IRROTATIONAL SCREEN HOMOTHETIC HALF LIGHTLIKE SUBMANIFOLDS

DAE HO JIN*

ABSTRACT. In this paper, we study the geometry of half lightlike submanifolds of a Lorentzian manifold. The main result is a characterization theorem for irrotational screen homothetic half lightlike submanifolds of a Lorentzian space form.

1. Introduction

It is well known that the radical distribution $Rad(TM) = TM \cap TM^{\perp}$ of lightlike submanifolds M of a Lorentzian manifold (\bar{M}, \bar{g}) is a vector subbundle of the tangent bundle TM and the normal bundle TM^{\perp} . A codimension 2 lightlike submanifold M of rankRad(TM) = 1 is called a half lightlike submanifold of (\bar{M}, \bar{g}) [3, 5, 6, 7, 8]. Then there exists a complementary non-degenerate distribution S(TM) of Rad(TM) in TM, called a screen distribution on M, such that

$$(1.1) TM = Rad(TM) \oplus_{orth} S(TM),$$

where the symbol \oplus_{orth} denotes the orthogonal direct sum. We denote such a half lightlike submanifold by (M, g, S(TM)). Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of a vector bundle E over M. Then there exist vector fields $\xi \in \Gamma(Rad(TM))$ and $u \in \Gamma(S(TM^{\perp}))$ such that

$$\bar{g}(u,u) = 1, \quad \bar{g}(\xi,v) = 0, \ \forall v \in \Gamma(TM^{\perp}),$$

where $S(TM^{\perp})$ is a supplementary distribution to Rad(TM) in TM^{\perp} of rank 1, called a co-screen distribution on M. Consider the orthogonal complementary distribution $S(TM)^{\perp}$ to S(TM) in $T\bar{M}$. Certainly ξ and u belong to $\Gamma(S(TM)^{\perp})$. Thus we have

$$S(TM)^{\perp} = S(TM^{\perp}) \oplus_{orth} S(TM^{\perp})^{\perp},$$

Received December 09, 2009; Accepted April 23, 2010. 2010 Mathematics Subject Classification: Primary 53C25, 53C40, 53C50.

Key words and phrases: screen homothetic, irrotational, Lorentzian space form.

216 Dae Ho Jin

where $S(TM^{\perp})^{\perp}$ is a orthogonal complementary to $S(TM^{\perp})$ in $S(TM)^{\perp}$. For any section ξ of Rad(TM) on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique vector field $N \in \Gamma(ltr(TM))$ satisfying

(1.2)
$$\bar{g}(\xi, N) = 1, \ \bar{g}(N, N) = \bar{g}(N, X) = \bar{g}(N, u) = 0,$$

for all $X \in \Gamma(S(TM))$. We call ltr(TM), $tr(TM) = S(TM^{\perp}) \oplus_{orth} ltr(TM)$ and N the lightlike transversal vector bundle, transversal vector bundle and lightlike transversal vector field of M with respect to S(TM) respectively. Therefore $T\bar{M}$ is decomposed as follows:

(1.3)
$$T\bar{M} = TM \oplus tr(TM) = \{Rad(TM) \oplus tr(TM)\} \oplus_{orth} S(TM)$$

= $\{Rad(TM) \oplus ltr(TM)\} \oplus_{orth} S(TM^{\perp}) \oplus_{orth} S(TM)$.

The purpose of this paper is to study the geometry of half lightlike submanifolds of a Lorentzian manifold. We prove a characterization theorem for half lightlike submanifolds M of a Lorentzian space form $(\bar{M}(c), \bar{g}), c > 0$: If M is irrotational and screen homothetic, then (1) the induced connection ∇ on M is a metric one and (2) M is totally umbilical and locally a product manifold $M = L \times M^*$, where L is a lightlike curve and M^* is a totally geodesic Riemannian space form which is isometric to a sphere (Theorem 2.3).

Let $\bar{\nabla}$ be the Levi-Civita connection of \bar{M} and P the projection morphism of $\Gamma(TM)$ on $\Gamma(S(TM))$ with respect to the decomposition (1.1). Then the local Gauss and Weingartan formulas are given by

$$(1.4) \qquad \bar{\nabla}_X Y = \nabla_X Y + B(X, Y) N + D(X, Y) u,$$

$$(1.5) \qquad \bar{\nabla}_X N = -A_N X + \tau(X) N + \rho(X) u,$$

$$(1.6) \qquad \bar{\nabla}_X u = -A_u X + \phi(X) N,$$

$$(1.7) \nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,$$

$$(1.8) \qquad \nabla_X \xi = -A_{\varepsilon}^* X - \tau(X) \xi,$$

for any $X, Y \in \Gamma(TM)$, where ∇ and ∇^* are induced linear connections on TM and S(TM) respectively, B and D are called the local fundamental forms of M, C is called the local second fundamental form on S(TM). A_N, A_ξ^* and A_u are linear operators on $\Gamma(TM)$ and τ, ρ and ϕ are 1-forms on TM. Since $\bar{\nabla}$ is torsion-free, ∇ is also torsion-free and both B and D are symmetric. From the facts that $B(X, Y) = \bar{g}(\bar{\nabla}_X Y, \xi)$ and $D(X, Y) = \bar{g}(\bar{\nabla}_X Y, u)$, we know that B and D are independent of the choice of a screen distribution and

$$(1.9) B(X, \xi) = 0, D(X, \xi) = -\phi(X), \forall X \in \Gamma(TM).$$

The induced connection ∇ on M is not metric and satisfies

$$(1.10) \qquad (\nabla_X g)(Y, Z) = B(X, Y) \, \eta(Z) + B(X, Z) \, \eta(Y),$$

for all $X, Y, Z \in \Gamma(TM)$, where η is a 1-form on TM such that

(1.11)
$$\eta(X) = \bar{g}(X, N), \ \forall X \in \Gamma(TM).$$

But the connection ∇^* on S(TM) is metric. The above three local second fundamental forms on TM and S(TM) are related to their shape operators by

(1.12)
$$B(X, Y) = g(A_{\varepsilon}^* X, Y), \qquad \bar{g}(A_{\varepsilon}^* X, N) = 0,$$

(1.13)
$$C(X, PY) = g(A_N X, PY), \quad \bar{g}(A_N X, N) = 0,$$

(1.14)
$$D(X, PY) = g(A_uX, PY), \quad \bar{g}(A_uX, N) = \rho(X),$$

(1.15)
$$D(X, Y) = g(A_u X, Y) - \phi(X)\eta(Y).$$

From (1.12), A_{ξ}^* is a self-adjoint operator on $\Gamma(TM)$ satisfying

$$(1.16) A_{\xi}^* \xi = 0.$$

We denote by \bar{R} , R and R^* the curvature tensors of $\bar{\nabla}$, ∇ and ∇^* respectively. Using the Gauss-Weingarten equations for M and S(TM), we obtain the Gauss-Codazzi equations for M and S(TM):

(1.17)
$$\bar{g}(\bar{R}(X,Y)Z,PW) = g(R(X,Y)Z,PW) + B(X,Z)C(Y,PW) - B(Y,Z)C(X,PW) + D(X,Z)D(Y,PW) - D(Y,Z)D(X,PW),$$

(1.18)
$$\bar{g}(\bar{R}(X,Y)Z,\xi) = (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z)$$
$$+ B(Y,Z)\tau(X) - B(X,Z)\tau(Y)$$
$$+ D(Y,Z)\phi(X) - D(X,Z)\phi(Y),$$

(1.19)
$$\bar{g}(\bar{R}(X,Y)Z,N) = \bar{g}(R(X,Y)Z,N) + D(X,Z)\rho(Y) - D(Y,Z)\rho(X),$$

(1.20)
$$\bar{g}(\bar{R}(X,Y)Z,u) = (\nabla_X D)(Y,Z) - (\nabla_Y D)(X,Z) + B(Y,Z)\rho(X) - B(X,Z)\rho(Y),$$

(1.21)
$$\bar{g}(R(X,Y)PZ,PW) = g(R^*(X,Y)PZ,PW) + C(X,PZ)B(Y,PW) - C(Y,PZ)B(X,PW),$$

$$(1.22) g(R(X,Y)PZ,N) = (\nabla_X C)(Y,PZ) - (\nabla_Y C)(X,PZ)$$
$$+ C(X,PZ)\tau(Y) - C(Y,PZ)\tau(X).$$

The induced Ricci type tensor $R^{(0,2)}$ of M is given by

$$(1.23) R(0,2)(X,Y) = trace\{Z \to R(Z,X)Y\}, \forall X, Y \in \Gamma(TM).$$

218 Dae Ho Jin

In general, $R^{(0,2)}$ is not symmetric. A tensor field $R^{(0,2)}$ is called its induced Ricci tensor, denoted by Ricc, if it is symmetric.

2. Irrotational screen homothetic half lightlike submanifolds

DEFINITION 2.1. (a) A half lightlike submanifold (M, g, S(TM)) of a Lorentzian manifold (\bar{M}, \bar{g}) is called *screen homothetic* [1] if $A_N = b A_{\xi}^*$ for a non-zero constant b on M, or equivalently,

(2.1)
$$C(X, PY) = bB(X, Y) \quad \forall X, Y \in \Gamma(TM).$$

(b) M is irrotational [9] if $\nabla_X \xi \in \Gamma(TM)$ for any $X \in \Gamma(TM)$.

NOTE 2.2. If M is screen homothetic, then C is symmetric on S(TM). Therefore S(TM) is integrable [4]. Thus M is locally a product manifold $L \times M^*$, where L is a lightlike curve and M^* is a leaf of S(TM) [4]. If M is irrotational, then, from (1.4) and (1.9), we show that $D(X, \xi) = 0$ and $\phi(X) = 0$ for all $X \in \Gamma(TM)$.

THEOREM 2.3. Let (M, g, S(TM)) be an irrotational screen homothetic half lightlike submanifold of $(\bar{M}(c), \bar{g})$. Then the induced Ricci type tensor $R^{(0,2)}$ is an induced Ricci tensor of M.

Proof. Since $(\bar{M}(c), \bar{g})$ is a Lorentzian space form, we obtain [5, 6]

$$R^{(0,2)}(X,Y) = mcg(X,Y) + B(X,Y)trA_N + D(X,Y)trA_u - g(A_N X, A_{\epsilon}^* Y) - g(A_u X, A_u Y) + \rho(X)\phi(Y).$$

From this and the facts $A_N = b A_{\xi}^*$ and $\phi = 0$, we have our assertion. \square

THEOREM 2.4. [5] Let (M, g, S(TM)) be a half lightlike submanifold of a Lorentzian manifold (\bar{M}, \bar{g}) . If $R^{(0,2)}$ is symmetric, then there exists a pair $\{\xi, N\}$ on \mathcal{U} such that the 1-form τ vanishes on M.

We call a pair $\{\xi, N\}$ on \mathcal{U} such that the 1-form τ vanishes on M the distinguished null pair of M. Although, in general, S(TM) is not unique, it is isomorphic to the factor bundle $S(TM)^* = TM/Rad(TM)$ considered by Kupeli [9]. Thus all S(TM) are mutually isomorphic. For this reason, in the sequel, let (M, g, S(TM)) be an irrotational screen homothetic half lightlike submanifold of a Lorentzian space form $(\bar{M}(c), \bar{g})$ equipped with the distinguished null pair $\{\xi, N\}$.

THEOREM 2.5. Let (M, g, S(TM)) be an irrotational screen homothetic half lightlike submanifold of a Lorentzian space form $(\bar{M}(c), \bar{g})$. If dim M > 3, then we have the following two assertions:

- (1) The induced connection ∇ on M is a metric connection.
- (2) M is totally umbilical and locally a product manifold $L \times M^*$, where L is a null curve and M^* is a totally geodesic Riemannian space form which is isometric to a sphere.

Proof. Since $(\overline{M}(c), \overline{g})$ is a space of constant curvature c and M is an irrotational screen homothetic, from (1.18), we obtain

(2.2)
$$(\nabla_X B)(Y, Z) = (\nabla_Y B)(X, Z)$$

for all $X, Y, Z \in \Gamma(TM)$. Using this, (1.19), (1.22) and (2.1), we get

(2.3)
$$\rho(Y)D(X,PZ) - \rho(X)D(Y,PZ)$$
$$= c \{g(Y,PZ)\eta(X) - g(X,PZ)\eta(Y)\}.$$

Replace Y by ξ in (2.3) and use (1.9) with $\phi = 0$, we obtain

(2.4)
$$\rho(\xi)D(X, PZ) = -c q(X, PZ).$$

Since $c \neq 0$, we have $\rho(\xi) \neq 0$ and $D \neq 0$. From (1.9) and (2.4), we get

(2.5)
$$D(X,Y) = \alpha g(X,Y), \quad \forall X, Y \in \Gamma(TM),$$

where $\alpha = -c\rho(\xi)^{-1} \neq 0$. While, from (1.20), we get

$$(2.6) (\nabla_X D)(Y, Z) - (\nabla_Y D)(X, Z) + B(Y, Z)\rho(X) - B(X, Z)\rho(Y) = 0,$$

for all $X, Y, Z \in \Gamma(TM)$. From this, (1.10) and (2.5), we have

(2.7)
$$X[\alpha] g(Y,Z) - Y[\alpha] g(X,Z) + B(X,Z) \{\alpha \eta(Y) - \rho(Y)\}$$
$$-B(Y,Z) \{\alpha \eta(X) - \rho(X)\} = 0, \ \forall X, Y, Z \in \Gamma(TM).$$

Replace Y by ξ in (2.7) and use (1.9), we obtain

$$(2.8) B(X,Y)\{\alpha - \rho(\xi)\} = \xi[\alpha] g(X,Y).$$

Since c > 0, we have $\alpha - \rho(\xi) \neq 0$. From (2.1) and (2.8), we have

(2.9)
$$B(X,Y) = \beta g(X,Y), C(X,Y) = b\beta g(X,Y),$$

for all $X, Y \in \Gamma(TM)$, where $\beta = \xi[\alpha](\alpha - \rho(\xi))^{-1}$. Thus M and S(TM) are totally umbilical. Since M is screen homothetic, by Note 1, M is locally a product manifold $L \times M^*$ where L is a lightlike curve and M^* is a leaf of S(TM). Since \bar{M} is a space of constant curvature c, from (1.17), (1.21) and (2.9), we have

(2.10)
$$R^*(X,Y)Z = (c + \alpha^2 + 2b\beta^2)\{g(Y,Z)X - g(X,Z)Y\},\$$

for all $X, Y, Z \in \Gamma(S(TM))$. Let Ric^* be the induced symmetric Ricci tensor of M^* . From (2.10), we have

$$Ric^*(X,Y) = (m-1)(c + \alpha^2 + 2b\beta^2) g(X,Y), \ \forall X, Y \in \Gamma(S(TM)).$$

220 Dae Ho Jin

Thus M^* is an Einstein manifold. Since M^* is a Riemannian manifold with dim $M^* > 2$, $(c + \alpha^2 + 2b\beta^2)$ is a constant and M^* is a space of constant curvature. Differentiating the first equation of (2.9) and using (1.10), (2.2) and the first equation of (2.9), we have

$${X[\beta] - \beta^2 \eta(X)}g(Y, Z) = {Y[\beta] - \beta^2 \eta(Y)}g(X, Z).$$

Replace Y by ξ in this equation, we have $\xi[\beta] = \beta^2$. Since $(c+\alpha^2+2b\beta^2)$ is a constant, $0 = \xi[c+\alpha^2+2b\beta^2] = 2\beta(c+\alpha^2+2b\beta^2)$. Since $(c+\alpha^2+2b\beta^2)$ is a constant, we have $\beta = 0$ or $c+\alpha^2+2b\beta^2 = 0$. If $c+\alpha^2+2b\beta^2 = 0$, M^* is a Euclidean space and the second fundamental form C of M^* satisfies C = 0 [2]. From (2.9), we have $b\beta = 0$. Thus we have $c+\alpha^2 = 0$. This means c = 0 and $\alpha = 0$. It is a contradiction to c > 0 and $\alpha \neq 0$. Consequently, we have $\beta = 0$ and $c+\alpha^2 \neq 0$. Thus B = C = 0; $D \neq 0$ and M^* is a totally geodesic Riemannian space form of positive constant curvature $(c+\alpha^2)$ which is isometric to a sphere. Since B(X,Y) = 0 for all $X, Y \in \Gamma(TM)$, we show that the induced connection ∇ is metric due to (1.10).

References

- [1] C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, International J. of Pure and Applied Math. 11 (2004), no. 4, 421-442.
- [2] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
- [3] K. L. Duggal, On canonical screen for lightlike submanifolds of codimension two, Central European Journal of Math. 5 (2007), no. 4, 710-719.
- [4] K. L. Duggal and A. Bejancu, *Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications*, Kluwer Acad. Publishers, Dordrecht, 1996.
- [5] D. H. Jin, Einstein half lightlike submanifolds with a Killing co-screen distribution, Honam Math. J. 30 (2008), no. 3, 487-504.
- [6] D. H. Jin, Einstein half lightlike submanifolds of codimension 2, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 16 (2009), no. 1, 31-46.
- [7] D. H. Jin, A characterization of screen conformal half lightlike submanifolds, Honam Math. J. 31 (2009), no. 1, 17-23.
- [8] D. H. Jin, Screen conformal lightlike hypersurfaces of a semi-Riemannian space form, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 16 (2009), no. 3, 271-276.
- [9] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.
- [10] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.

*

Department of Mathematics Dongguk University Gyeongju 780-714, Republic of Korea *E-mail*: jindh@dongguk.ac.kr