Preliminaries

A subfamily m_X of the power set P(X) of a nonempty set X is called a minimal structure [5] on X if $\emptyset \in m_X$ and $X \in m_X$. By (X, m_X) , we denote a nonempty set X with a minimal structure m_X on X. Simply we call (X, m_X) a space with a minimal structure m_X on X. Let (X, m_X) be a space with a minimal structure m_X on X. For a subset A of X, the closure of A and the interior of A are defined as the following:

```
mInt(A) = \bigcup \{U : U \subseteq A, U \in m_X\};
mCl(A) = \bigcap \{F : A \subseteq F, X - F \in m_X\}.
```

THEOREM 2.1. [5] Let (X, m_X) be a space with a minimal structure m_X on X and $A \subseteq X$.

- (1) X = mInt(X) and $\emptyset = mCl(\emptyset)$.
- (2) $mInt(A) \subseteq A$ and $A \subseteq mCl(A)$.
- (3) If $A \in m_X$, then mInt(A) = A and if $X F \in m_X$, then mCl(F) = F.
 - (4) If $A \subseteq B$, then $mInt(A) \subseteq mInt(B)$ and $mCl(A) \subseteq mCl(B)$.
 - (5) mInt(mInt(A)) = mInt(A) and mCl(mCl(A)) = mCl(A).
 - (6) mCl(X A) = X mInt(A) and mInt(X A) = X mCl(A).

Let (X, m_X) be a space with a minimal structure m_X on X and $A \subset X$. A subset A of X is called an m-semiopen set [2] if $A \subseteq mCl(mInt(A))$. The complement of an m-semiopen set is called an m-semiclosed set. Let (X, m_X) be a space with a minimal structure m_X on X. For a subset A of X, the m-semi-closure of A and the m-semi-interior of A, denoted by msCl(A) and msInt(A), respectively, are defined as the following:

```
msCl(A) = \cap \{F : A \subseteq F, F \text{ is } m\text{-semiclosed in } X\};
msInt(A) = \cup \{U : U \subseteq A, U \text{ is } m\text{-semiopen in } X\}.
```

THEOREM 2.2. [2] Let (X, m_X) be a space with a minimal structure m_X on X and $A \subseteq X$. Then

- (1) $msInt(A) \subseteq A$ and $A \subseteq msCl(A)$.
- (2) If $A \subseteq B$, then $msInt(A) \subseteq msInt(B)$ and $msCl(A) \subseteq msCl(B)$.
- (3) A is m-semiopen iff msInt(A) = A.
- (4) F is m-semiclosed iff msCl(F) = F.
- (5) msInt(msInt(A)) = msInt(A)and msCl(msCl(A)) = msCl(A).
- (6) msCl(X A) = X msInt(A) and msInt(X A) = X msCl(A).

Let $f:(X, m_X) \to (Y, m_Y)$ be a function between two spaces with minimal structures m_X and m_Y . Then f is said to be M-continuous [4] (resp. M-semicontinuous [3]) if for each x and each m-open set V containing f(x), there exists an m-open (resp. m-semiopen) set U containing x such that $f(U) \subseteq V$.

3. Main Results

DEFINITION 3.1. Let $f:(X, m_X) \to (Y, m_Y)$ be a function between two spaces with minimal structures m_X and m_Y , respectively. Then fis said to be weakly M-semicontinuous if for each m-open set A of Y, $f^{-1}(A) \subseteq msInt(f^{-1}(msCl(A)))$.

Every M-semicontinuous function is weakly M-semicontinuous but the converse is not always true.

EXAMPLE 3.2. Let $X = Y = \{a, b, c\}$ and let us consider two minimal structures $m_X = \{\emptyset, \{a\}, \{b\}, X\}$ and $m_Y = \{\emptyset, \{a, b\}, \{b, c\}, Y\}$. Consider a function $f: (X, m_X) \to (Y, m_Y)$ defined as f(a) = f(b) = a, f(c) = c. Then for $\{a, b\}, \{b, c\} \in m_Y$, $msCl(\{a, b\}) = msCl(\{b, c\}) = Y$ in (Y, m_Y) , and so clearly f is weakly M-semicontinuous. But for $\{b, c\} \in m_Y$, $f^{-1}(\{b, c\})$ is not m-semiopen in (X, m_X) . Consequently f is not M-semicontinuous.

M-continuous $\Rightarrow M$ -semicontinuous \Rightarrow weakly M-semicontinuous

THEOREM 3.3. Let $f:(X, m_X) \to (Y, m_Y)$ be a function on two spaces with minimal structures m_X and m_Y . Then f is weakly M-semicontinuous if and only if for every point x and each m-open set V containing f(x), there exists an m-semiopen set U containing x such that $f(U) \subseteq msCl(V)$.

Proof. Suppose f is a weakly M-semicontinuous function. Let x be in X and V an m-open set containing f(x). Then there exists an m-semiopen set B such that $f(x) \in B \subseteq V$. From the hypothesis, it follows

$$x \in f^{-1}(B) \subseteq msInt(f^{-1}(msCl(B))) \subseteq msInt(f^{-1}(msCl(V))).$$

Since $x \in msInt(f^{-1}(msCl(V)))$, there exists an *m*-semiopen set *U* such that $x \in U \subseteq f^{-1}(msCl(V))$, and hence $f(U) \subseteq msCl(V)$.

For the converse, let V be an m-open set in Y. For each $x \in$ $f^{-1}(V)$, there exists an m-semiopen set U containing x such that $f(U) \subseteq$ msCl(V). This implies

$$f^{-1}(V) \subseteq \bigcup \{U : x \in f^{-1}(V)\} \subseteq f^{-1}(msCl(V)).$$

Since $\cup \{U : x \in f^{-1}(V)\}$ is an m-semiopen set containing $f^{-1}(V)$, we have $f^{-1}(V) \subseteq msInt(f^{-1}(msCl(V)))$. Hence f is weakly Msemicontinuous.

A minimal structure m_X on a nonempty set X is said to have property (\mathcal{B}) [5] if the union of any family of subsets belonging to m_X belongs to

Lemma 3.4. [5] Let m_X be a minimal structure on a nonempty set X satisfying (\mathcal{B}) . For $A \subseteq X$, the following are equivalent:

- (1) $A \in m_X$ if and only if mInt(A) = A.
- (2) A is m-closed if and only if mCl(A) = A.

THEOREM 3.5. Let $f:(X,m_X)\to (Y,m_Y)$ be a function on two spaces with minimal structures m_X and m_Y , respectively. If m_Y has the property (\mathcal{B}) , then the following statements are equivalent:

- (1) f is weakly M-semicontinuous.
- (2) $msCl(f^{-1}(msInt(F))) \subseteq f^{-1}(F)$ for each m-closed set F in Y. (3) $msCl(f^{-1}(V)) \subseteq f^{-1}(mCl(V))$ for each m-open set V in Y.

Proof. (1) \Rightarrow (2) Let F be any m-closed set of Y. Then from Theorem 2.2, it follows

$$f^{-1}(Y - F) \subseteq msInt(f^{-1}(msCl(Y - F)))$$

$$= msInt(f^{-1}(Y - msInt(F)))$$

$$= msInt(Y - f^{-1}(msInt(F)))$$

$$= X - msCl(f^{-1}(msInt(F))).$$

Hence we have $msCl(f^{-1}(msInt(F))) \subseteq f^{-1}(F)$.

Similarly we can prove that the implication $(2) \Rightarrow (1)$ is hold.

 $(2) \Rightarrow (3)$ For any m-open set V in Y, by Lemma 3.4, mCl(V) is m-closed. Since $V \subseteq msInt(mCl(V))$, we have the following relation:

$$msCl(f^{-1}(V)) \subseteq msCl(f^{-1}(msInt(mCl(V)))) \subseteq f^{-1}(mCl(V)).$$

Hence the statement (3) is obtained.

 $(3) \Rightarrow (1)$ For each an m-open set V in Y. Then from

$$V \subseteq mInt(msCl(V)),$$

it follows

$$f^{-1}(V) \subseteq f^{-1}(mInt(msCl(V)))$$

$$= X - f^{-1}(mCl(Y - msCl(V)))$$

$$\subseteq X - msCl(f^{-1}(Y - msCl(V)))$$

$$= msInt(f^{-1}(msCl(V))).$$

Hence f is weakly M-semicontinuous.

THEOREM 3.6. Let $f:(X,m_X)\to (Y,m_Y)$ be a function on two spaces with minimal structures m_X and m_Y . If m_Y has the property (\mathcal{B}) , then the following statements are equivalent:

- (1) f is weakly M-semicontinuous.
- (2) $msCl(f^{-1}(msInt(B))) \subseteq f^{-1}(mCl(B))$ for each set B in Y. (3) $f^{-1}(mInt(B)) \subseteq msInt(f^{-1}(msCl(B)))$ for each set B in Y.

Proof. (1) \Rightarrow (2) For $B \subseteq Y$, by the property (\mathcal{B}) , mCl(B) is an m-closed set in Y. Then from Theorem 3.5 (2), it follows

$$msCl(f^{-1}(msInt(B))) \subseteq msCl(f^{-1}(msInt(mCl(B)))) \subseteq f^{-1}(mCl(B)).$$

(2)
$$\Rightarrow$$
 (3) For $B \subseteq Y$, from Theorem 2.2 and (2),

$$f^{-1}(mInt(B)) = f^{-1}(Y - mCl(Y - B))$$

$$= X - (f^{-1}(mCl(Y - B)))$$

$$\subseteq X - msCl(f^{-1}(msInt(Y - B)))$$

$$= msInt(f^{-1}(msCl(B))).$$

This implies $f^{-1}(mInt(B)) \subseteq msInt(f^{-1}(msCl(B)))$.

 $(3) \Rightarrow (1)$ For each m-open set V in Y, from B = mInt(B) and (3), we have $f^{-1}(B) = f^{-1}(mInt(B)) \subseteq msInt(f^{-1}(msCl(B)))$. Hence f is weakly M-semicontinuous.

We recall the next notions: Let m_X be a minimal structure on a nonemptyset X. Then (X, m_X) is said to be

- (1) m-Urysohn [6] if for each distinct points $x, y \in X$, there exist $U, V \in m_X$ containing x and y, respectively, such that $mCl(U) \cap$ $mCl(V) = \emptyset,$
- (2) m-semi- T_2 [3] if for each distinct points $x, y \in X$, there exist msemiopen sets U, V containing x and y, respectively, such that $U \cap V = \emptyset$.

DEFINITION 3.7. Let $f:(X, m_X) \to (Y, m_Y)$ be a function on two spaces with minimal structures m_X and m_Y . Then f has a strongly M-semiclosed graph if for each $(x,y) \in (X \times Y) - G(f)$, there exist an m-smiopen set U containing x and an m-open set V containing y such that $(U \times mCl(V)) \cap G(f) = \emptyset$.

LEMMA 3.8. Let $f:(X,m_X) \to (Y,m_Y)$ be a function on two spaces with minimal structures m_X and m_Y . Then f has a strongly M-semiclosed graph if and only if for each $(x,y) \in (X \times Y) - G(f)$, there exist an m-smiopen set U containing x and an m-open set V containing y such that $f(U) \cap mCl(V) = \emptyset$.

THEOREM 3.9. Let $f:(X, m_X) \to (Y, m_Y)$ be a function on two spaces with minimal structures m_X and m_Y . If f is weakly M-semicontinuous and (Y, m_Y) is m-Urysohn, then G(f) is a strongly M-semiclosed graph.

Proof. Let $(x,y) \in (X \times Y) - G(f)$; then $f(x) \neq y$. Since Y is m-Urysohn, there are m-open sets U, V containing f(x), y, respectively, such that $U \cap V = \emptyset$. This implies $mCl(V) \cap U = \emptyset$. On the one hand, from weak M-semicontinuity of f, for $f(x) \in U$, there exists an m-semiopen set G containing x such that $f(G) \subseteq msCl(U)$. This implies $f(G) \cap mCl(V) = \emptyset$, and by Lemma 3.8, G(f) is strongly M-semiclosed.

THEOREM 3.10. Let $f:(X, m_X) \to (Y, m_Y)$ be a function on two spaces with minimal structures m_X and m_Y , respectively. If f is an weakly M-semicontinuous injection with a strongly M-semiclosed graph, then X is m-semi- T_2 .

Proof. Let x_1 and x_2 be any distinct points of X. Then $f(x_1) \neq f(x_2)$, so $(x_1, f(x_2)) \in (X \times Y) - G(f)$. Since the graph G(f) is strongly M-semiclosed, there exist an m-semiopen set U containing x_1 and $V \in m_Y$ containing $f(x_2)$ such that $f(U) \cap mCl(V) = \emptyset$. Since f is weakly M-semicontinuous, for $V \in m_Y$ containing $f(x_2)$, there exists an m-semiopen set W containing x_2 in X such that $f(W) \subseteq msCl(V)$. Finally, we have $f(U) \cap f(W) = \emptyset$ because of $msCl(V) \subseteq mCl(V)$. Hence $U \cap W = \emptyset$, and X is m-semi- T_2 .

References

[1] P. Monk, An iterative finite element method for approximating the biharmonic equation, Math. Comp. **151** (1988), 451-476.

- [2] N. Levine, Semi-open sets and semi-continuity in topological spaces, Ams. Math. Monthly, **70** (1963), 36-41.
- [3] W. K. Min, m-Semiopen Sets and M-Semicontinuous Functions On Spaces With Minimal Structures, Honam Mathematical Journal, **31**, 2009, no. 2, 239-245
- [4] ———, On Minimal Semicontinuous Functions, submitted.
- [5] V. Popa and T. Noiri, On M-continuous functions, Anal, Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18 (2000), no. 23, 31-41.
- [6] ———, On the definition of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci. Kochi. Univ. Ser. Math. **22** (2001), 9-19.
- [7] ——, On weakly (τ, m) -continuous functions, Rendiconti Del Circolo Matematico Di Palermo Serie II. Tomo LI, (2002), 295-316.

*

Department of Mathematics Kangwon National University Chuncheon 200-701, Republic of Korea *E-mail*: wkmin@kangwon.ac.kr

**

Department of Mathematics MyongJi University Youngin 449-728, Republic of Korea. E-mail: ykkim@mju.ac.kr